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Abstract

A common task in cryo-electron microscopy data processing is to compare three-dimensional density maps of
macromolecules. In this paper, we propose an algorithm for aligning three-dimensional density maps, which exploits
common lines between projection images of the maps. The algorithm is fully automatic and handles rotations,
reflections (handedness), and translations between the maps. In addition, the algorithm is applicable to any type of
molecular symmetry without requiring any information regarding the symmetry of the maps. We evaluate our
alignment algorithm on publicly available density maps, demonstrating its accuracy and efficiency. The algorithm is
available at https://github.com/ShkolniskyLab/emalign.

Impact Statement
This paper describes a fast algorithm for the rotational and translational alignment of three-dimensional density
maps. Such alignment is an essential step in cryo-electronmicroscopy data processing. The algorithm is available
at https://github.com/ShkolniskyLab/emalign.

1. Introduction

Single particle cryo-electron microscopy (cryo-EM) is a method to determine the three-dimensional
structure of biological macromolecules from their two-dimensional projection images acquired by an
electron microscope(1). In this method, a sample of identical copies of the investigated molecule is
quickly frozen in a thin layer of ice, where each copy is frozen at an unknown random orientation. The
frozen sample is imaged by an electron microscope, resulting in two-dimensional images, where each
image is a tomographic projection of one of the randomly oriented copies in the ice layer. The goal of
single particle cryo-EM is to determine the three-dimensional structure of the molecule from the
acquired two-dimensional images. A common task in cryo-EM data processing is to compare two
density maps of the samemolecule. This is required, for example, to estimate the resolution of themaps,
evaluating their Fourier shell correlation curve(2), or to analyze their different conformations. All these
tasks require to first align two density maps, that is, to orient them in the same way in a common
coordinate system. Due to the nature of the cryo-EM imaging process, the two density maps may differ
not only in their three-dimensional orientation (i.e., their “rotation”) but may also have different
handedness (namely, reflected relative to each other) and may be centered differently with respect to
a common coordinate system.
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In this paper, we propose an algorithm for aligning two density maps, which is fully automatic and can
handle rotations, translations, and reflections between the maps. The algorithm requires as an input only
the two density maps. In particular, it does not assume knowledge of any other information such as the
symmetry of the maps.

Formally, let ϕ1 :ℝ
3 !ℝ and ϕ2 :ℝ

3 !ℝ be two volumes such that

ϕ2 rð Þ= ϕ1 Or� tð Þ, (1)

where r= x,y,zð ÞT ∈ℝ3 , O∈O 3ð Þ and t= Δx,Δy,Δzð ÞT ∈ℝ3 (O 3ð Þ is the group of all orthogonal
transformations of the three-dimensional space, namely rotations and reflections). The alignment problem
is to estimateO and t given ϕ1 and ϕ2. The matrixO is known as the orientation parameter, and the vector t
as the translation parameter. In practice, we only get samples of ϕ1 and ϕ2, arranged as three-dimensional
arrays of size n�n�n , where n is the resolution of sampling. In cryo-EM, ϕ1 and ϕ2 represent two
reconstructions of the same underlying molecule that we would like to compare (such as two half maps
from a refinement process). In principle, it is possible to approximate the solution to the alignment problem
using exhaustive search, by generating a set of candidate pairs Oi, tið Þ, where Oi ∈O 3ð Þ and ti ∈ℝ3, and
finding the pair which “best aligns” ϕ1 to ϕ2 in some chosenmetric. The purpose of the alignment algorithm
presented in this paper is to estimate the optimal alignment parameters in a fast and accurate way.

The paper is organized as follows. In Section 2, we review existing alignment algorithms. In Section 3,
we give a high level simplified description of our algorithm. A detailed description is then given in
Section 4. This description relies on a method for aligning a single projection image against a volume, a
procedure which is described in Section 5. In Section 6, we discuss implementation considerations of the
algorithm and analyze its complexity. An optional procedure for refining the estimated alignment
parameters is described in Section 7. In Section 8, we demonstrate numerically the properties and
performance of our algorithm. Finally, in Section 9, we discuss the properties and advantages of our
algorithm.

2. Existing Methods

There exist several methods for three-dimensional alignment of molecular volumes. The Chimera
software(3) offers a semi-automatic alignment method which requires the user to approximately align
the volumes manually and then refines this alignment using an optimization procedure. This means that a
sufficiently accurate initial approximation for the alignment is required. Achieving this initial approxi-
mate alignment manually naturally takes time and effort, yet it is crucial for the success of Chimera’s
alignment algorithm. The alignment procedure implemented by Chimera maximizes the correlation or
overlap function between the two volumes by using a steepest descent optimization. The iterations of this
optimization stop after reaching convergence or after 2,000 steps.

Another alignment method is the projection-based volume alignment (PBVA) algorithm(4). This
method aligns a target volume to a reference volume by aligning multiple projections of the reference
volume to the target volume whose orientation is unknown. The PBVA algorithm is based on finding two
identical projections, a projection P1 from the reference volume and a projection P2 from the target
volume as follows. The reference volume is projected at some known Euler angles, resulting in a
projection P1 , and the matching projection P2 is found by maximizing the cross-correlation function
between P1 and a set of projections representing the possible projections of the target volume. The cross-
correlation function is of five parameters—three Euler angles and two translation parameters in the plane
of the projection P2

(5). Finally, the rotation between the volumes is estimated from the relation between
the Euler angles corresponding to the projections P1 and P2. After estimating the rotation between the
volumes, the translation between them is found using projection images from the target volume. The
translation between the volumes is estimated by least-squares regression using the two translation
parameters of each projection from the target volume, where a minimum of two projections is required
for calculating the three-dimensional translation vector. Using multiple projection images to estimate the
translation between the volumes makes the alignment more robust.
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The Xmipp software package(6) also offers a three-dimensional alignment algorithm. It is based on
expanding the two volumes using spherical harmonics followed by computing the cross-correlation
function between the two spherical harmonics expansions representing the volumes(7). The process of
expanding a volume into spherical harmonics is called the spherical Fourier transform (SFT) of the
volume, where like the fast Fourier transform (FFT) algorithm, there exists an efficient algorithm for
calculating the SFT(7). The process of calculating the cross-correlation function between the two spherical
harmonics expansions of the volumes and estimating the rotation between the two volumes is imple-
mented by a fast rotational matching (FRM) algorithm(8). After estimating the rotation between the two
volumes, the translation between them is found by using the phase correlation algorithm(9).

