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SETS OF UNIQUENESS FOR THE GROUP OF INTEGERS
OF A p-SERIES FIELD

WILLIAM R. WADE

§ 1. Introduction. Let G denote the group of integers of a p-series field,
where p is a prime = 2. Thus, any element & € G can be represented as a
sequence {x,},—p” with 0 < x, < p for each ¢ = 0. Moreover, the dual group
{ W, meo” of G can be described by the following process. If m is a non-negative
integer with m = Z‘Z’:o a; P, 0 £ ap < pforeach k, and if x € G then

(1) \I’m(j—c) = H(ljcozo ¢kak(9_c)y

where for each integer £ = 0 and for each x = {x,} € G, the functions ¢, are
defined by

(2)  ¢(®) = exp(2mix,/p).

In the case that p = 2, the group G is the dyadic group introduced by Fine
[1] and the functions {¥,}m_y are the Walsh-Paley functions. A detailed
account of these groups and basic properties can be found in [4].

One of these basic properties is that the group G can be identified with the
unit interval [0, 1). This is accomplished by associating with each element
¥ = {x;} € G0 =< x; < p,the point x = Z"{;o x:/pttL. It is well-known that
the map & — x takes Haar measure on G to Lebesgue measure on [0, 1).
Moreover, if we neglect the set D, of p-rationals, this map is one-to-one and
onto. It becomes a group homomorphism if we define the p-sum of two real
numbers x, vy € [0, 1) by

x + y = Zcf:o (x; ® y;)/p'Ht
where
x = Zoi,o:n xo/ptthy = Zo;o yi/ b,

and x; @ y; represents the sum of x; and y;, modulo p. Abusing the notation
slightly, we shall set ¥, (x) = ¥, (&) for x € [0,1) and m = 0, 1,.... Since
each ¥, is a character on G, we have that

(3> \I/m(x "F y) = \I/m(x)\pm(y)v
forx,y € [0,1)and m =0,1,....

Define the p-sum of two non-negative integers n and [/ as follows. If m =
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D reaiplandif I = D 50 B:p", with0 £ a,, 8; < p, then
m 1= Z(?:o (a; ® Bi)pL.

It is clear from equation (1) that

(4)  Vpix) = ¥, (x)¥,(x),

forx € [0,1)and m, ! = 0,1, .... We shall denotethe p-sum of an integer I
with itself (p — 1) times by —/. Since addition of coordinates is modulo p, we
observe that [ — [ = 0.

Define the p-product of a non-negative integer m = » i o axp® with a real
number x (which either belongs to |0, 1) or to the set {1,2,...}) by

mox = (a0x) + (a1p 0 x) + (a2p? 0 x) +...,

where the numbers ap’ o x are defined as follows. If x = > 5, x,/p'T!
belongs to the interval [0, 1), then

aplox = D Ta ® xi,/pH,

where @ ® x,,,; represents the product of a with x;.,, modulo p. If x =
> %y B:p" is a non-negative integer, then

aplox = Z"{;Ua ® Bip't!

where @ ® @, represents the product of « with 8;, modulo p.

Let n be a fixed positive integer, and denote the set of #n-dimensional vectors
whose coordinates are non-negative integers by I*. If 4 = (¢4, ..., a,) and
B = (by,...,b,) belong to I", then define the p-dot product of A and B by

AoB = (a;0b)) + (wxoby) + ...+ (a,0b,);
for x € [0, 1) define the p-scalar product of x and A by
xo0Ad = (hox,as0x,...,a,0%).

A sequence {V,},-1” C I" is said to be p-normal if given any non-zero vector
A€ 1" wehave A o I, — + o0,asj — 0.

Finally, let E be a subset of the interval [0, 1) and for any character series
S = ch';o ¥y set

Sy(x) = D apVy(x), x €10,1), N =1,2,....

The set £ is said to be a p-set of uniqueness if the only character series .S which
satisfies Sy(x) = 0as N — o, for x € [0, 1) ~ E, is the zero series. The set E
is said to be a pH™-set if there exists an open, connected set A € R" and a
p-normal sequence {V,;} of vectors in I" such that for all x € E and for all
integers 7 = 1, the point x o 1/; never belongs to A. For the trigonometric
analogues of these concepts, see [6, p. 346].

In Section 2, we shall sketch proofs of the following two theorems.
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THEOREM 1. Suppose that f is integrable on |0, 1), that Z is a countable subset
of 10, 1), and that S = Y @, ¥, 1s « character series which satisfies p="Sym(x) — 0,
as m— o0, for euch x € 10, 1). If Sym(x) converges to f (x), as m — o0, for
x €10,1) ~ Z, then S s the G-Fourier series of f, 1.e.,

ar ——~f @)U (x)dx, fork =0,1,....

