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MODULARITY vs. SEPARABILITY FOR 
FIELD EXTENSIONS 

H. F. K R E I M E R AND N. HEEREMA 

1. I n t r o d u c t i o n . In this paper we compare the properties separabil i ty and 
modulari ty for field extensions. Let K D k be fields of characteristic p ^ 0. K 
is separable over k if K and kp~l are linearly disjoint over k. K is modular over k 
if K and kp~n are linearly disjoint over their intersection for all n > 0. The 
lat ter definition is due to Sweedler [12] and is impor tan t part icularly for Galois 
theories of purely inseparable extensions [2; 3 ; 4; 7]. 

The similarity between the two definitions suggests they may give rise to 
similar theories. I t is a familiar fact tha t a separable extension is modular 
whereas the converse is not t rue since, for example the perfect closure of any 
field k is modular over k. Our point of depar ture is a theorem of Heerema and 
Tucker [8, Lemma 4] which s tates tha t K/k is modular if and only if K is a 
separable extension of a purely inseparable modular extension of k. Using this 
result we extend to the modular case the characterization of separable exten­
sions as ^-independence preserving. The result is t ha t if K/k has finite exponent 
(i.e., k(Kpn)/k separable for some n) then K is a modular extension of k if and 
only if there is a £-basis Sf of k such tha t the set 

{sp~\ s G y\sp~n e K, 5p"n_i (f. K) 

is ^- independent in K. This characterization is then used to show (Theorem 4) 
tha t if K 3 M Z) k where M/k is purely inseparable with finite exponent and 
K/M is separable then K = S ®k M with S/k separable extending an observa­
tion of Heerema [6, Proposition 2.7; also see reference 8, Proposition 1]. 

In Section 3 we bring together a number of characterizations of modularly 
perfect fields, t ha t is, fields k with the property tha t every field extension of k 
is a modular extension. We find tha t modularly perfect fields are almost 
perfect, t ha t is, k is modularly perfect if and only if [k : kp] ^ p. T h u s k is 
modularly perfect if and only if every finite extension of k is simple [1; p. 134, 
Ex. 6]. Theorem 1 states tha t a modular extension cannot be exceptional where 
in the terminology introduced by Reid [11] an exceptional extension K of k is 
an inseparable extension with the property t ha t kp~l C\ K = k. This suggests 
the characterization of modularly perfect fields as those fields which have no 
exceptional extensions. Other characterizations are obtained. 

A question suggested by this paper, and one which the writers have been 
unable to resolve is the following. Is every field extension which is a purely 
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inseparable extension followed by a separable extension, a tensor product of 
purely inseparable and separable factors?* Theorem 4 gives an affirmative 
answer if the extension has finite exponent. 

2. Modular i ty and separabi l i ty . We begin by setting down two results, 
due to Sweedler, which we will need. Par t (c) of the first result quoted is stated 
a bit differently bu t is easily seen to be equivalent to the corresponding 
Pa r t (f) of the original 

T H E O R E M A [12, p. 403, Theorem 1]. Let K be a purely inseparable extension 
of k having finite exponent. The following are equivalent. 

(a) K = ®k k(x) for some subset^ of K. 

(b) K is a modular extension of k. 
(c) For some setJV which generates K over k, the set {xpn, x £ jV\pn = degree 

of x over k) is a p-independent subset of k. 

T H E O R E M B [12, p. 407, Lemma 5, Pa r t 3]. Given fields K D M D k, if K is 
separable over M then K is modular over k if and only if M is modular over k. 

The following characterization of modular extensions is due to Heerema and 
Tucker . We prove it here since the proof is short and the result is basic to this 
paper. 

T H E O R E M 1 [8, Lemma 4]. A field K is a modular extension of a subfield k if 
and only if there is an intermediate field M such that K/M is separable and M/k 
is purely inseparable modular. 

Proof. If there is such an intermediate field then by Theorem B, K is modular 
over k. Conversely, let M = k* C\ K where k* is the perfect closure of k. Since, 
by assumption K and kp~n are linearly disjoint over K P\ kp~n and since 
KC\ kp~n = M C\ kp~n it follows tha t M and kp~n are linearly disjoint over 
their intersection. Thus M/k is modular. 