Finally, the EMAN2 software package(10) offers 2 three-dimensional alignment algorithms. In the first
algorithm (implemented by the program e2align3d, now mostly obsolete), the rotation between the
volumes is estimated using an exhaustive search for the three Euler angles of the rotation. First, the
algorithm generates a set of candidate Euler angles with large angular increments. Then, the algorithm
iteratively decreases the angular increments in the set of candidates in order to refine the resolution of the
angular search(11). A much faster tree-based algorithm is implemented in the program e2proc3d. This
method performs three-dimensional rotational and translational alignment using a hierarchical method
with gradually decreasing downsampling in Fourier space. In Section 8, we compare our algorithm to this
latter algorithm, as well as to the FRM algorithm implemented by Xmipp.

3. Outline of the Approach

We are given two volumes ϕ1 and ϕ2 satisfying (1). For simplicity, we assume for now that the volumes
have no symmetry and are related by rotation only (no translation nor reflection).We generate a projection
image from ϕ2, denoted P, corresponding to an orientation given by a rotation matrix R. Since ϕ1 and ϕ2
are the same volume up to rotation, we can orient P relative to ϕ1, that is, we can find the rotation ~R such
that projecting ϕ1 in the orientation determined by ~Rresults in the imageP. As we show below, it holds that
~R=OR, whereO is the transformation from (1). Since R and ~R are known, we can estimateO asO= ~RRT.

In practice, it may be that ~R is not determined uniquely by P, as for example, a volume may have two
very similar views even if it is not symmetric. Moreover, the volumes to align are discretized and
sometimes noisy, which introduces inaccuracies into the estimation of O . Thus, to estimate O more
robustly, instead of using a single image P , we generate from ϕ2 multiple images P1,…,PN with
orientations R1,…,RN , align each Pi to ϕ1 as above, resulting in estimates for O given by Oi = ~RiRT

i , and
then estimate O from all Oi simultaneously by solving.

O= argmin
R

XN
i= 1

Oi�Rk k2F ,

where �k kF is the Frobenius matrix norm. In Section 4, we give an explicit solution for the latter
optimization problem.

The key of the above procedure is estimating the orientation of a projection image P of ϕ2 in the
coordinate system of ϕ1. This is done by inspecting a large enough set of candidate rotations and finding
the rotation ~R for which the induced common lines between P (when assuming its orientation is ~R) and a
set of projections generated from ϕ1 best agree. As inspecting each candidate rotation involves only one-
dimensional operations (even if the input volumes are centered differently), it is very fast and highly
parallelizable. Thus, this somewhat brute force approach is applicable to very large sets of candidate
rotations (several thousands, for accurate alignment) and still results in a fast algorithm.We discuss below
the complexity and advantages of this approach. We summarize the outline of our approach in Figure 1
and describe it in detail in Sections 4 and 5.

In the above approach, we assume that O is a rotation. However, ϕ1 and ϕ2 may have a different
handedness, and soOmay include a reflection. The above approach can obviously be used to resolve the
handedness by aligning ϕ2 to ϕ1 and to a reflected copy of ϕ1, and determining whether a reflection is
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needed using some quality score of the alignment parameters (e.g., the correlation between the aligned
volumes). However, as we show below, in our method, there is no need to actually align ϕ2 to a reflected
copy of ϕ1, saving roughly half of the computations (those required to actually align ϕ2 to a reflected copy
of ϕ1), as explained in Section 4.

We next explain in detail the various steps of our algorithm, including handling translations,
reflections, and symmetry in the volumes.

4. Estimating the Alignment Parameters

Consider two volumes ϕ1 and ϕ2, where one volume is a rotated copy of the other (assuming for now no
reflection nor translation between the volumes), namely (see (1))

ϕ2 rð Þ= ϕ1 Orð Þ, r= x,y,zð ÞT ∈ℝ3, (2)

where O is an unknown rotation matrix. Our goal is to find an estimate for O.
In case where ϕ1 and ϕ2 exhibit symmetry, the solution for O is not unique. To be concrete, we denote

by SO 3ð Þ the group of all 3�3 rotation matrices. A groupG ⊆ SO 3ð Þ is a symmetry group of a volume ϕ,
if for all g∈G it holds that

ϕ rð Þ= ϕ grð Þ, r= x,y,zð ÞT ∈ℝ3: (3)

In other words, a symmetry group of a volume is a group of rotations under which the volume is invariant
(see(12) for more details). If we denote the symmetry group of ϕ1 by G1 ⊆ SO 3ð Þ and define r0 =Or, then,
from (2) and (3), we get for any symmetry element g∈G1

ϕ2 rð Þ= ϕ1 Orð Þ= ϕ1 r0ð Þ= ϕ1 gr0ð Þ= ϕ1 gOrð Þ: (4)

Comparing the latter with (2), we conclude that the solution for O is not unique, and we thus replace the
goal of finding O by finding any gO for some arbitrary element g∈G1 of the symmetry group.

Note that we assume that O is a rotation, namely that ϕ1 and ϕ2 are related by rotation without
reflection. The case where O is a reflection will be considered below. Let P be a projection image
generated from ϕ2 using a rotation R, that is,

Pðx,yÞ=
Z ∞

�∞
ϕ2ðRrÞdz=

Z ∞

�∞
ϕ2ðxRð1Þ þ yRð2Þ þ zRð3ÞÞdz, (5)

where R 1ð Þ, R 2ð Þ, R 3ð Þ are the columns of the matrix R and r= x,y,zð ÞT . From (2), we have that

Figure 1. Outline of the algorithm.
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ϕ2 Rrð Þ= ϕ1 ORrð Þ: (6)

Thus, using (5), we have

P x,yð Þ=
Z∞
�∞

ϕ2 Rrð Þdz=
Z∞
�∞

ϕ1 ORrð Þdz: (7)

Equation (7) implies that if Phas orientation Rwith respect to ϕ2, then it has orientationORwith respect to
ϕ1. In Section 5, we describe how to estimateOR given P and ϕ1, namely how to estimate a rotation ~R that
satisfies ~R=OR. If the volume ϕ1 is symmetric with symmetry group G1 , then (as shown above) the
rotation OR is equivalent to the rotation gOR for any g∈G1, and moreover, the two rotations cannot be
distinguished. Thus, we conclude that

~R= gOR

for some unknown g∈G1. Using the latter equation, we can estimate O as

O= gT ~RRT : (8)

Note that in the latter equation R is known, ~Rcan be estimated using the algorithm in Section 5 below, and
g can be arbitrary. Thus, (8) provides a means for estimating O.

