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Abstract

We give a criterion for extinction or local extinction of branching symmetric α-stable
processes in terms of the principal eigenvalue for time-changed processes of symmetric
α-stable processes. Here the branching rate and the branching mechanism are spatially
dependent. In particular, the branching rate is allowed to be singular with respect to the
Lebesgue measure. We apply this criterion to some branching processes.
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1. Introduction

In this paper, we consider the extinction problem for branching symmetric α-stable processes
(0 < α ≤ 2) in which each of the particles moves independently according to the law
of the absorbing symmetric α-stable process on an open set. The branching rate and the
branching mechanism are spatially dependent. In particular, the branching rate is allowed to be
singular with respect to the Lebesgue measure. We give a necessary and sufficient condition for
extinction in terms of the principal eigenvalue for processes of symmetric α-stable processes
time changed with respect to the positive continuous additive functional associated with the
branching rate and the branching mechanism (Theorem 3.1). We also give a necessary and
sufficient condition for local extinction in terms of the principal eigenvalue for time-changed
processes (Theorem 3.2).

Sevast´yanov [12, Theorem 4] and Watanabe [19, Theorem 2.2] considered the extinction
problem for branching Brownian motions on an open set with spatially independent branching
rates and branching mechanisms, and gave a criterion in terms of the principal eigenvalue of
the Dirichlet Laplacian. Our approach is different from theirs: they used the ground-state of
the Dirichlet Laplacian, while we use the ground-state for the time-changed process (see [17]
for a proof of its existence). Moreover, they assumed that the open set is bounded, while we
allow the open set to be unbounded. We assume that the branching rate belongs to a certain
Kato class, KD∞ (see Section 2 for the definition). This assumption implies that the branching
rate is small at ∞. For a bounded open set, the constant branching rate belongs to KD∞. Hence,
our result becomes an extension of theirs even for branching Brownian motions.

Pinsky [11] gave a criterion for the local extinction of measure-valued branching diffusion
processes in terms of the generalized principal eigenvalue for Schrödinger operators (see [10,
p. 147] for a definition), using the partial differential equation method (see also [5]). On the other
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hand, Engländer and Kyprianou [4] gave a criterion for the local extinction of branching and
measure-valued branching diffusion processes probabilistically. In these papers, the ground-
state of the Schrödinger operator plays an essential role. The existence of this ground-state
was proved in [10, p. 145, Theorem 3.1] using Harnack’s inequality and Schauder’s estimate;
however, this approach is not applicable to jump processes, because of the nonlocality. To
overcome this difficulty, we use the principal eigenvalue and the ground-state for time-changed
processes.

We apply the criterion above to some branching symmetric α-stable processes. For example,
consider the one-dimensional case with 1 < α ≤ 2. Take the Dirac measure at a > 0 as the
branching rate. Suppose that each particle splits into two upon branching and dies upon arriving
at 0. We then see, in Example 4.3 below, that this branching symmetricα-stable process becomes
extinct if and only if

0 < a ≤
(

−�(α) cos (πα/2)

2

)1/(α−1)

.

We can extend the criterion for extinction or local extinction to branching symmetric Hunt
processes if the ground-state exists for time-changed processes of symmetric Hunt processes
(Theorem 3.3 and Theorem 3.4). For instance, it is applicable to branching Brownian motions on
Riemannian manifolds (Example 4.2). However, it seems hard in general to show the existence
of the ground-state. We thus give a sufficient condition for extinction or local extinction without
assuming the existence of the ground-state (Theorem 3.5). To do so we use the notion of
gaugeability, that is, the exponential integrability of positive continuous additive functionals.
Chen [3, Theorem 5.1] and Takeda [15, Theorem 2.4] proved that a measure µ ∈ KD∞ is
gaugeable if and only if the principal eigenvalue for the time-changed process with respect to
µ is greater than 1 (see also [18, Theorem 3.1]). By applying this, we establish our sufficient
condition. The condition on the gaugeability above says that the principal eigenvalue measures
the size of µ. For branching processes, this quantity shows the degree of increase in the number
of particles.

