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SOME FINITENESS CONDITIONS FOR 
ORTHOMODULAR LATTICES 

GUNTER BRUNS AND RICHARD GREECHIE 

Throughout this paper L will be an orthomodular lattice and 31 (L) the 
set of all maximal Boolean subalgebras, also called blocks [4], of L. For 
every x £ L, C(x) will be the set of all elements of L which commute with 
x. Let n ^ 1 be a natural number. In this paper we consider the following 
conditions for L: 

An: L has at most n blocks, 
Bn: there exists a covering of L by at most n blocks, 
Cn: the set {C(x)| x (z L) has at most n elements, 
Dn: out of any n + 1 elements of L at least two commute. 

We also consider quantified versions of these statements, namely the 
statements A, B, C, D defined by: A <=^JnAnjB <=>3 nBni C <=$3nCn and 
D ^ 3 nDn. Thus A is the statement that L has only finitely many blocks, 
B is the statement that L can be covered by finitely many blocks etc. 

It is our conjecture that the conditions A, B, C, D are pairwise equiva­
lent but we have not been able to prove this completely. We have, indeed, 
the stronger conjecture that they imply each other "uniformly" in the 
following sense: If X and Y stand for two of A, B, C, D then for every 
natural number n there exists a natural number m such that every L 
satisfying Xn also satisfies Ym. We prove in this paper that the conditions 
A and C and the conditions B and D are uniformly equivalent in this 
sense. Since An trivially implies Bn the only question left open is whether 
B implies A, uniformly or not. The only things we have been able to prove 
regarding this question are the implications Bx => Ah B2 ==» A^Bz => A±, 
BA=^Ab. 

For general background information regarding orthomodular lattices 
the reader is referred to [3] and [5]. Throughout the paper we abbreviate 
4'orthomodular lattice" as OML. 

1. The equivalence of A and C. If a is an element of L then it is 
well known (and easy to prove) that the blocks of the subalgebra C(a) 
3,re exactly those blocks of L which contain a. It follows from this that 
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536 G. BRUNS AND R. GREECHIE 

whenever an O M L L satisfies An it also satisfies Cm with m = 2n — 1. 
This value of m is the smallest possible for n = 1,2. Bu t it follows easily 
from Section 6 of [2] t h a t Az implies C6. T h u s for n = 3 the value m = 
2n — 1 is not the best possible. We suspect t h a t for higher values of n the 
bound can be improved considerably, bu t we have not been able to prove 
this. 

T o prove the converse we define for a subset M of L as usual C(M) to be 
the set of all elements of L which commute with every element of M. 
We furthermore define 

<r(L) = {C(F) | 0 ^ F C L , F finite}. 

As a first step we show: 

PROPOSITION 1.1. If |<x(L)| ^ n then L satisfies Am with m = (n — 1) !. 

Proof. We prove the cases n = 1, 2 first and the rest by induction. 
If |o-(L)| = 1 then C(x) = C(0) = L holds for every element x of L, 
hence every element of L is central , i.e., L is Boolean and satisfies A±. 
If L has a t least two blocks B\ and B2 and if a £ i?i — ^ 2 , b ^ B2 — B\ 
then the sets C(a) , C(b) and C(0) are all different, i.e., |o-(L)| ^ 3. I t 
follows t ha t |<x(L)| = 2 is impossible, which trivially proves the claim 
for n = 2. Assume now n ^ 3 and | c ( L ) | ^ w. Let au a2, . . . , ak be 
non-central elements such t h a t C(at) 9e C(a,j) if i 9^ j and such t h a t for 
every non-central element x of L, C(x) equals one of the C(a f ) . Note t h a t 
C{a,i) 9^ C(0) (i == 1, 2, . . . , jfe) and hence tha t Jfe ^ n - 1 holds. W e 
show t h a t for each of the subalgebras C(ai), <r(C(ai)) is a proper subset 
of (T(L). I t clearly is a subset. But since L = C(0) € o - ( L ) a n d L 2 o-(C(ai)) 
it is a proper subset. By inductive hypothesis C{at) has a t most (n — 2) ! 
blocks. Now let J3 be an arb i t rary block of L. Since we may assume tha t 
L is not Boolean the block B contains a non-central element x and hence 
is a block of one of the C(at). I t follows t ha t L has a t most (n — 1)! 
blocks. 