T o show K separable over M let pi, . . . , pn be elements of K linearly 
dependent over k* = M* and hence over kp~n for some n. Since K is modular 
over k they are linearly dependent over kp~n P\ K C M. Thus K is separable 
over M. 

The following theorem generalizes to modular extensions the ^-independence 
preserving characterization of separable extensions. I t is based on Theorems A 
and 1. 

T H E O R E M 2. An extension Kofk having finite exponent over k is modular over k if 
and only if there is a p-basis 5f of k such that f/f' = {sp~n, s Ç S^\sp~n G K, 
sp~n~ldK} is p-independent in K. 

*James Deveney has settled the matter with a counter example. 
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Proof. By Theorem 1, if K is modular over k then there is an intermediate 
field M such t ha t K/M is separable and M/k is purely inseparable modular 
with finite exponent. By Pa r t (c) of Theorem A there is a set <y¥' such t ha t 
M = ®k k(x) and 

JV = {xpn
} x 6 JV'\pn = degree of x over k} 

is a ^- independent subset of k. We choose $~ in fe so t ha t ¥ = «vK U ^ ~ is a 
^-basis for &. Then j ^ 7 ' = «yf W J^7" is a £>-basis for AT which, since K is separable 
over M, is a ^- independent subset of K. 

Conversely, if there is a ^-basis 5 ^ of k such tha t j ^ 7 ' is ^- independent in K 
we choose M = k(Sf'). M is purely inseparable over & and by Theorem A, 
Pa r t (c), M is modular over k. Also, ¥' is a £-base for M. Since <5^' is p-
independent in K, K is a separable extension of M and thus by Theorem B, K is 
modular over fe. 

We now use Theorem 2 to obtain a ra ther general result on the split t ing of a 
purely inseparable extension followed by a separable extension. 

T H E O R E M 3. An extension K of k having finite exponent over k is a modular 
extension of k if and only if K = S ®k M where M is a modular purely inseparable 
extension of k having finite exponent and S is separable over k. 

Proof. If K = 5 ®k M as in the theorem then K is modular over k by 
Theorem B. Conversely, assume K modular over k and let M be the inter­
mediate field of Theorem 1. We choose a tensor generating setjV' of M over k, 
as in Pa r t (a) of Theorem A, and let 

JV' = {spn, s G JV'\pn = degree of 5 over k). 

Let^ 7 " be a subset of k chosen so J*7" \J ^V is a ^-basis for k. T r i e n t \J J/' is 
a £-basis for M which we extend to a £-basis y = 3T \J jV' \J j 2 for K. Let 
5 = F + 1 ( J U / U «g) where w is the exponent of K over k. Clearly, 
^~ VJ JV\J 21 is a ^-basis for 5 so 5 is a separable extension of k. Since 
K = Kpn+l (^~ \J J/' \J &) it follows tha t SM = K or K = S ®kM. 

Using the concept of modular closure of a purely inseparable extension we 
can drop the modular i ty condition from Theorem 3 as follows. 

T H E O R E M 4. Let K D M 3 k be fields such that K is separable over M and for 
some n ^ 0, Mpn C k. Then K = S ®k M where S is a separable extension of k. 

Proof. Let L be the modular closure of M over k. We note t h a t Lpn C k 
[12, p. 408, Theorem 6 and Definition]. Then K' = K(L) = K ® M L. As in 
the proof of Theorem 3 we choose a tensor generating set, JV' for L over k 
and let 

JV = {spn, s G ^V\pn = degree 5 over k\. 

Let^ 7 " be a subset of k such t h a t ^ K U ^ is a £-basis for &. As before J/' U ^ " 
is a ^-basis for L. Let «2 be a £>-basis for i£ over Af. Then , since K' = K (& M L, 
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y =J/'\J£T\J ^ i s a £-basis for K'. Then 5 = K'pn+\J/ U 3T \J &) is 
separable over k. Since X = M P n + 1 ( â ) C MS and 5 Ç I , we have 
K = S 0* M. 

In connection with Theorem 4, Heerema and Tucker [8, Lemma 4] have 
given a simple proof that any purely inseparable extension followed by a 
separably generated extension splits as above. 

