
GENERATING FUNCTIONS FOR BESSEL FUNCTIONS 

LOUIS WEISNER 

1. Introduction. On replacing the parameter n in Bessel's differential 
equation 

(\ w 2dv dv , 2 2 , A 

(1.1) x ~r~2 + x~r + \x — n )v — \) 
ax ax 

by the operator y{d/dy), the partial differential equation Lu = 0 is con­
structed, where 
n o\ T

 2 ^ , d 2 d2 d 2 [ N 2 / d V 2 

(1.2) Z, = « ^ ? + « _ _ y ^ i - , - + x =^-J - ^ +,. 
This operator annuls u(x, y) = v(x)yn if, and only if, v(x) satisfies (1.1) and 
hence is a cylindrical function of order n. Thus every generating function of 
a set of cylindrical functions is a solution of Lu = 0. 

It is shown in § 2 that the partial differential equation Lu = 0 is invariant 
under a three-parameter Lie group. This group is then applied to the system­
atic determination of generating functions for Bessel functions, following the 
methods employed in two previous papers (4; 5). 

2. Group of operators. The operators 

d _ i d . - i d n d , - i 2 à 

A = y— }B = y — + x — , C = - y — + x y — 
by ox dy ax dy 

satisfy the commutator relations [A, B] = — B, [A, C] = C, [B, C\ = 0, and 
therefore generate a three-parameter Lie group. From these relations and the 
operator identity 
(2.1) - x~2L = BC - 1, 

where L is the operator (1.2), it follows that A, B, C are commutative with 
x~2L and therefore convert every solution of Lu = 0 into a solution. In 
particular 

(AJn(x)yn = nJn{x)y\AJ.n(x)yn = nJ„n(x)yn, 

(2.2) \BJn(x)yn = Jn^{x)yn-\BJ_n(x)yn = - J_n+1(x)yn~-\ 

[CJn(x)yn = Jn+i(x)yn+1, CJ-n(x)yn = - J-.n^(x)yn+\ 

where n is an arbitrary complex number. 
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The operator A generates the trivial group x' = x, y' = ty, (t ^ 0), which 
is used for purposes of normalization. The extended form of the group generated 
by the commutative operators B, C is described by 

(2.3) eiB+cCf(x, y) = / ([(* - 2cy)(x + 2b/y)f, [y(xy + 2b)/(x - 2cy)f), 

where b and c are arbitrary constants and f(x, y) an arbitrary function, the 
signs of the radicals being chosen so that the right member reduces to f(x, y) 
when b = c = 0. If fix, y) is annulled by L, so is the right member of (2.3). 

3. Generating functions annulled by operators of the first order. 
Since Jv(x)yv is annulled by L and A — v, it follows from the operator identity 

m+ccA-m-cc = A + b B _ c C 

(4, p. 1035) and (2.3) that 

(3.1) G(x,y) = ebB+cCJv(x)yv 

= (xy + 2bf\xy~1 - 2c)^vJv{[x - 2cy)(x + 2b/y)]h) 

is annulled by L and A + bB + cC — v. While any cylindrical function of 
order v may be employed in place of J„(x), it is sufficient to confine attention 
to the Bessel functions of the first kind. 

If b — 0, we choose c = 1, so that 
on 

G(x,y) = (xy)v(x2 - 2xy)~hvJv([x2 - 2xy]h) = YJ gnJv+n(x)yv+n. 
n=0 

The indicated expansion is justified by the observation that (xy)~vG(x, y) is 
an entire function of x and y. Since G is annulled by A — C — v, we find, 
with the aid of (2.2), that gn-i = ngn (n = 1 , 2 , . . . ) . Multiplying G by 
(xy)~~p and then setting x = 0, noting that 

(3.2) x Jv{x)\x=o = 2irr~(~~4^z\) ' 

we have go = 1 ; hence gn = \/n\. Thus 

(3.3) x\x~ - 2xy)-i'Jv([x2 - 2xyf) = £ Jp+n(x)yn/nl, 

which may be identified with Lommel's first formula (3, p. 140). 
If c = 0, we choose b = I, whence 

(3.4) G(x, y) = (y2 + 2y/x)iv Jv([x2 + 2x/yf) 

= (2 + xy)v(x2 + 2x/y)-*vJv([x2 + 2x/yf). 