THEOREM 2. Let E be « subset of [0,1). A sufficient condition thut I be «
p-set of uniqueness s the existence of « sequence of polynomials on G, swy

M) = 2o o PV(x) G =1,2,. ...

which vanish for x € E ~ Z;, where Z; is « countuble set (j = 1,2,...), aund
whose coefficients satisfy three properties:

3) Dkl = C<0  j=1,2....
4) | zZ2A4>0 j=1,2,....
(5)  lim,c? =0 k=1,2,....

In both cases, the proofs we outline follow closely those given earlier in the
Walsh-Paley case. For Theorem 1, see [2]; for Theorem 2, see [3].
In Section 3, we shall apply these results to prove the following theorem.

THEOREM 3. Let I£ be a subset of [0, 1). If E is countable or if E is a pH™-set,
then I£ 1s « p-sel of uniqueness.

In Section 4 we shall discuss specific examples of 2H ) -sets, thereby providing
the first new perfect sets of uniqueness for Walsh-Paley series since 1949 (see

[3] and [5].)

§ 2. Uniquenessand Localization. For each x € [0, 1) and each non-nega-
tive integer m, we define o, (x) = ¢/p™ by insisting that ¢ < p"x < ¢ + 1. We
also set B,,(x) = a,(x) + p~™ and a,, (x) = a,(x) — p~™.

Recall that D represents the set of p-rationals in the interval [0, 1). The
following lemma is the key to the proof of Theorem 1. It was proved in the
special case p = 2 in [2]. By replacing each occurrence of 2" by p™ and by
subdividing each interval into p even subintervals instead of halves, the proof
in {2] can also be used to establish this result:

LEMMA 1. Let G be a function defined on D which satisfies the following three
properties:

lim sup,,,, Gla,/ (x)) = G(x) x € D;
lim inf, , [G(B.(x)) — Glan(x))] =0 x € [0, 1);
lim inf,, o, p"[G(Bn(x)) — Glan(x))] =0  x€[0,1) ~Z,

for some countable set Z. Then G is monotone decreasing on D.
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The proof of Theorem 1 proceeds as follows: Set

Flx) = f( F(0)dt

and, when it exists,

L) = Yoow f w0,

for x € 10, 1). Observe that L(x) is defined for each x € D. In fact, since
each character W, is constant on any interval of the form J = [¢/p",
(¢ + 1)/p™) when k& < p™, and satishes fJ\I/k(z‘)dt = 0 when & = p™, it is the
case that

(6) L(Bm(x)) - L(am(x)) = (Bnt(x> - am(x)>sz7’"<x)

form=1,2,...and x € [0, 1).

Apply the Vitali-Carathebédory Theorem to I, to choose an absolutely
continuous function ¢ which uniformly approximates I, and whose derivative
is dominated by f. Verify, using (6) and the hypotheses of Theorem 1, that
¢ — L satisfies the three conditions in Lemma 1. Hence, ¢ — L is monotone
decreasing on D. Since ¢ approximates I, it follows that /* — L is monotone
decreasing on D. By symmetry, L — F is also monotone decreasing on D.

Consequently, L(x) = fgf(l) dt for all x € D. Now, instead of showing that
L is essentially absolutely continuous, [2], verify directly that S is the G-
Fourier series of f. Indeed, fix an integer & and choose p-rationals «,, and 8,
such that ¥, (x) = ¥, (a,) forx € [a,, B.), and so that [0, 1) = Un—1 [am, Bm)-
Then by what we just showed,

1 B
S rwmeas = £ [T rew e = v

However, we can choose 7, so large (see (6)) that
ﬂl’b
L(Bn) — Lan) = S (£)dt.

am

Consequently,

folf(x)\lfk(x)dx = fol W (£) Sn,y (£)dt.

Since the functions {¥;} are orthonormal, the right hand side reduces to a;, as
required.

The proof of Theorem 2 in the Walsh-Paley case relies heavily on a formal
product of polynomials with series.

https://doi.org/10.4153/CJM-1979-081-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-081-7

862 WILLIAM R. WADE

LemMMa 2. Let Nx) = D29 cx¥i(x) be a polynomial on G, and let

Sx) = Z?f:o ¥y (x) be a character series on G. Define a series NS by
NS(x) = 2 0@n¥i(x), x € 10, 1),

where @, = Y_1% cyaperfork = 0,1,.... Ifa,— 0, as k— 00, then @, — 0 and
7)) lim, L o[NS,(x) — Nx)S,(x)] =0
uniformly on [0, 1).

To prove this lemma we begin with a simple observation. If & = > 7, 8,p’
is a non-negative integer, with 0 < 8; < p, and if ¢ and N are fixed natural

numbers, then a necessary and sufhcient condition that (¢ — 1)p" < k < gp»
is that

T Bip? = (g — 1)p*.