2. Preliminaries

2.1. Time changes of symmetric Hunt processes

Let X be a locally compact, separable metric space and m a positive Radon measure on X

with full support. Denote by � the cemetary point. Let M = (�, F , Ft , Xt , Px, ζ ) be an
m-symmetric transient Hunt process on X, where {Ft }t≥0 is the minimal admissible filtration
and ζ is the lifetime, ζ = inf{t > 0 : Xt = �}. Suppose that the transition density of M
is absolutely continuous with respect to m. Denote by (E , F ) the regular Dirichlet form on
L2(X; m) generated by M. Let S be the set of smooth measures (see [6, p. 80] for a definition)
and denote by A

µ
t the positive continuous additive functional in the Revuz correspondence to

µ ∈ S (see [6, Theorem 5.1.4]). Let τ
µ
t = inf{s > 0 : A

µ
s∧ζ > t}. Then the fine support of µ

defined by Fµ = {x ∈ X : Px(τ
µ
0 = 0) = 1} is finely closed and A

µ
t (ω) increases only when

Xt(ω) ∈ Fµ for almost every ω ∈ � [6, Lemma 5.1.11]. The process Y
µ
t := Xτ

µ
t

is called
the time-changed process of Xt with respect to A

µ
t , and is a µ-symmetric Hunt process on Fµ

with lifetime A
µ
ζ [6, Theorem 6.2.1].

We now introduce a class of measures. Let S1 be the set of positive Radon measures in S
and G(x, y) the Green’s function of M.
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Definition 2.1. A measure µ ∈ S1 is said to be in K∞ if, for any ε > 0, there exist a compact
set K ⊂ X and a constant δ > 0 such that

sup
x∈X

∫
X\K

G(x, y) µ(dy) < ε,

and if, for all measurable sets B ⊂ K with µ(B) < δ,

sup
x∈X

∫
B

G(x, y) µ(dy) < ε.

For any µ ∈ K∞, it is known (see [3, Proposition 2.2]) that

sup
x∈X

Ex[Aµ
ζ ] = sup

x∈X

∫
X

G(x, y) µ(dy) < ∞. (2.1)

2.2. Branching symmetric Hunt processes

Following [8] and [9], we introduce the notion of branching symmetric Hunt processes.
Let {pn(x)}n≥0, x ∈ X, be a sequence such that 0 ≤ pn(x) ≤ 1 and

∑∞
n=0 pn(x) = 1.

For µ ∈ S1, we denote by Z the random variable of the exponential distribution with rate A
µ
t :

Px(t < Z | F∞) = exp(−A
µ
t ).

A particle of the branching symmetric Hunt process starts at x ∈ X according to the law
Px . When t = ζ < Z, it dies. On the other hand, when t = Z < ζ , it splits into n

particles with probability pn(XZ−). Each of these particles then starts at XZ− independently
according to the law PXZ− . Let X(0) = {�} and X(1) = X. We define the equivalence relation
‘∼’ on Xn as follows. Let xn = (x1, x2, x3, . . . , xn), yn = (y1, y2, y3, . . . , yn) ∈ Xn.
If there exists a permutation, σ , of {1, 2, 3, . . . , n} such that yi = xσ(i) for all i, then we write
xn ∼ yn. Let X(n) = Xn/∼ and X = ⋃∞

n=0 X(n). When the branching process consists of n

particles at time t , they define a point in X(n). Hence, it is a branching symmetric Hunt process
M = (Xt , Px) on X with motion component M, branching rate µ, and branching mechanism
{pn(x)}n≥0. Let T be the first splitting time of M:

Px(t < T | σ(X)) = Px(t < Z | F∞) = exp(−A
µ
t ).

Denote by Zt the number of particles of M at time t , that is, Zt = n if Xt = (X1
t , X2

t , X3
t , . . . ,

Xn
t ) ∈ X(n). Then e0 := inf{t > 0 : Zt = 0} is called the extinction time of M. Let ue(x) =

Px(e0 < ∞) = Px(limt→∞ Zt = 0). We say that M extincts if ue ≡ 1 on X. Denote by Zt(A)

the number of particles in A ⊂ X at time t , and let LA = sup{t > 0 : Zt(A) > 0}. We say
that M extincts locally if, for any relatively compact open set A ⊂ X, Px(LA < ∞) = 1 for
all x ∈ X.

2.3. Symmetric α-stable processes

Let Mα = (�, F , Ft , Xt , Px), 0 < α ≤ 2, be a symmetric α-stable process on R
d .

Denote by (Eα, F α) the Dirichlet form on L2(Rd; dx) generated by Mα:

Eα(f, f ) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

∫
Rd

|∇f |2 dx, α = 2,

A(d, α)

∫∫
Rd×Rd

(f (x) − f (y))2

|x − y|d+α
dy dx, 0 < α < 2,

F α = {f ∈ L2(Rd; dx) : Eα(f, f ) < ∞},
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where

A(d, α) = α2α−3�((d + α)/2)

πd/2�(1 − α/2)
, �(x) =

∫ ∞

0
e−t tx−1 dt.