3. Modularly perfect fields. The purpose of this section is to discover and 
characterize fields for which every field extension is modular. Any exceptional 
field extension fails to be modular according to Theorem 1, and so we shall find 
it useful to know when exceptional field extensions exist. The following 
proposition generalizes Exercise 3 in reference [1, p. 144]. 

PROPOSITION 5. Let k be a field of characteristic p ^ 0 such that [k : kp] > p. 
There exists an exceptional field extension K of k such that K ®kKisa ring with 
zero nil radical. 

Proof. Since [kp~l : k] = [k : kp] > p, there exist elements a, b in kv~l such 
that [k(a, b) : k] = p2. Let x and y be elements which are algebraically 
independent over k, and let K = k(x, ax + b). There is a homomorphism of 
K 0* K over k into k(a, b, x, y) which maps x 0 1 onto x, 1 (8) x onto y, 
(ax + 6 ) 0 1 onto ax + b, and 1 0 (ax + b) onto ay + b. If the subfields 
K = k(xf ax + 6) and &(;y, cry + b) of i£(a, 6, x, y) are linearly disjoint over k, 
then this homomorphism is monic and there can be no non-zero nilpotent 
element in K 0fc K. Consider the following diagram. 

k(a, b, x, y) 

k(x, y} ay + b) 

k(x, ax + /?)-z. k(y, ay + b) 
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Because k(x, y) is a separable extension of k, k{x, y) and k(a, b) are linearly 
disjoint over k and [k(a, b, x, y) : k(x, y)] = p2. Consequently, each of 
the dimensions [k{a, b, x, y) : k(x, y, ax + b)], [k(x, y, ax + b) : k(x, y)], 
[k(x, ax + b) : k(x)] and [k(y, ay + b) : k(y)] must equal p. In particular, 
&(x,;y, ax + 6) and fe(y, ay + b) are linearly disjoint over k(y). Also &(x, ax + è) 
and &(#, y) are linearly disjoint over k(x), while fe(#) and £(3/) are linearly 
disjoint over k since x and ;y are algebraically independent over k. Therefore 
k(x, ax + b) and k(y) are linearly disjoint over k, and it now follows that 
&(x, c/x + &) and k(y, ay + 5) are linearly disjoint over k. 

Because {1, x, ax + b) is a linearly independent set over k, but not over 
k(a, b) Ç kp~\ K is not a separable extension of k. To verify that K is an 
exceptional extension of k, we show that k is algebraically closed in K. Thus 
suppose c £ K and c is algebraic over &. Then cp Ç &(x) and cp is algebraic over 
&. Since k(x) is a purely transcendental extension of k, cp £ ^. If c were not an 
element of&, c 0 1 - 1 ® c would be a non-zero nilpotent element of K ®k K, 
in contradiction with what has already been proved. 

If in addition to the hypotheses of the preceding proposition, k is not 
separable algebraically closed, then a finite dimensional exceptional extension 
of k can be constructed. Such a construction has been given by Kreimer and 
appears in [5]. 

THEOREM 6. Let k be a field of characteristic p 9e 0 and let k* be the perfect 
closure of k. The following statements are equivalent. 

(i) [* : *'] ^ p. 
(ii) Every field extension of k is modular. 

(iii) For every field extension K of k, there exists a separable field extension S 
of k such that K Ç 5 0,. (k* H K). 

(iv) Every field extension K of k is separable over k* Pi K. 
(v) There exist no exceptional field extensions of k. 

(vi) A field extension K of k is separable if, and only if, the nil radical of the 
ring K (g)k K is zero. 

(vii) Every finite dimensional field extension of k is simple. 

Proof. Suppose [k : kp] ^ p. Then k must be a simple extension of kp; and if a 
is an element of k such that k = kp(a), then kp~~l = k(ap~l). An easy argument 
by induction will establish that kp~n — k(ap~n) for every positive integer n. 
Now let K be any field extension of k and let n be any positive integer. Since 
K(kp~n) = K(ap~n), the dimensions [K(kp~n) : K] and [kp~n : kp~n H K] must 
both equal pm where m is the smallest non-negative integer for which apm~n G K; 
and therefore K and kp~n are linearly disjoint over their intersection. Thus 
statement (i) implies statement (ii). 

