GENERATING FUNCTIONS FOR BESSEL FUNCTIONS
LOUIS WEISNER

1. Introduction. On replacing the parameter n in Bessel's differential
equation
d* dv ;
200 av 2
(L.1) X + X + (x n)y =0
by the operator y(8/dy), the partial differential equation Lu = 0 is con-
structed, where

2 2 2 h 2

1.2) L= x2£—cg + xb—% - yzaiyg - y—a% 4+ %= <x£;> — (y-9~> + x°
This operator annuls % (x, y) = v(x)y" if, and only if, v(x) satisfies (1.1) and
hence is a cylindrical function of order #. Thus every generating function of
a set of cylindrical functions is a solution of Lu = 0.

It is shown in § 2 that the partial differential equation Lu = 0 is invariant
under a three-parameter Lie group. This group is then applied to the system-
atic determination of generating functions for Bessel functions, following the
methods employed in two previous papers (4: 5).

2. Group of operators. The operators

e g1 90 a0 A 0 120
A_yay’B_y 8x+x ay’c_ y6x+xy6y
satisfy the commutator relations [4, B] = — B, [4,C| = C, [B, C] = 0, and

therefore generate a three-parameter Lie group. From these relations and the
operator identity

2.1 — &L = BC — 1,

where L is the operator (1.2), it follows that 4, B, C are commutative with
x~2L and therefore convert every solution of Lz = 0 into a solution. In

particular
AT, (x)y" = nJ.(x)y", AT (x)y" = nJ_,(x)y",

(2.2) ‘len(x)y" = Ju1(x)y" 7, BT (x)y" = — T pa(x)y"",
CT(x)y" = Tura(0)y™*, CT(x)y" = — J_uoa )y,

where # is an arbitrary complex number.
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The operator .l generates the trivial group x’ = x, ¥’ = ty, (¢t # 0), which
is used for purposes of normalization. The extended form of the group generated
by the commutative operators B, C is described by

(23) "% (x, y) = f(l(x — 2cy) (x + 28/9)1, [y(xy + 28)/ (x — 2c)]'),

where b and ¢ are arbitrary constants and f(x, y) an arbitrary function, the
signs of the radicals being chosen so that the right member reduces to f(x, ¥)
when & = ¢ = 0. If f(x, y) is annulled by L, so is the right member of (2.3).

3. Generating functions annulled by operators of the first order.
Since J,(x)y” is annulled by L and 4 — v, it follows from the operator identity

T4 = 4 + bB — ¢C
(4, p. 1035) and (2.3) that
(B.1) Glx,y) = " CT,(x)y
(xy + 20)¥ (xy™" — 20)F" T, (Ix — 2cy) (x + 28/9)]})

is annulled by L and 4 + 8B 4+ ¢C — ». While any cylindrical function of
order » may be employed in place of J,(x), it is sufficient to confine attention
to the Bessel functions of the first kind.

If 8 = 0, we choose ¢ = 1, so that

Il

Gx,y) = (x)" (" — 209) VT, ([x" — 209]}) = ;0 gudwin ()Y,

The indicated expansion is justified by the observation that (xy)™'G(x, y) is
an entire function of x and y. Since G is annulled by 4 — C — », we find,
with the aid of (2.2), that g,_; = ng, (» = 1,2,...). Multiplying G by
(xy)~* and then setting x = 0, noting that

’ - _ 1
(3.2) X Tp(%)]z=0 = T 1)
we have gy = 1; hence g, = 1/n!. Thus
(3.3) (6" = 20y) T ([x" — 2091Y) = X Tosa(x)y"/nl,
n=0

which may be identified with Lommel’s first formula (3, p. 140).
If ¢ = 0, we choose & = 1, whence

(3.4) G, ) = (" + 29/x)¥" 1, ([s" + 2¢/y]")
= (24 xy) (=" 4 2¢/y) T (%" 4 2¢/y]).
From the last expression it is evident that G has a Laurent expansion about

y=0:
Gx,y) = 25 gau(®)y", ley| < 2.

n=-—co
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Since this function is annulled by 4 + B — », we find, with the aid of (2.2),

that g1 = (v —n)g, (m=0, £1,£2,...). Setting x =0, we have

go=1/T(» + 1); hence g, =1/T(v —n 4+ 1). Replacing y by y1, we

obtain

(3.5) ()@ + 2V T (6" 4 2xy]}) = _Z Ju(x) (= 9)"/T(v +n+ 1),
2y] > |x|.