Let MD = (XD
t , PD

x ) be the absorbing symmetric α-stable process on an open set D ⊂ R
d ,

and denote by KD∞ the class K∞ for MD . Let

λ(µ, ν; D) = inf

{
Eα(f, f ) +

∫
D

f 2 dµ : f ∈ C∞
0 (D),

∫
D

f 2 dν = 1

}

for µ, ν ∈ KD∞. We then see from [17, Section 4] that λ(µ, ν; D) is the principal eigenvalue
for the time-changed process of the exp(−A

µ
t )-subprocess of MD with respect to Aν

t .

3. Extinction and local extinction

Let MD = (Xt , Px) be a branching symmetric α-stable process with motion component MD ,
branching rate µ ∈ KD∞, and branching mechanism {pn(x)}n≥0. We first consider the extinction
problem of MD . Let

F(u)(·) =
∞∑

n=0

pn(·)u(·)n

and let τD be the exit time of Mα from D, that is, τD = inf{t > 0 : Xt /∈ D}. We then have the
following proposition.

Proposition 3.1. The function ue is the minimal solution to

u(x) = Ex[exp(−Aµ
τD

); τD < ∞] + Ex

[∫ τD

0
exp(−A

µ
t )F (u)(Xt ) dA

µ
t

]
, 0 ≤ u ≤ 1.

(3.1)

Proof. The strong Markov property of MD implies that

ue(x) = Px(e0 = τD < T, e0 < ∞) + Px(e0 = T < τD, e0 < ∞)

+ Px(T < e0 ∧ τD, e0 < ∞)

= Px(τD < T, τD < ∞) + Px(e0 = T < τD, e0 < ∞)

+ Ex[PXT
(e0 < ∞); T < e0 ∧ τD].

Since

Px(τD < T, τD < ∞) = Ex[exp(−Aµ
τD

); τD < ∞],
Px(e0 = T < τD, e0 < ∞) = Ex

[∫ τD

0
exp(−A

µ
t )p0(Xt ) dA

µ
t

]
,

Ex[PXT
(e0 < ∞); T < e0 ∧ τD] = Ex

[∫ τD

0
exp(−A

µ
t )

∞∑
n=1

pn(Xt )ue(Xt )
n dA

µ
t

]
,

the function ue satisfies (3.1).
Let R = inf{t > 0 : Zt �= Z0} and S = R ∧ T . Define S0 = 0 and Sk = Sk−1 + S ◦ θSk−1 ,

k ≥ 1, where θt is the shift of paths for MD . If ZSk
= 0 for some k ≥ 1 then we define Sl = Sk
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for all l ≥ k. Let uk(x) = Px(ZSk
= 0, e0 < ∞). Then u0 ≡ 0 and

uk(x) = Px(τD < T, τD < ∞) + Px(e0 = T < τD, e0 < ∞)

+ Ex[PXT
(ZSk−1 = 0, e0 < ∞); T < e0 ∧ τD]. (3.2)

Let xn = (x1, x2, x3, . . . , xn) ∈ D(n). Since

Pxn(ZSk−1 = 0, e0 < ∞) ≤
n∏

i=1

Pxi (ZSk−1 = 0, e0 < ∞),

the last term on the right-hand side of (3.2) is not greater than

Ex

[ZT∏
i=1

PXi
T
(ZSk−1 = 0, e0 < ∞); T < e0 ∧ τD

]
= Ex

[∫ τD

0
exp(−A

µ
t )F (uk−1)(Xt ) dA

µ
t

]
,

and, thus,

uk(x) ≤ Ex[exp(−Aµ
τD

); τD < ∞] + Ex

[∫ τD

0
exp(−A

µ
t )F (uk−1)(Xt ) dA

µ
t

]
. (3.3)

Suppose that a function v also satisfies (3.1). On account of (3.3), uk ≤ v for any k ≥ 1, by
induction, which implies that limk→∞ uk = ue ≤ v.

Lemma 3.1. Any solution to (3.1) is finely continuous.

Proof. Let u be a solution to (3.1). Then the Markov property of MD yields

u(Xt ) = exp(A
µ
t ) Ex[exp(−Aµ

τD
); τD < ∞ | Ft ]

+ exp(A
µ
t ) Ex

[∫ τD

0
exp(−Aµ

s )F (u)(Xs) dAµ
s

∣∣∣∣ Ft

]

− exp(A
µ
t )

∫ t

0
exp(−Aµ

s )F (u)(Xs) dAµ
s , PD

x -almost surely,

for all x ∈ D. Since the right-hand side of this expression is right continuous by the right
continuity of the filtration {Ft }t≥0, the function u is finely continuous by [2, Theorem 4.8].

Lemma 3.2. If Px(τD < ∞) < 1 for x ∈ D then ue(x) < 1, that is, the process MD does not
extinct.