If L satisfies Cn then clearly \<J(L)\ ^ 2n — 1. From the proposition 
and the considerations above we thus obtain: 

T H E O R E M 1. An implies Cm with m = 2n — 1 and Cn implies Am with 
m = (2n — 2) !. In particular the conditions A and C are uniformly equi­
valent. 

The question which is the smallest possible value of m in the implica­
tion is again open. 

Since An trivially implies Bn we obtain from Theorem 1 in part icular 
t ha t Cn implies Bm with m = (2n — 2) !. T h e following proof, however, 
gives a much bet ter bound. 

PROPOSITION 1.2. d implies Bi and Cn implies Bn_x but not Bn-2 if 
n ^ 2. 
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Proof. C\ implies A\ and hence B\ by Theorem 1. Assume now that L 
satisfies Cn with n ^ 2. Define an equivalence relation ~ in L by 

X ~ y <=* C(x) = C(^). 

Since there are at most n sets C(x) there are at most n equivalence 
classes. But x ~ y implies that x £ C(x) = C(y), hence that x commutes 
with y. It follows that every equivalence class is contained in a block and 
hence that L can be covered by n blocks. But x ~ 0 is equivalent with 
x being central. Thus the equivalence class of 0 is contained in every 
block. Since we may assume that there are at least two equivalence 
classes it follows that L can be covered by n — 1 blocks. To see that this 
bound is best possible consider the OML consisting of 2n — 2 pairwise 
incomparable elements and the bounds. It satisfies Cn but not Bn-i. 

2. The equivalence of B and D. Clearly Bn implies Dn. To show that 
conversely D uniformly implies B we start out with a lemma which will 
turn out to be useful not only in the present context. In the proof of the 
following lemma and later on in this paper we will make use of the 
Boolean ring sum a + b = (a A V) V (a' A b). This operation is, of 
course, not associative in an arbitrary orthomodular lattice. Whenever 
we use the associative law in the following we do so because the computa­
tions take place in a Boolean subalgebra of L. 

LEMMA 2.1. If L satisfies Dn and if a±, a2, . . . , an are pairwise not 
commuting elements of L then 

C(au a2j . . . , an) = C{L). 

Proof. Clearly C(L) C C(ai, a2, . . . , an). To show the inverse inclusion 
assume x € C(ai, a2, . . . , an). Note first that, for distinct indices i and j , 
a{ + x commutes with neither a,- nor a5 + x. In fact the relation at + 
xCaj would imply 

ai=(ai + x)+xC ajt 

a contradiction. Similarly at + x C a3• + x would imply 

at + x C(a3- + x) + x = ah 

which we have seen not to be the case. To show x Ç C(L) let y be an 
arbitrary element of L. We have to show that x Cy. Consider now the set 
Z = {zi, z2, . . . , zn+i\ defined by 

i at + x if i S n and at C y 
at if i ^ n and ax (fay 
y if i = n + 1. 

Since L satisfies Dn at least two elements in Z commute. By what we have 
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shown it follows that there exists an index i with at C y and at + x C y. 
It follows 

x = at + (at + x) Cy, 

which was to be proved. 

PROPOSITION 2.2. Dn implies Bn if 1 S n S 3. 

Proof. Di trivially implies that L is Boolean and hence satisfies B\. 
Assume now that L satisfies D2 and let au a2 be non-commuting 

elements of L. Define 

At = {x e L\ xCdj} for {i,j} = {l ,2}. 

Clearly A i and A 2 consist of pairwise commuting elements and hence the 
the subalgebras TA < generated by them are Boolean. To show the claim 
it is obviously enough to show that every x Ç L belongs to one of the TA t. 
This is trivially true if x commutes with exactly one of the at. Since L 
satisfies D2 the only other possibility is that x commutes with both ax and 
a2. But in this case a,\ + x C a2 would imply 

a\ — (&i + x) + x C a2, 

a contradiction. We thus obtain 

a,\ + x Ç A\ and x = a,\ + (ai + x) £ IMi, 

proving the claim for n = 2. 
To prove the claim for n = 3 is considerably more complicated. We 

again start out with three pairwise not commuting elements ai, a2, a3 

and define 

4̂ i = {x 6 L| x <£ a^ for all j 9^ i\. 

As before, the sets A < consist of pairwise commuting elements and hence 
the subalgebras TAt generated by them are Boolean. We show first: 

(1) C(ai, a2, a8) Ç I\4i H I\42 H IM3. 