Writing (3.4) in the form
G(x,y) = ()" (L + 2/xy)" (s + 2x/9) V" T, (Ix* + 2x/y]"),

it is evident that (xy)™*G is expressible as a power series in y~!, convergent
for |xy| > 2. We obtain, after simplification,

3.6) (1 + 29/ J(Ix" + 2xy]*) = f Jy-n(x)y"/nl, 12y] < |xl,

n=0

which may be identified with Lommel’s second formula (3, p. 140).
If bc 0, it proves convenient to choose b = 3w, ¢ = — 1w, whence

B7) Gy = @+m)" @+ /) V(0" + '+ wrly + 7))
= 2 @y eyl < [l

Replacing y by 2y/x and then setting x = 0, we obtain, with the aid of (3.2),

(1 + 2/w) T+ 20yl) = 3 g/l [29] <l

Comparing with (3.6), we infer that g, = J,_,(w), ( =0, 1,2,...). Simi-
larly, replacing y by x/2y and then setting x = 0, we obtain

W (w4 2uy) T ([0 + 2031) = 3 ga(— )7/

Comparing with (3.3) we conclude that g_, = J,.,(w), (n =0,1,2,...).

Hence
3.8) (w4 e (@ + /M7 (' + 2" + we(y + 57

= 3 T @) G 3] < fol,
which may be identified with Graf’s addition theorem (3, p. 359) by sub-
stituting ¥y = — ¢~ %. Another expansion of (3.7), valid for |xy| > |w|, may

be obtained from (3.8) by replacing y by y~!, interchanging x and w, and
multiplying by y”.

We have now obtained, in normalized form, functions annulled by L and
differential operators of the first order of the form r,4 + 7.B + r;C + 74,
where the #'s are constants and 7; # 0. Generating functions annulled by
reB 4 r3C + r4 are not included in (3.1) but may be derived independently.
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Since [B, C] = 0, we seek a solution of the simultaneous equations (B — 1)u
=0, (C — 1)u = 0. This solution is annulled by 7,B + 73C + 74, normalized
so that 7o 4+ 73 + ro = 0. By (2.1) it is also annulled by L. We find the
solution to be the familiar generating function

(3.9) %z(u—v—l) E A (x)y

of the Bessel functions of integral order.

4. Generating functions annulled by 4(B — C) + 3(B + C) + 4a — 1.
By a suitable choice of new variables the equation Lz = 0 may be trans-
formed into one solvable by separation of variables. A solution so obtained,
if possessed of suitable analytic properties, provides a generating function
for Bessel functions. We shall present several examples.

Choosing new variables

E=3x(y —y+ 20,0 =3O —y— 2),
the equation Lu = 0 is transformed into
8’u ou
9F 411(9 +2 E_ an—(é—ﬂ)u—O-
Four linearly independent solutions are obtained by separation of variables:
Uy = 8_%(£+")1F1(0l§ 3 O1F1(a; 35m),
uy = 8¢ Fi(a + 3;3/2; 8)1F(as 33 ),
s = n'e NP (a5 35 1@ + §3/25m),
us = (En)*e VP + 3:3/2; 00 Fa(a + $:3/25),
where « is an arbitrary constant. These functions are also annulled by

ag+2§—s+1—m

=4E—n)"L-AB -0 —3B+C)+1— 4o,

44—

4t

where A, B, C are the operators of § 2, and hence by
AB —-C)+ B+ C) 4+ 4a — 1.

This operator provides recurrence relations for the coefficients of the expansions
of the generating functions; but these relations will not be used.

When expressed in terms of x and y, the function %; is seen to have a
Laurent expansion about y = 0:

P 1Fila; ;5 3x/y — 3xy + ix)1Fi(e; 35 3x/y — 3xy — 1x)

g 2T (X)y".