Proof. Since Ex[exp(−A
µ
τD

); τD = ∞] > 0, (3.1) implies that

ue(x) ≤ Ex[exp(−Aµ
τD

); τD < ∞] + Ex

[∫ τD

0
exp(−A

µ
t )F (1)(Xt ) dA

µ
t

]

= 1 − Ex[exp(−Aµ
τD

); τD = ∞] < 1.

Let Q(x) = F ′(1)(x) = ∑∞
n=1 npn(x) and suppose that supx∈D Q(x) < ∞. Let

λ(µ, Q; D) = inf

{
Eα(f, f ) +

∫
D

f 2 dµ : f ∈ C∞
0 (D),

∫
D

f 2 Q dµ = 1

}
. (3.4)
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Theorem 3.1. If Px(τD < ∞) = 1 for all x ∈ D then MD extincts if and only if

λ(µ, Q; D) ≥ 1.

Proof. Let λ ≡ λ(µ, Q; D). First suppose that λ ≥ 1. Let u be a solution to (3.1).
We denote by σA the hitting time of the set A in D, that is, σA = inf{t > 0 : XD

t ∈ A}.
Let O = {x ∈ D : u(x) < 1} and assume that PD

x (σFµ∩O < ∞) > 0 for all x ∈ D. Since u

is finely continuous, by Lemma 3.1, and u − un < (n − 1)(1 − u) on O for n ≥ 2, it follows
from (3.1) and the assumption on D that

u(x) = Ex[exp(−Aµ
τD

)] + Ex

[∫ τD

0
exp(−A

µ
t )u(Xt ) dA

µ
t

]

+ Ex

[∫ τD

0
exp(−A

µ
t )

∞∑
n=0

pn(Xt )(u(Xt )
n − u(Xt )) dA

µ
t

]

> Ex[exp(−Aµ
τD

)] + Ex

[∫ τD

0
exp(−A

µ
t )u(Xt ) dA

µ
t

]

− Ex

[∫ τD

0
exp(−A

µ
t )

∞∑
n=0

(n − 1)pn(Xt )(1 − u(Xt )) dA
µ
t

]

for all x ∈ D. Let v = 1 − u. Then the inequality above is equivalent to

0 ≤ v(x) < GQµ
µ v(x), (3.5)

where G
Qµ
µ is the generalized resolvent defined by

GQµ
µ f (x) = Ex

[∫ τD

0
exp(−A

µ
t )f (Xt ) dA

Qµ
t

]

for any measurable function f in D such that the right-hand side of the expression makes sense.
Let h be the ground-state of λ, that is, the function attaining the infimum of the right-hand side
of (3.4). Then h is bounded, strictly positive, and continuous on D (see [17]). Moreover, for a
compact set K ⊂ D and a fixed point o ∈ K ,

h(x) ≤ CGD(o, x), x ∈ D \ K,

where GD(x, y) is the Green’s function of MD and C is some constant depending on K .
Therefore, ∫

D\K
h(y) µ(dy) ≤ C sup

x∈D

∫
D\K

GD(x, y) µ(dy) < ∞

by the definition of KD∞, which yields
∫
D

h(x) µ(dx) < ∞. Since

h(x) = λGQµ
µ h(x), (3.6)

(3.5) shows that ∫
D

h(x)v(x) Q(x)µ(dx) = λ

∫
D

GQµ
µ h(x)v(x) Q(x)µ(dx)

= λ

∫
D

h(x)GQµ
µ v(x) Q(x)µ(dx)

> λ

∫
D

h(x)v(x) Q(x)µ(dx),
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where the second equality follows from the Qµ-symmetry of G
Qµ
µ (see [1, Theorem 3.2(iv)]).

This contradicts λ ≥ 1. Hence, PD
x (σFµ∩O < ∞) = 0 for some x ∈ D, which implies that

PD
x (σFµ∩O < ∞) = 0 for all x ∈ D, by the irreducibility of MD . Accordingly, (3.1) yields

u ≡ 1, and, thus, ue ≡ 1 by Proposition 3.1.
Next suppose that λ < 1. Choose a β such that λ < β < 1 and an ε such that 0 < ε < 1

and F ′(1 − ε) ≥ βF ′(1) = βQ(x). Let δ be a positive constant such that δ supx∈D h(x) ≤ ε,
and let w(x) = 1 − δh(x). Then

Ex[exp(−Aµ
τD

)] + Ex

[∫ τD

0
exp(−A

µ
t )F (w)(Xt ) dA

µ
t

]

= 1 − Ex

[∫ τD

0
exp(−A

µ
t )(F (1) − F(w))(Xt ) dA

µ
t

]