It follows that if 2 and / are non-negative integers which satisty / < p~ and
(g — 1) pY = k < gp¥, then

(8) (qg—DpYN <k +1<gp".

In particular, since =1 =141+ ... 41 ((p — 1) — terms), we see that
k =1 — 00 ask — o, for each integer / = 0. Thus @, — 0as k — o0 because
ar— 0ask — 0.
To show that (7) holds, fix N so large that = [ < p" for all I < Ny, and
fix x € [0,1). By (8), if I < N, then
V-1 V-1

Z e Wy (X) = Z ap¥i(x).

Since V., (x)¥,(x) = ¥, (x) for all integers &, [ = 0, we therefore obtain the
following identity:

ASpn () = N(x)Sw (x)

forg=1,2,....
Let m be a positive integer. Choose a non-negative integer ¢ which satisfies
gp™ = m < (¢+ 1)p"~. By the identity derived in the preceeding paragraph,

we have
m—1 m—1
>\Sm(x) - )\(x)Sm(x) = ZpN dk‘I’k(x) - )‘(x) % ak\I’k(x)-
k=g¢q g

In particular,
NS, (x) — Mx)Sn(x)] = P isupize iy + [N o SUPk 2oV |ail}-

Since both a; and @, tend to zero as k — o0, we have verified (7), and thus
have completed the proof of Lemma 2.
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To prove Theorem 2, let .S = - «; ¥ be a character series which converges
to zero off E. Fix an integer j, and consider the product X\;S. By Lemma 2, the
assumption concerning S, and the hypothesis concerning the vanishing of ),
the Walsh series \;S converges to zero off the countable set Z; Hence by
Theorem 1, the coefficients of ;S must vanish. By writing down the explicit
formula for those coefficients, as given by Lemma 2, we are therefore lead to
the equation

ap = (— 1/¢o?) ZZ‘LO ¢ Papey

for k =0,1,.... By using (3), (4) and (5) to estimate this sum, for Jarge j,
one can easily show that ¢, = 0 for 2 = 0, 1, . ... In particular, .S is the zero
series, as required.

§ 3. A proof of theorem 3. Suppose first that E is countable. Observe, since
every p-rational x has a p-adic expansion which terminates in zeros, that

Sx) = Z:;o ap ¥y (x)

which converges at a p-rational, necessarily satisfies ¢, — 0 as k& — 0. It
follows that such a series also satisfies p=™S,»(x) — 0 as m — oo, for each
x € [0, 1). Consequently, Theorem 1 proves that E is a p-set of uniqueness.

Suppose that E is a pH™-set. That is to say, suppose that there is an open,
connected set A € K" and a p-normal sequence { V;} ;-1 C I" such that for all
x € E and for all integers j = 1, the point x o V/; never belongs to A. For
simplicity, we suppose that # = 2, and set V; = (a;, b;) forj =1,2,.... We
may suppose that A = J; X J,, where each J; is a subinterval of [0, 1) with
p-rational endpoints, say J; = [a;, 81).

Denote, for 2 = 1 and 2, the characteristic function of the interval J; by u,,
and observe that u, is a polynomial on G, say

u1 (X‘) ;1{:0 YW (x>

and
wr(x) = ZII;O 6, (x).

We intend to show that the functions \;(x) = pi(e; 0 x)us(b; 0x),
7 =1,2, ..., satisfy the hypotheses of Theorem 2 with respect to E, thereby
showing that E is a p-set of uniqueness. Above all, we need to be sure thateach
\; is a polynomial.

LemMmA 3. Suppose that m and k are non-negative integers. Then V,(m o x) =
V01 (%) for x € [0, 1).

To verify this lemma, we begin by observing that by (2), and the definition
of ap’ o k, the following formula subsists for x = Y %, x;/p**! and for non-
negative integers N, [, and @, with 0 < a < p:

pn(aplox) = exp 2mia @ xyy)/P).
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Butexp(277) = 1, so we can replace the product modulo p by axy, ;. Hence by
(1), and the definition of ap! 0 p~, we obtain

dy(ap’ox) = Wopiopy (x).

Hence the lemma holds in the special case when 2 = p~ and m = ap’. In the
case when k = Z‘;’:n B:ptbutm = ap', we have by (1) that

Vi(ap'ox) = | |Toéf(ap'ox).
By the previous case, then,
9) Y, (ap'ox) = Hoio=o @iy P (x).

According to (1) and the definition of ap’o k, the right hand side of (9) is
identical to Wa,ior(x), as required. Finally, if m = D> % gap’ then by defini-
tion of m o x and (3), we have

V,(mox) = Vi(ayox)V(apox). ..

By the preceeding case, and equation (4), this leads directly to ¥,(m o x) =
W¥,.0x (x), and thus establishes the lemma.