However, to estimateOmore robustly, we usemultiple projections generated from ϕ2. LetR1,…,RN be
random rotations, and let P1,…,PN be the corresponding projections generated from ϕ2 according to (5).
Using the procedure described above, we estimate for each Pi a rotation ~Ri that satisfies ~Ri = giORi for
some unknown gi ∈G1. Thus, as in (8), we can estimate O using any i∈ 1,…,Nf g by

O= gTi ~RiR
T
i : (9)

Contrary to (8), if we want the right-hand side of (9) to result in the same O for all i= 1,…,N , then gi
cannot be arbitrary. In order to estimate O, we therefore need to find gi , i= 1,…,N and combine all
estimates for O given in (9) into a single estimate.

To that end, define

Xi =Ri~R
T
i , i= 1,…,N, (10)

and look at the matrix H of size 3N �3N whose i, jð Þ block of size 3�3 is given by (see (9) and (10))

Hij =Xi
TXj = ~RiR

T
i Rj~R

T
j

= ~Ri g
T
i
~Ri

� �T
OOT gTj ~Rj

� �
~R
T
j = gig

T
j :

(11)

By a direct calculation, we get that the matrix of size 3N �3

~g=

g1W

⋮
gNW

0
B@

1
CA, (12)

where W is an arbitrary 3�3 orthogonal matrix (i.e., WWT =WTW = I), satisfies

H~g=N~g: (13)

Equation (11) also shows that the matrix H is of rank 3, which together with (13) implies that ~g can be
calculated by arranging the three leading eigenvectors v1, v2, v3 of H in a matrix

V =

∣ ∣ ∣
v1 v2 v3
∣ ∣ ∣

0
B@

1
CA

3N�3

=

V1

⋮
VN

0
B@

1
CA, (14)
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whose 3�3 blocks V 1,…,VN are g1W ,…,gNW , for some unknown arbitraryW (see(13) for a detailed
derivation). In practice, at this point, we replace each giW by its closest orthogonal transformation, as
described in(14), to improve its accuracy in the presence of noise and discretization errors.

Next, in order to extract an estimate for g1,…,gN from (14) (i.e., to eliminateW from the estimates in ~g
given by (12)), we multiply each giW by g1Wð ÞT, resulting in

gest =

gest1
⋮

gestN

0
B@

1
CA=

g1WW TgT1
⋮

gNWW TgT1

0
B@

1
CA=

g1g1
T

⋮
gNg1

T

0
B@

1
CA: (15)

Thus, each gesti is a rotation, even if W is not. We define Oi = gTesti
~RiRT

i , and using (9), we get for
i= 1,…,N

Oi = gTesti
~RiR

T
i = g1g

T
i
~RiR

T
i = g1O: (16)

Thus, we have N estimates for g1O. Equation (4) states that ϕ2 rð Þ= ϕ1 Orð Þ= ϕ1 gOrð Þ for any symmetry
element g∈G1 . Therefore, estimating g1O is equivalent to estimating O . In order to estimate g1O
simultaneously from all Oi, i= 1,…,N, we search for the rotation O 1ð Þ

est (the superscript will be explained
shortly) that satisfies

O 1ð Þ
est = argmin

R

XN
i= 1

Oi�Rk k2F: (17)

In other words, O 1ð Þ
est is the “closest” to all the estimated rotations Oi in the least squares sense. To solve

(17), let ~O be the 3�3 matrix

~O=
1
N

XN
i= 1

Oi: (18)

In(15), it is proven that the solution to the optimization problem in (17) is

O 1ð Þ
est = ~U ~V

T
, (19)

where ~O= ~U~Σ~V
T
is the singular value decomposition (SVD) of ~O. The algorithm for estimating O 1ð Þ

est

given ϕ1 and ϕ2, as described above, is presented in Algorithm 1.

Algorithm 1 Estimating O 1ð Þ
est :

Input: Volumes ϕ1,ϕ2:
1: Generate random rotations Rif gNi= 1

2: Generate from ϕ2 projections Pif gNi= 1 corresponding to the rotations Rif gNi= 1 ▷ Eq. (5)
3: Apply Algorithm 2 to each Pi and ϕ1. Denote the resulting rotations by ~Ri

� �N

i= 1
4: for i= 1 to N do
5: Calculate X i =Ri~R

T
i ▷Eq. (10)

6: Construct the matrix 3N �3N

H =

I3�3 XT
1X2 ⋯ XT

1XN

XT
2X1 I3�3 ⋯ XT

2XN

⋮ ⋮ ⋱
XT
NX1 XT

NX2 ⋯ I3�3

0
BBB@

1
CCCA

7: Find the three leading eigenvectors v1,v2,v3 of H
8: Set
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V =

∣ ∣ ∣
v1 v2 v3
∣ ∣ ∣

0
B@

1
CA

3N�3

=

V1

⋮
VN

0
B@

1
CA

▷ Eq. (14)
9: Compute

gest =

gest1
⋮

gestN

0
B@

1
CA=

V1VT
1

⋮
VNVT

1

0
B@

1
CA

▷ Eq. (15)
10: for i= 1 to N do
11: Calculate Oi = gTesti

~RiRT
i ▷ Eq. (16)

12: Calculate ~O= 1
N

PN
i= 1Oi ▷ Eq. (18)

13: CalculateO 1ð Þ
est = ~U ~V

T
, where ~O= ~U~Σ~V

T
is the SVD of ~O ▷ Eq. (19)

Output:O 1ð Þ
est ▷ Estimated rotation

To handle the case where ϕ1 and ϕ2 have a different handedness (namely, related by reflection), we can
of course apply Algorithm 1 to ϕ2 and a reflected copy of ϕ1. However, this would roughly double the
runtime of the estimation process, as the most time-consuming step in Algorithm 1 is step 3, whose
complexity is O n3lognð Þ operations for a volume of size n�n�n voxels (see Section 5).

Alternatively, it is possible to augment the above algorithm to handle reflections without doubling its
runtime. In the case where there is a reflection between ϕ1 and ϕ2, we need to replace the relation in (2) by
the relation

ϕ2 rð Þ= ϕ1 OJrð Þ, J =

1 0 0

0 1 0

0 0 �1

0
B@

1
CA: (20)

Note that J in (20) is a reflection and thatO is a rotation. Repeating the above derivation starting from (20)
shows that to estimate O in this case, we can use the same Ri used above and the same estimates ~Ri

obtained above (steps 1 and 3 ofAlgorithm 1), but this timewe get thatOi = gTi ~RiJRT
i J (compare with (9)).