= 1 − Ex

[∫ τD

0
exp(−A

µ
t )F ′(γ )(Xt )(1 − w(Xt)) dA

µ
t

]
, (3.7)

where γ is a function satisfying 1 − ε < w(x) < γ (x) < 1 for all x ∈ D. Since F ′(γ )(x) ≥
F ′(1 − ε)(x) ≥ βQ(x), the right-hand side of (3.7) is not greater than

1 − βδGQµ
µ h(x) < 1 − δh(x) = w(x),

by (3.6) and the relation β > λ. Thus,

Ex[exp(−Aµ
τD

)] + Ex

[∫ τD

0
exp(−A

µ
t )F (w)(Xt ) dA

µ
t

]
< w(x). (3.8)

On account of (3.3) and (3.8), uk < w for any k ≥ 1, by induction. Hence, limk→∞ uk = ue ≤
w < 1 on D.

Remark 3.1. Let D ⊂ R
d be an open set, let µ ∈ KD∞, and let λ(µ; D) ≡ λ(0, µ; D).

Suppose that Q(x) ≡ Q. Then

λ(µ, Q; D) ≥ 1 ⇐⇒ λ(µ; D) ≥ Q − 1.

This says that if Q ≤ 1 then MD extincts for any branching rate µ in KD∞.

Let us denote by Cap the 0-capacity associated with the Dirichlet form of Mα .

Lemma 3.3. ([16, Lemma 4.5].) For any closed set K ⊂ R
d with Cap(K) > 0 and any

µ, ν ∈ K
R

d\K∞ , we have λ(µ, ν; R
d \ K) > λ(µ, ν; R

d).

Combining Theorem 3.1 with Lemma 3.3 yields the following corollary.

Corollary 3.1. If λ(µ, Q; R
d) ≥ 1 then MD extincts for each open set D ⊂ R

d such that
Px(τD < ∞) = 1 for all x ∈ D.

Let NK be the number of branches of Mα ever hitting a closed set K ⊂ R
d . Takeda [16,

Theorem 1.2] showed that then, for any closed set K ⊂ R
d with Cap(K) > 0,

sup
x∈Rd\K

Ex[NK ] < ∞ ⇐⇒ λ(µ, Q; R
d \ K) > 1.
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Let D ⊂ R
d be an open set such that Px(τD < ∞) = 1 for all x ∈ D. Then

λ(µ, Q; D) > 1 �⇒ Px(e0 < ∞) ≡ 1, sup
x∈D

Ex[NRd\D] < ∞,

λ(µ, Q; D) = 1 �⇒ Px(e0 < ∞) ≡ 1, sup
x∈D

Ex[NRd\D] = ∞,

λ(µ, Q; D) < 1 �⇒ Px(e0 < ∞) < 1, sup
x∈D

Ex[NRd\D] = ∞.

The next lemma says that, for Px-almost every path ω of MD , e0(ω) = ∞ if and only if
limt→∞ Zt(ω) = ∞.

Lemma 3.4. If Px(τD < ∞) = 1 for all x ∈ D then

Px

(
lim

t→∞ Zt = 0 or lim
t→∞ Zt = ∞

)
= 1 for all x ∈ D.

Proof. We first show that

Pxk (Zt = k for all t ≥ 0) = 0 for all xk ∈ D(k), (3.9)

for any k ≥ 1. Note that it suffices to consider the case k = 1. Define T1 = T and Tn =
Tn−1 + T ◦ θTn−1 , n ≥ 1. Then Tn denotes the nth branching time of MD . Let B be the total
number of particle splits, that is, B = sup{n ≥ 1 : Tn < ∞}, and let sn(x) = Px(Zt = 1 for all
t ≥ 0, B = n). Then s0(x) = 0 by the assumption on D, and

sn(x) = Ex

[∫ τD

0
exp(−A

µ
t )p1(Xt )sn−1(Xt ) dA

µ
t

]
= 0

by induction. Consequently

Px(Zt = 1 for all t ≥ 0, B < ∞) =
∞∑

n=0

sn(x) = 0

for all x ∈ D. Let t (x) = Px(Zt = 1 for all t ≥ 0, B = ∞). Then

t (x) = Ex

[∫ τD

0
exp(−A

µ
t )p1(Xt )t (Xt ) dA

µ
t

]

= Ex

[ ∫ τD

0
exp(−A

µ
t )