From the last expression it is evident that G has a Laurent expansion about 
y = 0: 

oo 

G(x,y) = YJ ZnJn(x)yn, \xy\ < 2. 
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Since this function is annulled by A + B — v, we find, with the aid of (2.2), 
that gn+i = (v — n)gn, {n = 0, ± 1, zt 2, . . .). Setting x = 0, we have 
go = l/T(v + 1); hence gn = 1/T(y — n + 1). Replacing 3/ by ^y-1, we 
obtain 

(3.5) (xy)~\x2 + 2xyfvJv{[x2 + 2xyf) = £ Mx)(- y)n/T(v + n + 1), 
W——00 

\2y\ > \x\. 

Writing (3.4) in the form 

G(x, y) = (xy)v(l + 2/xy)v(x2 + 2x/yYhvJv{[x2 + 2x/y]h), 

it is evident that (xy)~vG is expressible as a power series in y~l, convergent 
for \xy\ > 2. We obtain, after simplification, 

CO 

(3.6) (1 + 2y/x)h'J,([x2 + 2xy]i) = £ J^n(x)yn/n\, \2y\ < \x\, 

which may be identified with Lommel's second formula (3, p. 140). 
If be 9e 0, it proves convenient to choose b = \w, c = — \w, whence 

(3.7) G(x, y) = (w + xy)*v(w + x/y)~*vJv([w2 + x2 + wx(y + 3>-1)]*) 

= £ gnJn{x)y\ \xy\ <\w\. 

Replacing y by 2y/x and then setting x = 0, we obtain, with the aid of (3.2), 

(1 + 2y/wfjy{[w2 + 2wy]i) = £ &/7»! . |2y| < |w|. 

Comparing with (3.6), we infer that gn = J„-n(w), (w = 0, 1, 2, . . .). Simi­
larly, replacing 3; by x/2;y and then setting x = 0, we obtain 

00 

z£/(w2 + 2wy)*vJv([w2 + 2wy]*) = X) £-n(~ y)n/nl 

Comparing with (3.3) we conclude that g-n = JJf+n(w), (n = 0, 1, 2, . . .). 
Hence 

(3.8) (w + xy)*v(w + ^/y)"*7F([w2 + #2 + wx(;y + y~l)f) 
00 

= 22 Jv-n(w)Jn(x)yn
J \xy\ < \w\, 

n=—oo 

which may be identified with Graf's addition theorem (3, p. 359) by sub­
stituting y = — e~^. Another expansion of (3.7), valid for \xy\ > \w\, may 
be obtained from (3.8) by replacing y by y~l, interchanging x and w, and 
multiplying by yv. 

We have now obtained, in normalized form, functions annulled by L and 
differential operators of the first order of the form r\A + r2B + rzC + r4, 
where the r's are constants and r\ ^ 0. Generating functions annulled by 
rJB + rzC + r4 are not included in (3.1) but may be derived independently. 
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Since [B, C] = 0, we seek a solution of the simultaneous equations (B — \)u 
= 0, (C — l)u = 0. This solution is annulled by r2B + r3C + r4, normalized 
so that r2 + r3 + r4 = 0. By (2.1) it is also annulled by L. We find the 
solution to be the familiar generating function 

Axiy-y-1) _ 

of the Bessel functions of integral order. 

(3.9) ei*(v-y-*) = £ Jn(x)yn 

n=—œ 

4. Generating functions annulled by A(B - C) + %{B + C) + 4<* - 1. 
By a suitable choice of new variables the equation Lu = 0 may be trans­
formed into one solvable by separation of variables. A solution so obtained, 
if possessed of suitable analytic properties, provides a generating function 
for Bessel functions. We shall present several examples. 

Choosing new variables 

£ = h^ij"1 - y + 2i), 7? = \x{y~l - y - 2i), 

the equation Lu = 0 is transformed into 

A„du . d u . _ du _ du /s. , ~ 

^ - ^ â 7 + 2 i r 2 * r t t " , , ) " " 0 -
Four linearly independent solutions are obtained by separation of variables: 

Wl = ^ ^ ( a î i î f i i ^ a î i ; ^ ) , 

W2 = {*e-*(€+Vi(« + i ; 3/2; « i F ^ a ; J; *?), 

^3 = ^ V ^ V i f o 4; « ^ ( a + 4; 3/2; , ) , 

^4 = tti7)V*(tfVi(« + *; 3/2; { ^ ( a + 4; 3/2; T?), 

where a is an arbitrary constant. These functions are also annulled by 

= 4f(f - v)'2L -A(B - C) - \{B + C) + 1 - 4a, 

where ^4, i3, C are the operators of § 2, and hence by 

A(B - C) + J ( 5 + C) + 4 « - 1. 

This operator provides recurrence relations for the coefficients of the expansions 
of the generating functions; but these relations will not be used. 