Then, we set X i = JRiJ ~R
T
i (compare with (10)) and proceed as above, resulting in an estimate O 2ð Þ

est

(compare with (17)), which corresponds to the optimal alignment parameters if ϕ1 and ϕ2 have opposite
handedness. Once we have the two estimates O 1ð Þ

est and O
2ð Þ
est for the alignment parameters between ϕ1 and

ϕ2 (without and with reflection), we estimate the translation corresponding to each of O 1ð Þ
est and O

2ð Þ
est using

phase correlation(9) (see Appendix C for details). This results in two sets of alignment parameters
(rotationþtranslation). We then apply both sets of parameters to ϕ2 to align it with ϕ1 and pick the
parameters for which ϕ2 after alignment has higher correlation with ϕ1 . We denote the estimated
parameters by Oest, testð Þ.

5. Projection Alignment

It remains to show how to implement step 3 of Algorithm 1, that is, how to find the orientation of a
projection P of ϕ2 with respect to the coordinate system of ϕ1. Mathematically, we would like to solve the
equation

P x,yð Þ=
Z∞
�∞

ϕ1 Rrð Þdz, r= x,y,zð ÞT ∈ℝ3 (21)
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for the unknown rotation R. A brute force approach of testing many candidate rotations in search for the R
that (best) satisfies (21) is prohibitively expensive, as it requires to compute a projection of ϕ1 for each
candidate rotation (this is essentially projection matching). We therefore take a different approach, whose
cost for inspecting each candidate rotation is much lower (in fact requires O nð Þ operations to test each
candidate rotation for a volume ϕ1 discretized into an array of size n�n�n).

The idea is to generate several projection images from ϕ1 , and then, for each candidate rotation, to
check the agreement of the common lines between Pand the projections of ϕ1, assuming the orientation of
P is given by the candidate rotation. We estimate the rotation corresponding to P as the candidate rotation
that results in the best agreement. We next formalize this method and then analyze its complexity.

We start by considering the case where there is no translation betweenPand ϕ1, namelyPand ϕ1 satisfy
(21), and our goal is to estimate Rgiven P and ϕ1. We generateN projection images from ϕ1 (N is typically
small, see Section 8), denoted P að Þ

1 ,…,P að Þ
N , with rotations R að Þ

1 ,…,R að Þ
N chosen uniformly at random (note

that we deliberately reuse the notation N used in Section 4, as explained below). We generate a set of
candidate rotations S, over which we will search for the solution R of (21). The set S consists of a large
number of approximately equally spaced rotations. See Appendix B for a detailed description of the
construction of S.

We will assume for each candidate rotation Q∈ S that P was generated using the rotation Q (i.e., we
assume that R in (21) is equal to Q), compute the mean correlation of the common lines between P and

P að Þ
1 ,…,P að Þ

N , and choose as an estimate for R the rotation Q for which the mean correlation is highest.
Specifically, for eachQ∈ S and R að Þ

i , i= 1,…,N, we compute the direction of the common line between P
and P að Þ

i , given by the angles αi in P and βi in P að Þ
i , as explained in Appendix A. The common line

property(16) states that if Q=R then

bP ξ cosαi,ξ sinαið Þ= bP að Þ
i ξ cosβi,ξ sinβið Þ, ξ ∈ℝ,

where bP and bP að Þ
i are the Fourier transforms of P and P að Þ

i , respectively (see Appendix A for a review of
common lines and their properties). We thus define

f i Q,ξð Þ= bP ξ cosαi,ξ sinαið Þ,
gi Q,ξð Þ= bP að Þ

i ξ cosβi,ξ sinβið Þ,
and the cost function

ρðQÞ= 1
N
ℜ
XN
i= 1

Z ∞

0

�f iðQ,ξÞgiðQ,ξÞdξ
kf ikL2kgikL2

, (22)

where f i denotes the complex conjugate of f i. In other words, ρ Qð Þmeasures how well the common lines
induced by Q between P and P að Þ

1 ,…,P að Þ
N agree. We then set our estimate for R to be

Rest = argmax
Q∈ S

ρ Qð Þ:

We explore the appropriate value for N in Section 8.
We now extend the above scheme to the case where P is not centered with respect to ϕ1, namely P is

given by

P x�Δx,y�Δyð Þ=
Z∞
�∞

ϕ1 Rrð Þdz, r= x,y,zð ÞT ∈ℝ3, (23)

for an unknown rotation R and an unknown translation Δx,Δyð Þ. The idea for estimating R is the same as
before, except that the calculation of the common lines should take into account the unknown translation,
as we describe next.

We denote the unshifted version of P by ~P, which is given by
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~P x,yð Þ=
Z∞
�∞

ϕ1 Rrð Þdz, r= x,y,zð ÞT ∈ℝ3 (24)

(this is exactly (21), but we repeat it to clearly set up the notation). Then,

P x,yð Þ= ~P xþΔx,yþΔyð Þ:
Taking the Fourier transform of both sides of the latter equation, we get that(1)

bP ωx,ωy
� �

= b~P ωx,ωy
� �

ei ωxΔxþωyΔyð Þ: (25)

Suppose that the common line between ~P and P að Þ
i is given by the angles αi in ~P and βi in P að Þ

i (see
Appendix A). By definition of the common line, it holds that

b~P ξ cosαi,ξ sinαið Þ= bP að Þ
i ξ cosβi,ξ sinβið Þ:

Using (25), we get that

bP ξ cosαi,ξ sinαið Þe�iξΔξ = bP að Þ
i ξ cosβi,ξ sinβið Þ,

where Δξ =ΔxcosαiþΔysinαi is the one-dimensional shift between the projections along their common
line. We assume that this one-dimensional shift is bounded by some number d.