(A
p1µ
t )n

n! t (Xt ) dA
p1µ
t

]

for any n ≥ 1. Since
∑∞

n=0 t (x) < ∞, by (2.1), we have t ≡ 0 on D, whence (3.9) holds.
We next show that the probability that Zt equals k infinitely often (that is, for infinitely many

values of t) is 0 for each k ≥ 1. For a positive integer k, let

U ≡ U1 = inf{t > 0 : Zt = k}, V1 = U1 + R ◦ θU1 ,

Un = Vn−1 + U ◦ θVn−1 , Vn = Un + R ◦ θUn,

with inf ∅ = ∞, where R = inf{t > 0 : Zt �= Z0}. Then

Px(Zt = k infinitely often) = lim
n→∞ Px(Un < ∞).

https://doi.org/10.1239/jap/1165505209 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505209


Extinction of branching symmetric α-stable processes 1085

By the strong Markov property of MD and the definition of V1,

Px(U2 < ∞) = Ex[PXV1
(U < ∞); V1 < ∞]

= Ex[PXU1
(R + U ◦ θR < ∞); U1 < ∞].

Let γ = exp(−supx∈D Ex[Aµ
τD

]). Then

Px(τD < T ) = Ex[exp(−Aµ
τD

)] ≥ γ,

by the assumption on D and Jensen’s inequality. As a direct calculation yields

Pxk (R + U ◦ θR < ∞) = 1 − Pxk (R + U ◦ θR = ∞)

≤ 1 −
k∏

i=1

Pxi (τD < T )

≤ 1 − γ k

for any k ≥ 1 and xk ∈ D(k), it holds that Px(U2 < ∞) ≤ 1 − γ k; thus, Px(Un < ∞) ≤
(1 − γ k)n−1 by induction. Noting that γ > 0, by (2.1), we obtain limn→∞ Px(Un < ∞) = 0,
thereby completing the proof.

We next consider the local extinction of MD . Let A be a relatively compact open set in
D and denote by ρA the last exit time of MD from A, that is, ρA = sup{t > 0 : XD

t ∈ A}.
Let uA

e (x) = Px(LA < ∞). By arguments similar to those yielding Proposition 3.1, we have
the following result.

Proposition 3.2. For each relatively compact open set A ⊂ D, the function uA
e is the solution

to

u(x) = Ex[exp(−Aµ
τD

); ρA < ∞] + Ex

[∫ τD

0
exp(−A

µ
t )F (u)(Xt ) dA

µ
t

]
, 0 ≤ u ≤ 1.

(3.10)

Theorem 3.2. Suppose that, for any relatively compact open set A ⊂ D, PD
x (ρA < ∞) = 1

for all x ∈ D. Then MD extincts locally if and only if λ(µ, Q; D) ≥ 1.

Proof. First suppose that λ(µ, Q; D) ≥ 1. We then see, in a similar way to Theorem 3.1,
that the solution to (3.10) is uniquely determined by u ≡ 1 on D, which implies that uA

e ≡ 1
on D for each relatively compact open set A ⊂ D. Hence, MD extincts locally. Next suppose
that λ(µ, Q; D) < 1. Let G be a relatively compact open set in D such that λ(µ, Q; G) < 1.
Then

MG = (PG
X)

does not extinct, by Lemma 3.2 or Theorem 3.1. In other words, PG
x (e0 = ∞) > 0 for some

x ∈ G. Since PG
x (e0 = ∞) ≤ Px(LG = ∞) for x ∈ G, the branching process MD does not

extinct locally.

Remark 3.2. Extinction of the branching process implies local extinction. Moreover,
if Px(τD < ∞) = 1 for all x ∈ D then extinction and local extinction are equivalent.
For example, this holds for any bounded open sets and for D = R \ {0} when d = 1 and
1 < α ≤ 2 (see also Example 4.3, below). On the other hand, if we take D = R

d with
1 < α ≤ 2 and d > α, then the branching process does not extinct, but may extinct locally (see
Example 4.4).
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Let M = (Xt , Px) be an m-symmetric irreducible and transient Hunt process on X, where
X is a locally compact separable metric space and m is a positive Radon measure on X with
full support. We now give a criterion for the extinction or local extinction of general branching
symmetric Hunt processes. Let us denote by M the branching symmetric Hunt process with
branching rate µ ∈ K∞. Let Q(x) = ∑∞

n=0 npn(x) and suppose that supx∈X Q(x) < ∞.
We now define

λ(µ, Q) = inf

{
E(f, f ) +

∫
X

f̃ 2 dµ : f ∈ F ,

∫
X

f̃ 2Q dµ = 1

}
, (3.11)

where f̃ is a quasicontinuous modification of f (see [6, p. 68] for a definition).

Assumption 3.1. (Existence of the ground-state.) The infimum of (3.11) is attained by a
bounded, strictly positive and continuous function in L1(X; µ).