When expressed in terms of x and y, the function U\ is seen to have a 
Laurent expansion about y = 0: 

ehx{v~v~l\Fi(a\ 4; \x/y - \xy + râ)iFi(a; 4; \x/y - \xy - ix) 
oo 

= S gnJn(x)yn. 
n=—oo 

Replacing 3; by 2^/x and then setting x = 0, we have by (3.2) 
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e V i ( « ; è ; - y ) ] 2 = È gnfln\. 

By Rummer's formula, 

S[iFi(a-, *; - y)]2 = ^ ( « î i ; - y ) ^ * - «; * ;y) . 

The expansion of the right member in powers of y may be obtained with 
the aid of Chaundy's formula 

iFi(a;c; - y) lFfa'; c'; y) = X (a)n(- yf a , \ — c — 
.c', 1 — a — » J n=o n\{c)n 

(2, p. 70). However, this expansion may be expressed in a more suitable 
form by means of the transformation formula 

3 ^ 
ah a2, a*', 1 
- 01, 02 . 

r ( 0 2 ) r ( 0 x + 02 - a i -a2 - q 8 ) 

r(j92 - a 8 ) r ( i 8 i + j 8 2 - a i - a2) 

0i - a i , 0i 

-01, 01 + 02 
X *Ft 

— a2, a3; 1 
— «i — a2J 

(1, p. 98), whence 

(4.1) 1F1(a;c- - y)^^'• c';y) 

y£s (C + C' — a — a')n n 77 

= 2^ j r \ y sF5 

a', c + 6"' + w — 1, — n\ 
c', c -\- cf — a — a' •] 

Thus 

e'liF.ia; | ; - 3>)]2 = £ 3F2(a, », - n; £; ±; ! ) / / « ! , 

and gri is determined for n = 0, 1, 2, . . . . Since the generating function is 
unaltered when y is replaced by — y~\ g_„ = gn. Hence 

(4.2) ^ " - " " V i f o è; W ? - **y + ix)iF1(a; £; ix /y - Jay - we) 
oo 

= X *F2(a, n, — n; | ; \\ l)Jn(x)yn. 
n=—co 

Since %* — (hx)*(y~* + ŷ5)> u% n a s an expansion of the form 
oo 

X) K/w+è(x) + bnJ-n-h(x)]yn+\ 
n=—co 

Applying the methods described above, we obtain, after multiplying bv 
{2y/xf 

(4.3) (1 + iy)e^y-y-1\F1(a + J; 3/2; J*/? - £*y + {*) 

X iFi(a; i ; Jx/y — \xy — ix) 

= (*/2*)* £ 3^2(«, w + 1, - »; 1, J; l ) / w + i (x ) [ i / i + 1 + ( - y)""]. 

Replacing i by — i, we obtain the expansion which arises similarly from u->t. 
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Since (£77)* = \x{y + y~l), u^ has a Laurent expansion about y = 0. We 
obtain, after replacing a by a — J, 

(4.4) ixfr + ; y - V X ( ^ ~ V i ( « ; 3/2; Js /y - Jxy + ix) 
X iFi(a; 3/2; \x/y - %xy - ix) 

= S « a ^ a ^ + l, 1 - » ; 3 / 2 ; 3 / 2 ; l ) / n ( x ) / . 

With the aid of these results the elementary solutions of the three-dimen­
sional wave equation in parabolic cylindrical co-ordinates may be expressed 
in terms of cylindrical wave functions. 

5. Generating functions annulled by B2 + SCA + 4C. When we choose 
new variables £ = xy — (x/y)1, rj = xy + (x/y)*, the equation Lu = 0 
becomes 

d2u d2u 1, , 

â? " a? + 4ft ~ ' ^ = °-
The following solutions are obtained by separation of variables: 

«1 = 0 ^ ( 2 / 3 ; - [£ + a]V36)0/? i(2/3; - fo + s]3/36), 
«2 = « + 2)o^i(4/3; - [{ + 2 ]V36)0^(2/3 ; - [7, + 2)736), 
u3 = (, + «)ofi(2/3; - [f + z]V36)0JFi(4/3; - h + 2]3/36), 
«4 = (É + a) (17 + z)oFi(4/3; - [f + 2]3/36)0JP1(4/3; - [, + a]»/36 

where 2 is an arbitrary constant. These functions are also annulled by 

{j + | « + a) = 2{[(* - )̂(£2 - i,2)]"1!, + |J + JCM + f + ! 

and hence by i? = B2 + SCA + 4C + 4z. 
The functions «i and u\ have expansions of the form 

en 

w = — 0 0 

Applying /£, we obtain the recurrence relation 

gn+2 + ±zgn + H2n - 1)^_! = 0 (» = 0, ± 1, ± 2, . . .) 