By symmetry it is enough to show that C(ai, a2, #3) £ IMi. But, as 
before, if x £ C(ai, a2, a3) we have ai + x 6 ^4i hence and x = a\ + 

(a! + x) e r^i. 
To show the claim it is obviously enough to show that every x £ L 

belongs to at least one of the TA t. This is trivially true if x commutes 
with exactly one of the a? and is true by (1) if it commutes with all the at. 
By symmetry it is thus enough to show that 

(2) C(aua2) C TAXKJ TA2. 

Assume x £ C(au a2). We have to show that x Ç I\4i \J TA2. Since by 
an earlier argument a\ + x (fc a2 and a2 + x 0>ai the claim follows easily 
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if a,\ + x <f a3 or a2 + x (f. a3. We may thus assume without loss of 
generality that 

Uax V x) A (a/ V x') Ca 3 

(3) ) (ax V x') A (ai; V x) C a3 

} (a2 V x) A (a/ V x') C a3 

( > 2 V x') A (a/ V x) Ca 3 

From (3) and the orthomodular law we obtain: 

(ai V x C f l 3 « û / V x' C a3 

(4) / a i V x' C a3 <=> a / V x C az 

\d2 V x C f l 3 ^ f l 2 ; V x' C a3 

\a2 V x ' C f l j ^ f t / V x C a3 

Assume now first that at least one of ax V x C a3 or a,\ V x' C a3 and at 
least one of a2 V x C a3 or a2 V x' C a3 hold. We assume that 

ai V x C a3 and a2 V x C a3. 

The remaining cases follow similarly. By (4) we have 

(ai A a2) V x C a3 and (a/ A a / ) V x' C a3. 

Since (ai A a2) V x and (a/ A a2) V x' clearly commute with d\ and a2 

we obtain from (1) that {a,\ A a2) V x and (a/ A a2') V xf belong to 
YAX. It follows that 

a / A x = a / A ((ai A a2) V x) G I\4i and 

fli A x' = fli A ( (a / A a / ) V x') £ IMi, 

hence that 

a\ + x = (ai A x') V (a' A x) G IMi and 

x = ai + (ai + x) G r^4i. 

We may thus assume by symmetry that none of the elements d\ V x, 
fli V x', a / V x, a / V x' commutes with a3. If d\ V x 0 a2 we also have 
a / V x f ! a2 since a / V x C a2 would imply 

a,\ A x' = x' A (a/ V x) C a2 

and hence ai V x C a2. It follows that d\ V x, a / V x Ç ^4i and hence that 

x = (ai V x) A (a/ V x) G I M L 

We are thus left with the case that A i V x C a2. Since 

ai = (#i V x) A (di V x') £ a2 

we then have dx V x' <£ d2 and, as before, a / V x' <f. a2. It follows that 
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ax V x', ai V x' Ç ^ i and that 

x = ((ai V s') A (a/ V x')) ' € IM1? 

completing the proof. 

We suspect that Proposition 2.2 is true without any restriction on the 
number n, but we have not been able to prove this. We establish the 
uniform equivalence of B and D by proving: 

THEOREM 2. Bn implies Dn and Dn implies Bm with m = \n\ for n ^ 3. 
In particular the conditions B and D are uniformly equivalent. 

Proof. The first claim is obvious and has already been mentioned. We 
prove the second claim by induction on n. For n = 3 the claim is con­
tained in Proposition 2.2. Assume that n ^ 4 and that L satisfies Dn but 
does not satisfy Dw-i. Let ai} a2l . . . , an be pairwise non-commuting 
elements of L. We claim that each of the subalgebras C(at) satisfies Dn-\. 
If this was not the case there would exist n pairwise non-commuting 
elements Xi, x2, . . . , xn in C(at). By Lemma 2.1 it would follow that 

at 6 C(xi, x2} . . . , xn) = C(L), 

which is impossible since any two of the a{ do not commute. It follows 
by inductive hypothesis that each of the subalgebras C(a^) can be covered 
by at most \(n — 1) ! blocks. Since L = U^=i C(ai) it follows that L can 
be covered by at most \n\ blocks, completing the proof. 

It is clear that the inductive argument used in the proof of Theorem 2 
yields the bound m = n ! without the elaborate considerations in the proof 
of Proposition 2.2. But since we feel that the suspected bound m — n 
might be obtainable by a refinement of the arguments used in the proof 
of Proposition 2.2 (which we could not find) we felt justified in giving 
this proof. 