Thus, we need to modify our cost function (22) to take into account also the unknown (one-
dimensional) phase e�iξΔξ . We therefore define (with a slight abuse of notation in reusing the previous
notation for the cost function)

f i Q,Δξ,ξð Þ = bP ξ cosαi,ξ sinαið Þe�iξΔξ ,

gi Q,ξð Þ = bP að Þ
i ξ cosβi,ξ sinβið Þ

and the cost function

ρðQ,ΔξÞ= 1
N
ℜ
XN
i= 1

Z ∞

0

�f iðQ,Δξ,ξÞgiðQ,ξÞdξ
kf ikL2kgikL2

, (26)

and set our estimate for the solution R of (23) to be

Rest = argmax
Q∈ S,Δξ ∈ �d,d½ �

ρ Q,Δξð Þ: (27)

The formula for the angles αi and βi of the common line between P and P að Þ
i induced by the rotationsQ∈ S

andRi is given inAppendixA. Note that at this point we are only interested inRest and not in the translation
Δx,Δyð Þ inP, as the relative translation between ϕ1 and ϕ2 is efficiently determined using phase correlation
(see(9) and Appendix C) once we have determined their relative rotation. The algorithm for solving
equation (23) is summarized in Algorithm 2.

Algorithm 2 Projection alignment.

Input: Projection P and volume ϕ1 satisfying (23).
1: Generate random rotations R1,…,RN

2: Generate from ϕ1 projections P
að Þ
1 ,…,P að Þ

N corresponding to the rotations R1,…,RN

3: Generate candidate rotations S ▷Appendix B
4: Compute

Rest = argmax
Q∈ S,Δξ ∈ �d,d½ �

ρ Q,Δξð Þ:

▷ Eqs. 26 and (27)
Output: Rest ▷ Estimated rotation
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As mentioned above, we use the same N in Sections 4 and 5. While, in principle, the number of
projections generated from ϕ2 in Section 4 can be different from the number of projections generated from
ϕ1 in Section 5, due to the symmetric role of ϕ1 and ϕ2 in the alignment problem, there is no reason to
consider different values.

6. Implementation and Complexity Analysis

Algorithms 1 and 2 are formulated in the continuous domain. Obviously, to implement them, we must
explain how to apply them to volumes ϕ1 and ϕ2 given as three-dimensional arrays of size n�n�n.
We now explain how to discretize each of the steps of Algorithms 4 and 5 and analyze their
complexity. For simplicity, we use for the discrete quantities the same notation we have used for
the continuous ones.

The only step in Algorithm 1 that needs to be discretized is step 2. This step is accurately discretized
based on the Fourier projection slice theorem (A.1) using a non-equally spaced FFT(17,18), whose
complexity is O n3lognð Þ (for a fixed prescribed accuracy). The result of this step is a discrete projection
image P given as a two-dimensional array of size n�n pixels. The remaining steps of Algorithm 4 are
already discrete, and since the value of N is small compared to n, their complexity is negligible.

We next analyze Algorithm 2. The input to this algorithm is a projection image P of size n�n pixels,
and a volume ϕ1 of size n�n�n voxels. The algorithm also uses the parameter N, but since it is a small
constant, we ignore it in our complexity analysis. Step 1 of Algorithm 2 requires a constant number of
operations. Step 2 is accurately implemented using a non-equally spaced FFT(17,18), whose complexity is
O n3lognð Þ (for a fixed prescribed accuracy). Step 3 is independent of the input volume, andmoreover, the
set S can be precomputed and stored. To implement step 4, we first discretize the interval of one-
dimensional shifts �d,d½ � in fixed steps of Δd pixels (say, 1 pixel). Specifically, we use the following shift
candidates for the optimization in step 4:

Δξ ∈ �dþ kΔd jk= 0,…,⌊2d=Δd⌋f g:
Then, for each Q∈ S, we compute the angles αi and βi (see Appendix A) and evaluate (26) for the pair
Q,Δξð Þ by replacing the integral with a sum. If we store the polar Fourier transforms of all involved
projection images P and P að Þ

1 ,…,P að Þ
N (computed using the non-equally spaced FFT(17,18)), each such

evaluation amounts to accessing the rays in the polar Fourier transform corresponding to the angles αi and
βi , namely O nð Þ operations. Thus, the total number of operations required to implement step 4 of
Algorithm 2 is ∣S∣� ⌊2d=Δd⌋þ1ð Þ�n (∣S∣ is the number of elements in the set S). Of course, all ∣S∣�
⌊2d=Δd⌋þ1ð Þevaluations are independent and can be computed in parallel. Thus, the total complexity of
Algorithm 2 isO n3lognð Þoperations for step 2 andO nð Þoperations for testing each pair Q,Δξð Þ in step 4.
Therefore, since the optimization in step 4 is very fast, it is practical to test even a very large set of
candidate rotations S.

Finally, we note that in practice, to further speed up the algorithm, we first downsample the input
volumes to size nds, align the two downsampled volumes, and apply the estimated alignment parameters
to the original volumes. We demonstrate in Section 8 that this approach still results in a highly accurate
alignment.

To understand the theoretical advantage of the above approach, we compare it to a brute force
approach. In the brute force approach, we 1) scan over a large set of rotations and three-dimensional
translations, 2) for each pair of a rotation and a translation, we transform one of the volumes according to
this pair of parameters, and 3) choose the pair for which the correlation between the volumes after the
transformation is maximal. Testing each pair of candidate parameters requires O n3ð Þ operations (for
rotating and translating one of the volumes, and for computing correlation), which amounts to a total of

O n3�jSj� 2d=Δdð Þ3
� �

operations. In other words, testing each candidate rotation and translation is way

more expensive than in our proposed method. In our approach, the expensive operation of complexity
O n3lognð Þneeds to be executed only once per each pair of inputs Pand ϕ1.Moreover, in our approach, the
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search over shifts is one-dimensional as opposed to the three-dimensional search required in the brute
force approach.

7. Parameters’ Refinement

In this section, we describe an optional refinement procedure for improving the accuracy of the estimated
parameters Oest and test obtained using the algorithm of Section 4.

We define the vector Θ= ψ,ϑ,φ,Δx,Δy,Δz

� �
consisting of the six parameters required to describe the

transformation between two volumes—three Euler angles (ψ,ϑ,φ) describing their relative rotation and
three parameters Δx,Δy,Δzð Þ describing their relative translation. We define the operator TΘ ϕð Þ, which
applies the transformation parameters Θ to the volume ϕ (i.e., TΘ first rotates the volume and then
translates it, according to the parameters in Θ). Next, for given volumes ϕ1 and ϕ2 , we denote their
correlation by ρ ϕ1,ϕ2ð Þ. We are reusing the notation ρ from Section 5, since all occurrences of ρ in this
paper correspond to a correlation coefficient whose evaluation formula is clear from its arguments.
Finally, we define the objective function

c θð Þ= 1�ρ TΘ ϕ1ð Þ,ϕ2ð Þ, (28)

which vanishes for the parameters Θ that align ϕ1 with ϕ2.
To refine Oest and test of Section 4, we simply apply the BFGS algorithm(19) to the objective function

(28), with an initialization given by Oest and test.