Theorem 3.3. Suppose that Px(ζ < ∞) = 1 for all x ∈ X. Then, under Assumption 3.1, M
extincts if and only if λ(µ, Q) ≥ 1.

Denote by ρA the last exit time of M from a set A in D, that is, ρA = sup{t > 0 : Xt ∈ A}.
Theorem 3.4. Suppose that, for any relatively compact open set A ⊂ X, Px(ρA < ∞) = 1
for all x ∈ X. Then, under Assumption 3.1, M extincts locally if and only if λ(µ, Q) ≥ 1.

Theorem 3.3 and Theorem 3.4 are proved using the same arguments as Theorem 3.1 and
Theorem 3.2, respectively. However, it seems hard in general to check Assumption 3.1 for
symmetric Hunt processes. Here we give a sufficient condition for extinction or local extinction
of M that does not require Assumption 3.1.

Theorem 3.5. Suppose that λ(µ, Q) > 1. If Px(ζ < ∞) = 1 for all x ∈ X then M extincts.
If, for any relatively compact open set A ⊂ X, Px(ρA < ∞) = 1 for all x ∈ X, then M extincts
locally.

Proof. Suppose that λ(µ, Q) > 1 and that Px(ζ < ∞) = 1 for all x ∈ X. Note that
Proposition 3.1 holds for M upon replacement of the exit time τD in (3.1) by the lifetime ζ .
Let u be a solution to this modified version of (3.1), and let v = 1 − u. We can then show that

0 ≤ v(x) < Ex

[∫ ζ

0
exp(−A

µ
t )v(Xt ) dA

Qµ
t

]
(3.12)

in a way similar to that yielding (3.5). Since

0 ≤ v(x) < Ex

[∫ ζ

0
exp(−A

µ
t )

(A
Qµ
t )n

n! dA
Qµ
t

]
, n ≥ 1,

by the iterations of the inequality (3.12) it holds that

∞∑
n=0

v(x) ≤ Ex

[∫ ζ

0
exp(A

(Q−1)µ
t ) dA

Qµ
t

]
.

Noting that λ(µ, Q) > 1 if and only if the right-hand side of this expression is uniformly
finite [3, Corollary 2.9, Theorem 5.2], we obtain v ≡ 0 and u ≡ 1 on X, which implies that
ue ≡ 1 on X. In the same way, we can show the local extinction of M.
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4. Examples

4.1. Branching Brownian motions

Example 4.1. Suppose that d = 1. Let Mν, ν ∈ S1, be the killed Brownian motion with
respect to exp(−Aν

t ), and let Mν be the branching Brownian motion with motion component
Mν and branching rate µ ∈ K∞. First take µ = δ0 and ν = δ−a + δa for a > 0. Since

inf

{
1

2

∫ ∞

−∞

(
df

dx

)2

dx + f (−a)2 + f (a)2 : f ∈ C∞
0 (R), f (0)2 = 1

}
= 2

1 + 2a
,

by [13, Example 3.2], the branching process Mν extincts if and only if

Q(0) ≤ 1 + 2

1 + 2a
.

Next take µ = δ−b + δb, b > 0, and ν = δ0. Suppose that Q(x) ≡ Q. Since

inf

{
1

2

∫ ∞

−∞

(
df

dx

)2

dx + f (0)2 : f ∈ C∞
0 (R), f (−b)2 + f (b)2 = 1

}
= 1

2(1 + b)
,

by [13, Example 3.2], the branching process Mν extincts if and only if

Q ≤ 1 + 1

2(1 + b)
.

Example 4.2. Let M be a spherically symmetric Riemannian manifold with a pole o and
consider the Brownian motion on M . Denote by (E , F ) the associated Dirichlet form on
L2(M; V ), where V is the Riemannian volume on M:

E(f, f ) = 1

2

∫
M

|∇f |2 dV,

F = the closure of C∞
0 (M) with respect to E(·, ·) + ‖ · ‖2

L2(M;V )
.

Let B(r) = {x ∈ M : d(x, o) < r}, where d(·, ·) is the Riemannian distance on M , and
∂B(r) = {x ∈ M : d(x, o) = r}. Denote by δr the surface measure of ∂B(r) and let

S(r) = δr (∂B(r)) and G(r) =
∫ ∞

r

1

S(ρ)
dρ.

We now let

λ(δR; M \ B(r)) = inf

{
E(f, f ) : f ∈ C∞

0 (M \ B(r)),

∫
∂B(R)

f 2 dδR = 1

}

for r and R with R > r > 0. The following results were shown by Takeda (private communi-
cation (2005)): if (Q − 1)S(R)G(R) > 1

2 then

λ(δR; M \ B(r)) ≥ Q − 1 ⇐⇒ r0 ≤ r < R,

where the positive constant r0 is a unique root of

G(r) = 2(Q − 1)S(R)G(R)2

2(Q − 1)S(R)G(R) − 1
.