3. The implications of B, preliminaries. As we have mentioned 
before, we have not been able to settle the question whether B implies A, 
uniformly or not. We develop in this section some preliminary material 
which will be helpful in the next section to prove the known implications 
o(Bn. 

PROPOSITION 3.1. If Bu B2, . . . , Bn are Boolean subalgebras of an OML 
L,ifL = B i U J52U . ..\JBnandifa Ç (B1C\B2^. . . H Bn^) - Bn 

then C(a) = B\ \J B2 \J . . . \J 5n_i, and in particular B\\J B2\J . . . 
U 5n_i is a sub algebra of L. 

Proof. Clearly Bi U B2 U . . . U Bn^x C C{a). To show the converse 
suppose that there is an element x G C(a), x G Bn — (B± \J B2^J . . . 
VJ Bn-i). Then a + x Ç Bt for some i ^ n — 1 would imply x = a + 
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(a + x) £ Bu and a + x £ Bn would imply a = (a + x) + x G i ^ both 
contradictions. It follows that no such element x exists and hence that 
C(a) C £ j W J52 U . . . W 5n_i, completing the proof. 

In Section 2 of [1] it was shown that if there exists a finite subset F of 
L such that C(F) = C(L) then L is the direct product of a Boolean 
algebra and an OML without non-trivial Boolean factors. Since Bn trivial­
ly implies Dni Lemma 2.1 gives: 

PROPOSITION 3.2. Every OML satisfying B is the direct product of a 
Boolean algebra and aw OML without non-trivial Boolean factor. 

It is well known that a Boolean algebra is never the union of two proper 
subalgebras. We need here some results about the way a Boolean algebra 
can be represented as the union of three or four subalgebras. We say that 
a Boolean algebra B is the irredundant union of n subalgebras Bi, B2l . . . , 
Bn if and only it if is the union of all the Bt but is not the union of n — 1 
of them. The following proposition is probably well known. 

PROPOSITION 3.3. If a Boolean algebra B is the irredundant union of three 
subalgebras B1} B2, Bz and if Bi C\ B2 H B% = {0, 1} then B is an eight-
element Boolean algebra and each Bi is a four-element Boolean algebra. 

Proof. Let {i,j, k) = {1, 2, 3}. Since Bt C\ Bj £ Bk would by Proposi­
tion 3.1 imply that B = Bj\J Bj, which is impossible, the assumptions of 
3.3 imply that 

BXC\B2 = BXC\BZ = B2C\BZ = {o, 1} 

and hence that 

B = (Bx- (B2 U Bz)) U {B2 - ( 5 ! U Bz)) 
U (Bz- ( 3 i U B 2 ) ) U { 0 , l } . 

Pick xt G Bf — (Bj KJ Bk). Then xi + x2 G B1 would imply 

x2 = xi + (xi + x2) G Bu 

a contradiction. We thus have xi + x2 d B\ and, by symmetry, also 
Xi + x2 d B2. It follows that Xi + x2 G Bz and hence that x\ + x2 + Xz G 
J33. By symmetry we obtain 

xi + x2 + xz G Bi n £2 n 3 3 = {0, 1}, 
which shows that for each of the x t there are at most two choices and 
hence proves the proposition. 

Assume now for the remainder of this section that a Boolean algebra B 
is the irredundant union of four subalgebras B\, B2y Bz, B^ and that 
Bi C\ B2 P\ Bz H BA = {0, 1}. We say that the decomposition of B as 
the union is of 
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first kind if and only if there exists a three-element subset / of {1, 2, 3, 4} 
such that S , H B , ^ {0, 1} iiij Ç I and Bt C\ Bj = {0, 1} if \i,j} £ I 
and i 7e j , 

second kind if and only if exactly one of the intersections Bt P\ Bj is 
different from {0, 1}. 

To simplify notation let us introduce some abbreviations. We define 

Br = B , - {Bi\JBkKJBl) and 

Btr= (B^Bj)- (BK\JBl) whenever {i,j,k9l} = {1,2,3,4}. 

PROPOSITION 3.4. Under the assumptions described the decomposition of B 
is either of first or of second kind. In both cases B has 24 elements. In the first 
case each of the sets Br (1 ^ i ^ 4), Bi3~ (i,j £ I,i ?* j) has two elements. 
In the second case, if Bt P\ Bj 9e {0, 1} and k, I are the remaining indices, 
then each of the sets Btj~, Br, Br has two elements and each of the sets 
Br, Br has four elements. 