8. Results

The alignment algorithm (with and without the optional refinement described in Section 7) was
implemented in Python and is available online1, including the code that generates the figures of this
section. A Matlab version of the algorithm is available as part of the ASPIRE software package(20).

As the algorithm uses two parameters—the downsampling nds (see Section 6) and the number of
reference projectionsN (see Section 4)—we first examine how to appropriately set their values. Then, we
examine the advantage of the refinement procedure proposed in Section 7. To show the benefits of our
algorithm in practice, we then compare its performance to that of two other alignment algorithms—the
alignment algorithm from the EMAN2 software package(10) (implemented in the program e2proc3d)
and the FRM algorithm implemented in the Xmipp software package(6). Finally, we examine the
performance of the three algorithms using noisy input volumes.

We tested our algorithm on volumes from the electron microscopy data bank (EMDB)(21) with
different types of symmetries, whose properties are described in Table 1. All tests were executed on a
dual Intel Xeon E5-2683 CPU (32 cores in total), with 768 GB of RAM running Linux. The memory
required by the algorithm is of the order of the size of the input volumes. We used 15,236 candidate
rotations in Algorithm 2 (the size of the set S ), generated as described in Appendix B. This set of
candidates is roughly equally spaced in the set of rotations SO 3ð Þ. While it is difficult to characterize the
resolution of this set in terms of the resolution of each of the Euler angles, a rough calculation suggests that
the resolution in each of the Euler angles is smaller than 5 degrees. We do not use rotations generated by a
regular grid of Euler angles, as such a grid is less efficient than our grid, due to the nonuniform rotations
generated by a regular grid of Euler angles. For example, discretizing each of the Euler angles to 5 degrees
would result in 186,624 rotations, more than an order of magnitude larger than the number of rotations
we use.

For each test, we generate a pair of volumes ϕ1 and ϕ2 related by a rotation matrix O and a translation
vector t∈ℝ3. The translation is chosen at randomwith magnitude up to 10% of the size of the volume.We
denote the alignment parameters estimated by our algorithm byOest and test. We evaluate the accuracy of
our algorithm by calculating the difference between the rotationsOandOest. To that end, we first note that

1 https://github.com/ShkolniskyLab/emalign
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following (4), Oest is an estimate of gO for some arbitrary g∈G1, where G1 ⊆ SO 3ð Þ is the symmetry
group of ϕ1. In order to calculate the difference betweenOandOest, we have to find the symmetry element
g. In our tests, the symmetry group G1 is known (see Table 1), and so we find g by solving

argmin
g∈G1

Oest�gOk kF , (29)

followed by defining O0
est = gTOest . Next, the error in the estimated rotation O0

est is calculated using the
axis-angle representation of rotations as follows. The axis of the rotationO is defined to be the unit vector
v∈ℝ3 that satisfies Ov= v, that is, v is an eigenvector of O corresponding to eigenvalue 1. Similarly, we
define the unit vector v0 ∈ℝ3 to be the axis of the rotation O0

est. Then, we calculate the angle between the
axes of the rotations as

e1 = cos�1 vTv0
� �

: (30)

The angle of rotation of the matrix O around its axis v is given by θ1 = cos�1 u �Ouð Þ, where u∈ℝ3 is a
unit vector perpendicular to v. Similarly, we define θ2 to be the angle of rotation of the matrixO0

est around
its axis v0. The error in the rotation angle is then defined as

e2 = ∣θ1�θ2∣: (31)

We start by investigating the appropriate value for the downsampling parameter nds (see Section 6). To
that end, for each of the volumes in Table 1, we create its rotated and shifted copy and apply our algorithm
with the downsampling parameter equal to 16, 32, 64, and 128 (namely, we actually align downsampled
copies of the volumes and then apply the estimated parameters to the original volumes). The results are
shown in Figure 2. For each value of downsampling, we show a bar plot that summarizes the results for all
test volumes. Note that these results are without the refinement procedure of Section 7. To provide a more
detailed information on the chosen downsampling value, we show in Figure 3 only the results for
downsampling to sizes 64 and 128. Based on these results, we use a downsampling value of 64 in all
subsequent tests. In particular, this value of downsampling results in an accurate initialization of the
refinement procedure of Section 7, as shown in Figure 4. As of timing, we show in Figure 5 the timing,
without and with refinement, for downsampling to sizes 64 and 128.

Table 1. Test volumes.

EMDID Sym Size (n)

2660 C1 360
0667 C2 480
0731 C3 486
0882 C4 160

21376 C5 256
11516 C7 512
21143 C8 256
6458 C11 448

30913 D2 110
20016 D3 384
22462 D4 320
9233 D7 400
21140 D11 324
4179 T 200

24494 I 432

Note. Each volume is a three-dimensional array of size n�n�n, with n specified on the third column. The symmetry of each volume is given by the
second column.
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Next, we wish to determine the number of reference projectionsN to use in Algorithms 1 and 2.We set
the downsampling parameter to 64 and measure the estimation error for different numbers of reference
projections. The results are summarized in Figure 6. We also show the timing for different numbers of
reference projections, without and with refinement, in Figure 7. Based on these results, we choose the
number of reference projections to be 30, as a good compromise between accuracy and speed.

Figure 2.Downsampling parameter versus accuracy of the algorithm. The left figure corresponds to the
error e1 in the rotation axis (see (30)). The right figure corresponds to the error e2 in the rotation angle

(see (31)).

Figure 3. Downsampling parameter versus accuracy of the algorithm, focused on 64 and 128. See
Figure 2 for more details.
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Next, we compare the performance of our algorithm with that of EMAN2’s and Xmipp’s alignment
algorithms. The accuracy and timing results are summarized in Tables 2 and 3, respectively. Finally, we
demonstrate the performance of the different algorithms for noisy input volumes. To that end, we use as a
reference volume EMD 2660(22) from EMDB (of size 360�360�360 voxels) and create its rotated and
translated copy. We add to the reference volume and its rotate/translated copy additive Gaussian noise
with SNR (signal-to-noise ratio) ranging from 1 to 1/256. A central slice from the noisy reference volume

Figure 4. Error without (left figure) and with (right figure) refinement for downsampling to size 64�
64�64. The error reported in the figure is either e1 (30) or e2 (31), as shown in the x-axis.