by means of (2.2). No explicit solution is available for arbitrary z. A solution 
is readily obtained for 2 = 0. We find that 

(5.1) 0Fi(2/3; - [xy - (x/3f;*]V36)0F1(2/3; - [xy + (x/y;*]3/36) 
oo 

= E ( - 24)mr(W + l/6)/3TO(x)3/3m/r(l/6), 

(5.2) | ( * y - */y)oF!(4/3; - fcy - (*/y)*]V36) 

X 0^(4 /3 ; - [*y + (x/y)è]'/36) 

= £ ( - 24)~r(m + 5/6)/S O T + 2(x)3 '3 m +Vr(|) 
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For u2 we obtain similarly 

(5.3) [xy - ( * / y ) V i ( 4 / 3 ; - [xy - (x/y)h]*/Z%) 

0 ^ ( 2 / 3 ; - [xy+ (x/yW/m) 

= - (*/2)* £ ( - 24:)~mJZm+in{x)y-*m-ll2/m\ 
TO=0 

oo 

+ 2 E ( " 24)wr(m + è ) / 3 w + i (x )^ 3 w + 1 / r ( i ) . 

6. Generating functions annulled by A2 + a(2CA + C) + (3C2 - v\ 
If we choose new variables 

£ = i[(x2 + 2aVy)* - (x2 + 2iVy)*], 

7? = |[(x2 + 2aVy)* + (x2 + 26Vy)*], (a2 ^ 62), 

where a and 6 are constants and the signs of the radicals are chosen so that 
£ = 0, 7] = x when y = 0, the equation Lw = 0 becomes 

%d u 2d u du du , 2 2x n 

Comparing with (1.1), it follows that L annuls the four functions J±v(£)J±v(ri), 
where v is arbitrary. These functions are also annulled by 

?-KP + *Tt + ? - "* = **(** + 2c& + ^)" l L + A* + ^ + b^(2CA + C) df d£ 
, 2 T 2 / - . 2 2 

+ a 6 C — *> , 

where c — (a2 + b2)/(a2 — 62), and hence by 
7? = A2 + ±(a2 + b2) (2CA + C) + a2b2C2 - v2. 

Employing the methods described previously, and applying the well-known 
formulae 

(\od)\UzY ^ _(- i ) W 

X F ( - « , - M -n;u+ 1;/SV«*). 

(a, /S; 7; 2) = (1 - z r " p ( « , T - 0; 7; ^ T j ) 

the following results are obtained: 

)y"+\ 

(6.1) 2 2 T ( , + l)(a2 - &T*/,($)/ ,(i ,) 

^ (a6)n _ / , 0 . ! . 1 (a + bA T / \ 

(a2 ^ J 2 , f l M 0 , ^ - 1, - 2 ). 
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(6.2) 2 2 ' I > + l)(a2 - bY'J^)J-r(v) 

\y\ < Min(|x/2a2 |, |x/262|), {a ^b\ab^0,v^ - 1, - 2, . . .)• 

(6.3) T(v + l)(a + b)'(a - b)-vJr(£)J-r(v) 

^ ( - abf J , , , 1 (a - bf\ T . . n 

\y\ > Max(|x/2a2 |, |x/262|), (a2 * b\ ab ^ 0, v ^ - 1, - 2, . . .), 

and the left member has the value (sin vir)/vir when x = 0. 
The excluded case ab = 0 may be treated similarly. Setting a = 0, b2 — — 2, 

the following generating functions, annulled by A2 — 2CA — C — v2, are 
obtained : 

(6.4) / , (* [* - (x2 - 4*y)*]) J , ( i t* + (x2 - 4x;y)*]) 

• „+n(x)(;y/2)' 

(6.5) / , ( * [* - (x2 - 4*y)*])/_,(i[* + (** - 4*y)*]) 

< 1*1. 

= y . 1_ /2» + 2w\ , w ,^r+n 

„=o I (v + n + 1 ) \ « / 

(6.6) eniJr(Ux - (x2 - 4xy)è])/_„(i[x + (x2 - ixyV]) 

= »So r ( * ) r ( n + 1 - v)Y{n +l+v) J » ^ ^ " 

+ tx-*sinvT £ ^ " " ^ ^ " - W * ) ^ ) " " * , |4y| > |x|, 
n=0 til 

where the left member has the value (sin vir)/vir when x = 0. Formulae (6.4) 
and (6.5) are limiting cases of formulae (6.1) and (6.2) respectively. 
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