Proof. Since every finitely generated Boolean algebra is finite, it is 
enough to prove the proposition under the assumption that B is finite. 
A simple counting argument then shows that not all the intersections 
Bt C\ Bj can be equal {0, 1}. It follows from Proposition 3.1 that the 
intersection of any three of the Bt equals {0, 1} and in particular that 
Bi C\ Bj = {0, 1} is equivalent with Btj~ — 0- Assume now first that 
exactly one of the intersections Bt C\ Bj is different from {0, 1}, say that 
B1nB2?£ {0, 1} and 5 , H 5 , = {0, 1} whenever {i,j} 9* {1, 2}, i ^ j . 
Pick x G Bir, Xi G Bt~- Then, as in the proof of Proposition 3.3, 

x + *3 + *4 G B^r\BA = {0,1}. 

It follows that for each of x, X3, x± there are exactly two choices and hence 
that 

\Bn~\ = \Br\ = \Br\ = 2. 

Also, again by the same argument, 

X! + x2 = (S8 U BA) - OBi U B2). 

It follows that Br and Br have at most four elements each. A simple 
counting argument shows that they have exactly four elements, i.e., that 
B has 24 elements and the decomposition is of second kind. 

Note next that if Btr\ Bj 9e {0, 1} and if k, I are the remaining indices, 
then Blr\Bl = {0, 1}. This follows from the fact that Bi C\Bj9* {0, 1} 
9e- Bk C\ Bi would imply the existence of elements x £ ^ i f , y G Bkl~. 
As in the proof of Proposition 3.1 it would follow that x + y does not 
belong to any of the Bt. Using this remark and what we have already 
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proved we may assume by symmetry that 

B1r\B2 * {0, 1} 5* B1r\Bz. 

Pick x 6 Bi2~, %i G Bf. Then, as before, 

x + xz + x, € BZC\B, = {0, 1}. 

It follows that |^i2~| = |^3~| = !^4~i = 2 and, by symmetry, also that 
\BU~\ = \B2~\ = 2. But 

2 = 153-1 = \B*\ - \B, C\ Bz\ - \B2 H f t l + 2 

implies because \Bi C\ Bz\ < Bz and \B2 H Bz\ < \BZ\ that 

\B2 H 5a! = |JBI P I BZ\ = 4 and | 5 2 8 i = 2. 

This gives in particular that 

BlC\B,= {0,1}. 

But xx + x2 G (£3 U 54) - (5i U B2) implies as before that \Br\ S 4. 
A simple counting argument shows that |.Bi~| = 2, that B has 24 elements 
and that the decomposition is of first kind. This completes the proof. 

It would be interesting to know whether a similar result holds for 
decompositions by more than four subalgebras. 

4. The implications of B. The result of this section is: 

THEOREM 3. B\ implies A1} B2 implies A2j Bz implies A± and B4 implies 
A5 

The first of these implications is, of course, obvious. The second 
implication is a consequence of the fact, mentioned in the last section, 
that no Boolean algebra is the union of two proper subalgebras. 

Proof of Bz => 4̂ 4. By Proposition 3.2 we may assume that the OML L 
satisfying Bz has no non-trivial Boolean factor. Since, as is easily seen, 
the product of two OMLs with at least two blocks each can not be covered 
by three blocks, we may even assume that L is irreducible. Assume then 
that JBI, B2, BZ are three blocks covering L. Since L is irreducible we have 
Bi C\ B2 C\ Bz = {0, 1}. Assume now that A and B are further blocks of 
L. It follows from Proposition 3.3 that A and B are eight-element Boolean 
algebras. Clearly the atoms of A and B are also atoms of L since every 
element smaller than an atom of a block commutes with every element of 
that block. Let at be the atom of A belonging to A C\ Bt and bt be the 
atom of B belonging toB C\ Bt. Note that ait bi (? Bjiii ^ j . The element 
ai V b2 commutes with ai, a2l bu b2, hence belongs to A P\ B. Since 
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au b2 < d\ V b2 it follows that 

ai V 62 G {a/, a8', 1} H {&/, 68', 1} C j e / , 1). 

From this we obtain 

bi = &i A (ai V 62) = ^i A 61, 

hence, a,\ and 61 being atoms, that a,\ = bu By symmetry we obtain at = 
bilor all i and hence A — B, completing the proof. 