Figure 5. Timing of the alignment algorithm with downsampling to sizes 64 and 128. NR stands for
“without refinement”; R stands for “with refinement.”
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at different levels of SNR is shown in Figure 8. The accuracy results of all algorithms for the various SNRs
are shown in Table 4. The timings of the different algorithms are shown in Table 5.

9. Discussion and Conclusions

In this paper, we proposed a fully automatic method for aligning three-dimensional volumes with respect
to rotation, translation, and reflection. While the parameters of the algorithm can be tuned whenever

Figure 6. Error versus the number of reference projections N. The left and right figures show the error
without and with the refinement procedure of Section 7, respectively. The error reported in this figure is

the sum e1þe2 given in (30) and (31).

Figure 7. Time versus the number of reference projections.
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needed, we showed that the default parameters work very well for a wide range of volumes of various
symmetries.We also developed an auxiliary algorithm, which finds the orientation of a volume giving rise
to a given projection image (Section 5). This algorithm may serve as a fast and highly accurate substitute
to projection matching.

Table 2. Accuracy comparison with EMAN2 and Xmipp.

Sym EMDID EMalign(NR) EMalign(R) EMAN Xmipp

C1 2660 2.802 0.094 0.094 5.557
C2 667 3.747 0.223 0.121 7.181
C3 731 8.664 5.131 0.135 48.058
C4 882 1.952 0.041 0.408 0.317
C5 21376 2.949 0.358 0.507 15.445
C7 11516 3.961 0.397 0.153 5.745
C8 21143 1.502 0.536 0.455 2.778
C11 6458 2.825 0.116 0.046 0.314
D2 30913 6.273 0.035 0.425 0.141
D3 20016 3.499 0.075 0.033 1.564
D4 22462 6.016 0.126 0.095 0.251
D7 9233 4.034 0.063 0.029 5.866
D11 21140 3.183 0.042 0.247 0.127
T 4179 1.324 0.556 0.348 6.246
I 24494 3.268 0.030 0.114 0.028

Mean 3.733 0.522 0.214 6.641
Std 1.945 1.288 0.168 12.206

Note.The errors reported in this table are the sum e1þ e2 given in (30) and (31). Errors are given in degrees. For EMalign, (NR) corresponds to “without
refinement” and (R) to “with refinement.” The two bottom rows show the mean and standard deviation of the error (in degrees) over all experiments.

Table 3. Timing comparison with EMAN2 and Xmipp (in seconds).

Sym EMDID size EMalign(NR) EMalign(R) EMAN Xmipp

C1 2660 360 49 130 172 2106
C2 667 480 80 235 354 5812
C3 731 486 85 173 351 5582
C4 882 160 18 55 66 91
C5 21376 256 24 58 155 529
C7 11516 512 78 216 425 6854
C8 21143 256 33 55 120 698
C11 6458 448 54 151 276 3854
D2 30913 110 16 34 55 37
D3 20016 384 41 105 197 2214
D4 22462 320 29 87 201 1095
D7 9233 400 40 124 171 2970
D11 21140 324 35 79 197 1175
T 4179 200 21 59 80 246
I 24494 432 54 158 281 3313

Note. For EMalign, (NR) corresponds to “without refinement” and (R) to “with refinement”. The column “size” is the side length of the input volumes.
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Figure 8. Central slice of the noisy reference volume at different SNRs.

Table 4. Accuracy comparison for noisy input volumes at different SNRs.

SNR EMalign(NR) EMalign(R) EMAN Xmipp

Clean 4.066 0.143 0.072 0.968
1 3.715 0.145 0.072 0.898
1/2 1.827 0.150 0.072 0.851
1/8 5.733 0.291 0.072 0.728
1/32 5.014 3.318 0.095 0.811
1/64 4.283 0.598 0.105 1.124
1/128 2.727 0.691 0.202 1.177
1/256 4.449 25.089 0.124 1.598
1/512 92.569 97.549 0.288 1.662

Note. See Table 2 for more details.

Table 5. Timing comparison for noisy input volumes at different SNRs.

SNR EMalign(NR) EMalign(R) EMAN Xmipp

Clean 33 102 181 2097
1 35 122 176 2091
1/2 39 97 175 2177
1/8 33 105 170 2121
1/32 33 100 155 1991
1/64 38 97 157 2125
1/128 39 113 179 2297
1/256 36 101 163 2092
1/512 39 92 167 2365

Note. All timings are given in seconds.
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The core difference between our approach and other existing approaches is that our approach is based
on common lines between projection images generated from the volumes. The advantage of this approach
is that inspecting each candidate rotation is very fast, as it is based on one-dimensional operations on the
common lines (O nð Þoperations for volumes of size n�n�n). We also note that our cost function (26) for
identifying the optimal alignment is different than in other algorithms. While the typical cost function
used by alignment algorithms is the correlation between the volumes, our cost function is the average
correlation of the common lines between projection images of the volumes. These two cost functions are
not equivalent, and while in our experiments we have not identified a scenario where one cost function is
superior over the other, having tools that are based on different principles may prove beneficial in the
future.

From the comparison of our algorithm with the alignment algorithms in EMAN2 and Xmipp, we
conclude that our algorithm can be used in one of two modes. If we are interested in fast alignment with
good accuracy (average error of 1.9 degrees of the rotation axis, and average error of 1.86 degrees of the
in-plane rotation angle, with standard deviations of 1.25 degrees and 1.3 degrees, respectively), we can
use our algorithm without the refinement procedure of Section 7. This is appropriate, for example, for
visualization, as such an initial alignment is sufficient as an input for high resolution optimization-based
alignment algorithms, such as the one in Chimera(3). In such a case, our algorithm is more than 3 times
faster than EMAN2’s algorithm (even though our algorithm is implemented entirely in Python), and
almost 40 times faster than Xmipp’s algorithm. If we are interested in very low alignment errors, the
refinement procedure of Section 7 brings the average errors down to 0.25 degrees for the rotation axis and
0.28 degrees for the in-plane rotation angle (with standard deviations of 0.66 degrees and 0.63 degrees,
respectively). In such a case, our algorithm is 80% faster than EMAN2’s and 15 times faster thanXmipp’s.