Replacing ¥ by 2y/x and then setting x = 0, we have by (3.2)
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s

e[1Fi(a; 55 — )] = & /n.

il

By Kummer’s formula,
iFi(a; 35— 91 = 1Files 3 — )1 Fi(3 — a5 35 9).

The expansion of the right member in powers of y may be obtained with
the aid of Chaundy’s formula

‘ 2 (@)a(= 9)" [a' —c—n 1]
A e (R = —_— ’
e; 6 = y)hiFa(e’s ¢ ) ,,Zzo n!(C)n ok d,l1—a—mn

(2, p. 70). However, this expansion may be expressed in a more suitable
form by means of the transformation formula

F[al, g, A3 1] — F(52)P(61 + 62 — 01 — Oy — 013)
L By, Be (B — as)T(B1 + B2 — a1 — as)

B1 — ai, B1 — ay, a3;1:|
zl
X5 8y, By + B2 — a1 — @

(1, p. 98), whence
(4.1) 1Fi(a; ¢c; — y)iFaa; 5 y)

et —a—a) F[c’—a’,c—l—c’—{-n—— 1,—n;1:\
T (€)n I dictdc —a—a '
Thus
ChFi(es b =y = X oFalan, = ni d; 4 1)y /n),
and g, is determined for » = 0,1,2,.... Since the generating function is

unaltered when y is replaced by — y7', g_, = g,. Hence

(4.2) OO (a5 3 B/ — By + ix)iFi(e; 3 dx/y — By — i)

[es)

= 2 sFam, — ni 3 3 D)™
Since £ = (4x)*(y~* + iy?), u, has an expansion of the form
Z; [aan+§(x) + bnj—n—i(x)]yn+%~

Applying the methods described above, we obtain, after multiplying by
(2y/x)*
43) (1 + )" "1Fi(a + $:3/2; $x/y — by + ix)

X 1Fi(e; 35 30/ — sy — ix)

o)

= (x/2%)* 3] sFala,n+ 1, —n; 1, 3 D) Ty (o) iy 4+ (— ) 7"

n=0

Replacing ¢ by — ¢, we obtain the expansion which arises similarly from u;.
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Since (¢7)* = ix(y + y~1), us has a Laurent expansion about y = 0. We
obtain, after replacing @ by @ — 3,

(44) 3w+ y e Fi(e; 3/2; dx/y — day + ix)
X 1F1(a; 3/2; 5x/y — 3xy — ix)
= > mFyla,n+ 1,1 —n;3/2;3/2; 1) Ju(x)y".

n=-—co
With the aid of these results the elementary solutions of the three-dimen-

sional wave equation in parabolic cylindrical co-ordinates may be expressed
in terms of cylindrical wave functions.

5. Generating functions annulled by B2 + 8CA + 4C. When we choose
new variables & = xy — (x/9)} n = xy + (x/¥)% the equation Lu = 0
becomes

6 u u

35
The following solutions are obtained by separation of variables:
ur = oF1(2/3; — [ 4 2]3/36)¢F; (2/3; - [n+ 2]3/36),
(& + 201 (4/3; — [§ + 2]3/36)0F1(2/3; — [n + 2)%/36),
uy = (9 + 2)0F1(2/3; — [£ + 2]*/36)0F1(4/3; — [n + 213/36)
s = (§+ 2)(n + 2)oF1(4/3; — [+ 2]°/36)0F1(4/3; — [n + 2]°/36

where z is an arbitrary constant. These functions are also annulled by

2+ (f nu = 0.