Proof of BA =» A 5. By the same argument as in the last proof we may 
assume that the OML L satisfying J34 has no non-trivial Boolean factor. 
Assume now that L was the direct product of two non-Boolean OMLs 
L\ and L2. If both of them have only two blocks then L has four blocks 
and there is nothing left to prove. Assume then that one of the factors, 
say L2, has at least three blocks. Since D2 => B2 => A 2 it would follow that 
there exist three non-commuting elements 61, bo, bz in L2. Since L\ is not 
Boolean it contains two non-commuting elements ai} a2. But then no two 
of the six elements (au bf) commute, contradicting the assumption that 
L satisfies BA. We may thus assume without loss of generality that L 
is irreducible. 

Let Bu B2, Bz, B4 be four blocks covering L. We then have by the 
irreducibility of L that Bi C\ B2 H Bz C\ BA = {0, 1}. Assume next that 
the union of three of the blocks is a subalgebra, say that IS 1VJ B2 ^J Bz is a 
subalgebra. Then, since no Boolean algebra is the union of two proper 
subalgebras, every further block of L would be contained in Bi^J B2^J 
Bz. Since we have already proved that Bz implies A±, there is at most one 
such block and we obtain that L satisfies A 5. We may thus also assume 
that the union of no three of the blocks B t is a subalgebra. By Proposition 
3.1 this implies in particular that 

(l) B,r\B2r\Bz = BAr\B2r\B, = Bxr\Bzr\B, = B2r\BzC\ BA 
= f o , i ) . 

Now let B be a further block. We say that B is 

of third kind if it is contained in the union of three of the Biy 

of first kind if it is not of third kind and the decomposition B — 
(B H Bi) \J (BH B2) \J (BC\ Bz) \J (B n BA) is of first kind, 

of second kind if it is not of third kind and the above decomposition is 
of second kind. 

It follows from Proposition 3.4 that every block B is of first or second 
or third kind. It furthermore follows that every block of first or second 
kind is a sixteen-element Boolean algebra and that every block of third 
kind is an eight-element Boolean algebra. We prove the claim now in 
several steps. 
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4.1. If B is of first kind, say B C\ BXC\ B2l B C\ BXC\ Bz and BC\B2r\ 
Bz are different from {0, 1} and B C\ Bx C\ BA = B Pi B2 C\ BA = B C\ 
B% C\ B* = {0, 1} then each of the unions B\J Bt (i = 1, 2, 3) is a sub-
algebra of L. 

To see this pick 

xte (B^BjC^B,) - (BiVJBt), {i,j,k\ = {1,2,3}, 

and 

y<e (BHBi) - (BjUBkUBl)} {i,j,k,l} = {1,2,3 ,4}. 

It then follows from Proposition 3.4 that the elements xuyu their ortho-
complements and 0, 1 form the whole Boolean algebra B. By symmetry 
and duality it is enough to show that x £ Bi — B and y 6 B — B\ imply 
x V y € B ; and, we may furthermore assume that y is one of the elements 
*it J2, y*> 3>4. But, as is easily seen, x V Xi commutes with xi, #2, *3, yi and 
x V 3>2 commutes with x2l Xz,3>i, y2. Since each of the subsets {xi, x2, #3, yi}, 
{x2, xz, yi, y2\ generates B we obtain that x V X\y x V y2 € £ . By sym­
metry we obtain x V 3̂3 £ 5 . Finally, 

x V y4 Cx2 , xz, yuy* 

which, by the same argument, gives x V y A G B} proving 4.1. 

4.2. Under the assumptions of 4.1, B U Bx U B2 U B$ is a subalgebra 
of L. 

We show first that x G Si - ( S U 5 2 U B8), y G 5 , - ( B U ftU £3) 
and x V y 6 B4 — (B\J BX\J B2\J Bz) is impossible. With xu yt having 
the same meaning as in the proof of 4.1 it would imply x3, y A C X V y and 
there would exist a block 4̂ containing x3, y4, x V y . Since #3 + ^4, #3, ^4, 
x V y are different elements and none is the complement of another, the 
block A would have sixteen elements and hence would not be of third 
kind. But since 

\{AC\B,) - (Bx\J B2\J Bz)\ ^ 4 and 

\(AnB1r\Bi) - (B3\J B*)\ ^ 2 

it can by Proposition 3.4 not be of first or second kind. The assumptions 
thus lead to a contradiction. By (4.1), symmetry and duality it is thus 
enough to show that x G Bx - (B U B2 U Bz) and y G (B2C\ Bz) imply 
x V y G B U Bi. But this is trivially so since y £ B2 P\ B3 implies 
y C #1, #2, x3, ^2, hence 3/ G B. The result thus follows from (4.1). 