Next we shall show that statement (i) implies statement (iii). If K is a modular 
field extension of k having finite exponent over k, then K = S ®k (k* Pi K) for 
some subfield S of K which is a separable extension of k according to Theorem 3. 
Thus we shall assume [k : kp] ^ p and K is a field extension of k having un-
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bounded exponent over k. It has already been observed that kv~n is a simple 
extension of k, whence [kp~n : k] ^ pn for every positive integer n ; so if b £ k* P K 
has positive exponent n over k, then [kp~n : k] = pn and P~n = k(b) C &* H i£. 
Therefore ife* = ^ Pi I Ç ][, Let X* be the perfect closure of K. By Zorn's 
Lemma there exists among the subfields of K* which are separable extensions of 
k, some maximal element S, and we shall prove that K* = 5 0* k*. Let c be an 
element of K* which is not an element of S. Since S(c) cannot be a separable 
extension of k, S(c) is not a separable extension of S and c is neither separable 
algebraic nor transcendental over 5. Therefore K* is algebraic and purely in­
separable over 5 and K* must be the perfect closure of S. Suppose [S(c) : S] = p. 
Because 5 is a separable extension of k, [S(&p_1) : S] = [kp~l : k] = p. But S(c) 
and kp~x are not linearly disjoint over k, and so P _ 1 must be a subfield 
of S(c) and 5(c) = S (A*""1). Consequently Sp~l = S(kp~l), and it follows 
by induction that Sp~n = S(kp~n) for every positive integer n. Therefore 
K* = S(k*) = 5 0 ^ * . 

Statement (ii) implies statement (iv) by Theorem 1. Now let K and 5 be field 
extensions of k such that 5 is separable over k and K Q S ®k (k* P K). Then S 
and &* are linearly disjoint over k, and so S ®k (k* P X) and k* must be 
linearly disjoint over k* P i£. Therefore S ®k (k* P X) and its subfield K are 
separable field extensions of k* P K. Thus statement (iii) implies statement 
(iv), and clearly statement (iv) implies statement (v). It is well known that if 
K and L are field extensions of k and K is separable over k then the nil radical 
of the ring K ®k L is zero [9, Chapter IV, Theorem 23]. But if K is a field 
extension of k which is neither separable nor exceptional, then there exists an 
element c of K which is algebraic and purely inseparable of positive exponent 
over k and c 0 1 — 1 0 c is a non-zero nilpotent element of K ®kK. Therefore 
statement (v) implies statement (vi). Statement (vi) implies statement (i) by 
Proposition 5, and the equivalence of statements (i) and (vii) is well known and 
appears as an exercise in reference [1, p. 134]. 

A field which satisfies any of the equivalent statements of the preceding 
theorem will be called modularly perfect. In regard to statement (iii) of the 
theorem, note that if the field extension K has finite exponent over k 
or if K is perfect, then the field 5 can be chosen to be a subfield of K and 
K = S ®k (k* P K). This conclusion is also valid if K is algebraic over k. In 
that case take 5 to be the subfield of elements of K which are separable algebraic 
over k, and each element of K being separable over k* P K and purely in­
separable over S will be both separable and purely inseparable over 
S(k* P K) = S 0 , (ife* P K). Therefore K = 5 0 , (fe* P K). The writers 
know of no example of a field extension of a modularly perfect field which is not 
a tensor product of separable and purely inseparable factors. 

In analogy with perfect fields, we have the following theorem. 

THEOREM 7. Any algebraic field extension of a modularly perfect field is again 
modularly perfect. 
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Proof. Let k be a modularly perfect field, let K be an algebraic field extension 
of k, and let M = k* H K. Since K is separable algebraic over M, K = M(KP). 
Therefore 

[K : Kp] = [M(KP) : MP(KP)] ^ [M : Mp], 

and it remains only to prove that M is modularly perfect. But any field 
extension L of M is also an extension of k, and therefore L is separable over 
k* H L = M* H L. Thus M is modularly perfect. 

If k is perfect or is a simple transcendental extension of a perfect field, then 
clearly [k : kp] ^ £. By the preceding theorem, any field extension of tran­
scendence degree one over a perfect field is modularly perfect; but these are not 
the only modularly perfect fields. In Section 10 of reference [10] there is given 
an example of a field k which has a ^-basis of one element, hence [k : kp] = p, 
and transcendence degree two over its maximal perfect subfield. 
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