As of noise robustness, we see from Table 4 that our algorithm performs well down to SNR = 1/128.
The algorithms in EMAN2 and Xmipp give very accurate results at even lower SNRs, but at the cost of a
much higher running time. As a future research direction, there are several ways to improve the robustness
of our algorithm to noise. First, as our algorithm is based on generating projection images of the volumes,
it is possible to apply image denoisingmethods to the projection images. Then, it is possible to incorporate
denoising into the common lines matching step (step 4 in Algorithm 2), for example, by denoising the
common lines as one-dimensional signals or by incorporating frequency-dependent weights into (26).
This is expected to significantly improve the robustness of our algorithm to noise while increasing its
running time only slightly.
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A. Appendix. Common lines
In this section, we review the Fourier projection slice theorem and its induced common line property. Given a volume ϕ and a
rotation matrix R, the projection image of ϕcorresponding to orientation R is given by (5). We identify R 3ð Þ (the third column of

R) as the viewing direction of ϕ (see(23)). The first two columns R 1ð Þ and R 2ð Þ of R form an orthonormal basis for a plane in ℝ3

which is perpendicular to the viewing direction R 3ð Þ . Therefore, if Ri and Rj are two rotations with the same viewing
direction (R 3ð Þ

i =R 3ð Þ
j ), then the two projection images Pi and Pj generated according to (5) look the same up to some in-plane

rotation.

The Fourier projection slice theorem relates the two-dimensional Fourier transform of a projection image P to the three-
dimensional Fourier transform of ϕ. Let

bP ωx,ωy

� �
=
ðð

ℝ2
P x,yð Þe�i xωxþyωyð Þdxdy

be the two-dimensional Fourier transform of P x,yð Þ, and let

bϕ ωx,ωy,ωz

� �
=∭ ℝ3ϕ x,y,zð Þe�i xωxþyωyþzωzð Þdxdydz

be the three-dimensional Fourier transform of ϕ x,y,zð Þ. The Fourier projection slice theorem(16) states that

bP ωx,ωy

� �
=bϕ ωxR

1ð Þ þωyR
2ð Þ

� �
, (A.1)

where P is defined in (5). (Equation A.1) states that the two-dimensional Fourier transform of each projection image P is equal to a
planar slice of the three-dimensional Fourier transform of ϕ.Moreover, it states that this planar slice is the planeωxR 1ð Þ þωyR 2ð Þ. The
Fourier projection slice theorem (A.1) holds, up to discretization errors, also for discrete volumes and their sampled projection
images.

From (A.1), we get that any two Fourier transformed projection images bPi and bPj with different viewing directions (R
3ð Þ
i 6¼R 3ð Þ

j Þ
are equal to two different planar slices from bϕ . Since there exists a line that is common to both planar slices, the two Fourier
transformed images share a common line. We refer to that line as the common line between Pi and Pj. We denote the angle that this
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line makes with the local x-axis of the (Fourier transformed) images bPi and bPj by αij and αji , respectively. Mathematically, the
common line property is expressed as(16)

bPi ξ cosαij,ξ sinαij
� �

= bPj ξ cosαji ,ξ sinαji
� �

, ξ ∈ℝ,
implying that the samples of the Fourier transformed images along the common line are equal.

To find an expression for the angles αij and αji, we consider the unit vector

qij =
R 3ð Þ
i �R 3ð Þ

j

kR 3ð Þ
i �R 3ð Þ

j k
,

where � is the cross product between vectors. Define the unit vectors

cij = cosαij, sinαij,0
� �T

, cji = cosαji, sinαji,0
� �T

:

It can be shown(16) that these vectors satisfy the equation

Ricij = qij =Rjcji,

which implies that cij and cji can be computed as

cij =RT
i qij, cji =RT

i qij ,

from which αij and αji can be easily extracted.

B. Appendix. Constructing the set S
We generate the set of candidate rotations S by using the Euler angles representation for rotations. Let Lbe a positive integer, and let
τ,θ,φ be Euler angles. We construct S by sampling the Euler angles in equally spaced increments as follows. First, we sample
τ ∈ 0,…, π2

� �
at ⌊L4⌋ points. Then, for each τ, we sample θ∈ 0,…,πf g at ⌊L2 sin τð Þ⌋ points. Finally, for each pair τ,θð Þ, we sample

φ∈ 0,…,2πf g at ⌊L2 sin τð Þsin θð Þ⌋ points. For each τ,θ,φð Þ on this grid, we compute a corresponding rotation matrix R by

R=Rz τð ÞRy θð ÞRx φð Þ,
where

Rz τð Þ=
cosτ �sinτ 0

sinτ cosτ 0

0 0 1

0
BB@

1
CCA,

Ry θð Þ=
cosθ 0 sinθ

0 1 0

�sinθ 0 cosθ

0
BB@

1
CCA,

Rx φð Þ=
1 0 0

0 cosφ �sinφ

0 sinφ cosφ

0
BB@

1
CCA:

C. Appendix. Translation estimation
For completeness, we review thewell-known phase correlation procedure for translation estimation(9). Consider two volumes ϕ1 and
ϕ2 shifted relative to one another, that is,

ϕ2 rð Þ= ϕ1 r� tð Þ, r= x,y,zð ÞT ∈ℝ3, (C.2)
where t= Δx,Δy,Δz

� �T ∈ℝ3. Our goal is to estimate t.

First, by the Fourier shift property, the Fourier transforms of ϕ1 and ϕ2 satisfy

bϕ2 ωx,ωy,ωz

� �
=bϕ1 ωx,ωy,ωz

� �
e�i ωxΔxþωyΔyþωzΔzð Þ: (C.3)

From (C.3), we get(24)

bρ ωx,ωy,ωz

� �
=

bϕ1bϕ2∗
∣bϕ1bϕ2∗∣ =

bϕ1bϕ∗1ei ωxΔxþωyΔyþωzΔzð Þ
∣bϕ1bϕ∗1∣

= ei ωxΔxþωyΔyþωzΔzð Þ,
(C.4)

since ∣ei ωxΔxþωyΔyþωzΔzð Þ∣= 1. Then, since the inverse Fourier transform of a complex exponential is a Dirac delta, we have
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ρ x,y,zð Þ= δ xþΔx,yþΔy,zþΔz

� �
: (C.5)

Therefore, t= Δx,Δy,Δz

� �T
is given by

ðΔx,Δy,ΔzÞ= � argmax
ðx,y,zÞ

 ρðx,y,zÞ: (C.6)

While this appendix is formulated in the continuous domain, the same holds if we replace ϕ1 and ϕ2 by their discrete versions
sampled on a regular grid and replace the Fourier transform by the discrete Fourier transform.
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