We are now prepared to verify that the functions \; satisfy the hypotheses
of Theorem 2.

For the time being, let j be fixed. Since each u; is the characteristic function
of J; (1 = 1,2) and since x € E implies that (¢;0x, b;0x) 7 J1 X Jy, it is
clear that \; (x) = O forx € E.

Next, by Lemma 3, we know that

pi(a; 0x) = =t YW jom (x)
and
#2(1)7‘ ox) = Z?:O 51‘I’bjoz(x)y
for x € |0, 1). Hence
A(x) = =0 Z?:o %n‘sz‘l’uiomﬂjo ()
is a polynomial on G. In fact, using the notation of Theorem 2, we see that
(10) 2 = Y lybk=a;0om+ b;0l}

fork=0,1,....
Condition (3) is therefore satisfied since

Zf:o |Ck(jw é Z:z[=0 i’)’m{ : Z{;O ‘Bl| < .

To verify condition (4) for large j, which is all that is required, we set
T = Y {ymbi: 0 = ayom + b; 0l but |m| + |n| # 0},

and observe that since («;, b;) is p-normal, the sum 7" is empty for large j.
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However, by (10), ¢ = y48y + 1. Since vy = m(J,) and 8§, = m(J,) are
both positive, we see that ¢,V = y48y > 0, for large ;.

Condition (5) is similarly verified. Indeed, if & = a;om + b;01 is non-
zero, then the vector (m, [) is necessarily non-zero. For such vectors (m, 1),
however, we have

a;om +bjol =0 asj— 0.

It follows from (10) that ¢ is identically zero, for j large. This completes the
proof that the functions \; satisfy the hypotheses of Theorem 2, and, therefore,
that £ is a p-set of uniqueness.

§ 4. Examples. It is clear (see I:xample 1 below) that the Cantor set C(1/p)
isa pHM-set, and thus a p-set of uniqueness, for each prime p = 2. However,
it seems difficult to decide whether C(1/q) is a pH®-set when p £ ¢. In par-
ticular, a problem open since 1949 [3] is that of determining whether the usual
Cantor set C(1/3) is a set of uniqueness for Walsh-Paley series.

We close with some examples for the case p = 2. We shall abbreviate
“OHM.get” by “H-set”. Sneider 3] has shown that the set C(1/2) is a set of
uniqueness for Walsh-Paley series. Our first example shows that this result
follows from Theorem 3.

(1) Let C; denote the set whose complement is given by the union of inter-
vals of the form (1/4,3/4); (1/16,3/16), (13/16,15/16); (1/64, 3/64),
(13/64, 15/64), (49/64, 51/64); (61/64, 63/64); ... . It is clear that the
dyadic expansion of a point in the complement of C; consists of #n pairs of 0's
of I's (n = 0) followed by a 01 or a 10. It follows that a necessary and sufficient
condition for a point x = Y %, x,/2'+! to belong to Cy is that Xy, = xa;
for j =1,2,.... Thus, if n; = 2% 4 2%+ for j =0,1,..., then n;0x ¢
(1/2,1) forx € Crandj = 0. In particular, C; is an H-set.

Minor variations on this technique can be used to show that each of the
following sets is an Fl-set. Note that C, contains ), and that Cy and C, are
unsymmetric.

(2) Cy = {x = 2.7, x;/27%1: for each j = 0,1,..., the set 124,41,
x4j+g} contains an even (possibly 0) number of 1’s}. The complement of C, is
the union of intervals (1/4, 3/4); (1/64, 3/64), (5/64,7/64), (9/64, 11/64),
(13/64, 15/64), (49/64, 51/64), (53/64, 55/64), (57/64, 59/64), (61/64,
63/64); (1/1024, 3/1024), . . . .

3) C; = {x = Z‘;“:I x;/2"* for each integer j = 0, the set {xgjﬂ,
X342, x3j+3} contains an even (possibly zero) number of 1's}. The complement
of C; is the union of intervals (1/8, 3/8), (4/8, 5/8), (7/8,1); (1/64, 3/64),
(4/64, 5/64), (7/64,8/64), (25/64,27/64), (28/64, 29/64), (31/64, 32/64),
(41/64, 43/64), (44/64,45/64), (47/64,48/64), (49/64,51/64), (52/64,
53/64), (55/64, 56/64); . . ..
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(4) Ci =1 270 x;/2"% for each integer j = 0, the set {xy 1, x4,
X4 43, X4, 1} always contains an odd number of 1's}. The complement of Ci is
the union of intervals (0, 1/16), (3/16,4/16), (5/16,7/16), (9/16, 10/16),
(11/16, 13/16), (15/16,1); (16/256, 17/256), (19/256, 20/256), (21/256,
23/256), ... ;.. ..
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