S
]
I

aé* 62 = 260G~ @ — O 1L+—~~+ICA+ =+ 2

and hence by R = B2 4+ 8C. + 4C + 4z.
The functions #; and %4 have expansions of the form

Em: ZnJn ()",

n=—co

Applying R, we obtain the recurrence relation
Znte + 42¢, +42n — 1)gy1 =0 (n=0 %1 +2,...)

by means of (2.2). No explicit solution is available for arbitrary z. A solution
is readily obtained for z = 0. We find that

(5.1) oF1(2/3; — [xy — (x/)%1°/36)0F1(2/3; — [xy + (x/v)%]°/36)
= 2, (= 24)"T(m + 1/6) Jon(x)y*™/T(1/6),

m=-—co

(52) " = x/3)oFa(4/3; — [y — (e/3))'/36)
X oF1(4/3; — [xy 4+ (x/y)*]/36)
; (= 20)"T'(m + 5/6) Jansa(®)y"™**/T 6)

ot
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For u, we obtain similarly

(5.3) ey — (x/9)'10F1(4/3; — [xy — (x/¥)*]1°/36)
oF1(2/3; — [xy + (x/v)%]%/36)

= — (x/2)} Z (= 24" Tomana @)y )

F23 (= 24)"T(m + 3) Tanns ()™ /T ().

m=—co

6. Generating functions annulled by A2+ «(2C4 + C) + BC? — »2.
If we choose new variables
£ = 30"+ 20%)" — (& + 20°9)"],
1= 3"+ 2’} + (" + 20%y)1, (@ = 8"),
where a and b are constants and the signs of the radicals are chosen so that

£ =0, 7 =x when y = 0, the equation Lz = 0 becomes

pou_ “’“+s— % =0
652 2 ot n an n = U
Comparing with (1.1), it follows that L annuls the four functions J,,(£)J..(n),
where v is arbitrary. These functions are also annulled by

852 + s—g HE = =P+ 2+ )L+ 47+ 3@+ 59204 + 0)
+ aiCct — o2
where ¢ = (a® 4+ 6?)/(a? — b?), and hence by
R = A+ 3(a* + b)) (2C4 + C) + a22C* — v~

Employing the methods described previously, and applying the well-known
formulae

(3a2)"(382)" & (= 1)*(3az)™
Te+1) ZHnTw+n+1)
X F(—n, —u—mn;v+1;8/a%,

Ju(ez)J,(Bz) =

Fle, B5v;2) = (1 —Z)'“F< Y — By >

z — 1

the following results are obtained:
(6.1) 2°T@ + 1)@ — )7 ,(&) ()

P
ZO (ab) (— n,n+2v4+1;v + 1, ﬁgizé)_) Join ()™,

(a ;éb,ab;éO,v;é—],—Q,...).
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(6.2) 2"T(r + 1)(a* — )T, (§) I_s(n)

” 2
(= ab)" F<— mn+2 4+ 1,0+ 1;(“~ib>—> Jova(x)y™™,

por n! 4ab
ly| < Min(|x/2d°, |x/2b%)), (@* # b ab = 0,v = — 1, — 2,...).
(63) T+ 1)@+ b)(a—0)"J.(6)T @)
_ _(za) (_ o g__—_bﬁ) .
_n=;n P(n_V+1)F n,n+1,V+1, 4ab Jn(x)yy
ly| > Max(|x/2a°|, |x/28%)), (a® # b*, ab # 0,v % — 1, — 2,...),

and the left member has the value (sin »7)/vm when x = 0.

The excluded case ab = 0 may be treated similarly. Settinga = 0, 8> = — 2,
the following generating functions, annulled by 42 — 2C.1 — C — »?, are
obtained:

6.4) TGl — " = 20) DTGBl + @ = dxp)')

1 2v + 2n v
5 f@:“;?;‘ﬁ( j ) o) (3/2)°",

(6.5) J(3lx = (" ~ 4cp) DI Glx + (" — 4x)')

- ¥ s (2” ; 2") Tra®) (30/2%, 14y] < I,

(6.6) ¢ J,Glx — (" — 4xp)']) T, Glx + (6" — 4x9)1])

. T(n+ %) .
_nz-'; T(HT(m+1—»T(n+1+») Ju(%)(29)

Ms

@ 1 __ 1 1
+inr b sinyr D, (G V);;('z watdl Tury () @) 774 |4y] > 2],

n=0

where the left member has the value (sin »7)/vr when x = 0. Formulae (6.4)
and (6.5) are limiting cases of formulae (6.1) and (6.2) respectively.
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