If (Q − 1)S(R)G(R) ≤ 1
2 then λ(δR; M \ B(r)) > Q − 1 for any r < R.

https://doi.org/10.1239/jap/1165505209 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505209


1088 Y. SHIOZAWA

Let us denote by M the Brownian motion on M and by Mr the absorbing Brownian
motion on M \ B(r). Let Mr be the branching Brownian motion with motion component
Mr and branching rate δR such that Q(x) ≡ Q. Theorem 3.4 and Remark 3.1 then imply the
following: if (Q − 1)S(R)G(R) > 1

2 then Mr extincts locally if and only if r0 ≤ r < R, and if
(Q − 1)S(R)G(R) ≤ 1

2 then Mr extincts locally for any r < R.
For instance, take the d-dimensional hyperbolic space as M (see [7, Example 3.3] for a

definition).

(i) For d = 2, S(R)G(R) is strictly increasing,

lim
R→0

S(R)G(R) = 0, and lim
R→∞ S(R)G(R) = 1

[15, Example 2.6]. Hence, if Q > 3
2 then there exists a unique root, R0, such that

(Q − 1)S(R0)G(R0) = 1
2 . Moreover, if R > R0 then Mr extincts locally if and only if

r0 ≤ r < R. If R ≤ R0 then Mr extincts locally for any r < R. On the other hand,
if Q ≤ 3

2 then (Q − 1)S(R)G(R) < 1
2 for all R > 0 and Mr extincts locally for any

r < R.

(ii) For d = 3,

(Q − 1)S(R)G(R) >
1

2
⇐⇒ Q > 2 + 1

e2R − 1
, (4.1)

by [15, Example 2.6]. Hence, if the right-hand side of (4.1) holds, then Mr extincts
locally if and only if r0 ≤ r < R. Otherwise, Mr extincts locally for any r < R.

(iii) For d ≥ 4, S(R)G(R) < 1/(d − 1), by [15, Example 2.6]. Therefore, if Q ≤ (d + 1)/2
then Mr extincts locally for any r < R.

4.2. Branching symmetric α-stable processes

Example 4.3. Suppose that d = 1 and 1 < α ≤ 2. Let D = R \ {0}, µ = δa , a > 0, and
p0(x) + p2(x) ≡ 1 on D. By combining Theorem 3.1 with [13, Example 3.3], we see that this
branching symmetric α-stable process extincts if and only if

p2(a) ≤ 1

2
− �(α) cos(πα/2)

4aα−1 .

Example 4.4. Suppose that 1 < α ≤ 2 and d > α. Let δr be the surface measure of a
sphere ∂B(r) = {x ∈ R

d : |x| = r}. Take µ = δr and assume that Q(x) ≡ Q. Using [18,
Example 4.1], we see from Theorem 3.2 and Remark 3.1 that if Q > 1 then Mα extincts locally
if and only if

0 < r ≤
{ √

π�((d + α)/2 − 1)�(α/2)

(Q − 1)�((α − 1)/2)�((d − α)/2)

}1/(α−1)

.

On the other hand, if Q ≤ 1 then Mα extincts locally for any r > 0.
Let δr be the normalized surface measure of ∂B(r), that is, δr = δr/δr (∂B(r)). Take µ = δr

and assume that Q(x) ≡ Q. Note that

λ(δr ; R
d) = δr (∂B(r))λ(δr ; R

d)

and that

δr (∂B(r)) = 2πd/2rd−1

�(d/2)
.
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Thus, if Q > 1 then Mα extincts locally if and only if

r ≥
{

(Q − 1)�(d/2)�((α − 1)/2)�((d − α)/2)

2π(d+1)/2�(α/2)�((d + α)/2 − 1)

}1/(d−α)

.

On the other hand, if Q ≤ 1 then Mα extincts locally for any r > 0.

Example 4.5. Suppose that 0 < α ≤ 2 and d > α. Let χB(r)(x) dx be the d-dimensional
Lebesgue measure restricted to the ball B(r) = {x ∈ R

d : |x| < r}. Take

µ(dx) = χB(r)(x) dx

and assume that Q(x) ≡ Q. If Q > 1 and

0 < r ≤
{

2α−1�(d/2)�(α/2 + 1)

(Q − 1)�((d − α)/2)

}1/α

,

then Mα extincts locally, by [14, Example 3.10]. On the other hand, if Q ≤ 1 then Mα extincts
locally for any r > 0.
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