4.3. If L has a block B of first kind then it has no further blocks. 
By symmetry we may assume that B satisfies the assumptions of 4.1. 

Since Br^Bir\Bj£Bk whenever {i,j, k} = {1, 2, 3} it follows from 4.2 
and Proposition 3.1 that the unions B U Bt U Bj are also subalgebras of 
L. Assume now that A is an arbitrary block different from the B{. Since 
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B U Bx \J B2 U 5 3 is a subalgebra and 

4 = ( i n ^ u ^ u ^ u Bt)) u (AC\ B,) 
it follows that i Ç 5 U ^ U 5 2 U f t . Since ^ U ^ U ^ i s a sub­
algebra it follows by the same argument that 

A QBKJ BXVJ B2. 

Repeating the same argument twice again we obtain A Ç B and hence 
A = B. 

4.4. L has at most one block of third kind. 
Assume first that there were blocks A, B of third kind, both contained 

in the union of the same three Bu say A, B Q B\ \J B2 W JB3. It follows 
by the same argument as in the proof that Bz implies A± that A = B. 
By symmetry we may thus assume that 

AQBX\J B2\J Bz and B QB2VJ B*KJ BA. 

By what we have shown A and B are eight-element Boolean algebras and 
there exist atoms 

pt £ (Af\Bi) - (BjKJ Bk),{j,i,k\ = {1,2,3}, and 

q< G (B H Bt) - (B, U £*), {*, J, *} = {2, 3, 4}. 

As before p2 V qz commutes with p2y pz, q2j qz, hence belongs to A C\ B. 
Since £2, qz < pi V #3 it follows that 

£2 v <?3 G { M M M ^ {<Z2r, g / , 1} ç [Pl\ î } . 

This implies that 

pz = ^3 A (£2 V g3) = pz A q*, 

hence £3 = #3. By symmetry we obtain p2 = g2 hence 4 = JB. 

4.5. If 4 , B are blocks of second kind and if A H J3X H £ 2 ^ {0, 1} 
^ ^ H ^ n f t , then 4 = 5 . 

Choose 

x Ç (5 H J3i n B2) - (Bz U BA), 

x, G ( 5 H B 0 - (BjKJBtVJBt), 

yte (AHBi) - {BjVJBk\JBl) 

for {i, j , &, /} = {1, 2, 3, 4}. Since x C y , yi, ;y2 it follows that x £ A and 
hence that 

A r^B1HB2 = BC\BlC\B2. 
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The element x + x3 belongs to J34 and hence commutes with y±. Since 
x f i j 4 also commutes with x and hence 

X* = x + (x + xz) C y4. 

The element Xz + y A commutes with y4, 3>3, 3> (since y £ B) and 3̂1 or ;y2 

(since x3 + y± £ i?i W £ 2 ) , hence belongs to A It follows that 

xz = (x3 + y A) + y 4, £ A 

and hence that 

By symmetry we also have 

A H £ 4 = 5 r\ B4. 

The element x2 + xz + x4 commutes with y (since 3> G B), y2 (since 
x3, x4 £ A and x2, 3>2 G £ 2 ) , yz and y 4 (since y3, 314 G 5 ) , hence belongs to 
^4. Since also Xz + x4 £ A we obtain x2 Ç 4̂ and hence 

A H £ 2 = J5 H B2, 

from which the claim follows easily. 

4.6. L has at most one block of second kind. 
Assume first that there were blocks A, B of second kind such that 

AC\Bxr\B2^ {0,1} ^BC\B2r\ B9. 

Then every element x £ A r\BiC\ B2 would commute with every element 
of the set B P\ (Bx \J B2), hence would belong to B. It would follow that 
A C\ B2 P\ Bz 9e {0, 1}, contradicting the assumption that A is of second 
kind. By 4.5 and symmetry it is thus enough to show that there are no 
blocks A, B of second kind satisfying 

A r\ Bi r\ B2 * {0,1} ^ Br\Bzf\ BA. 
If there were such blocks pick 

x 6 {A C\ Bx C\ B2) - (Bz U BA), 

yt£ {BC\Bt) - (BjUBkUBl)1\hJ,kJ\ = {1,2,3,4} 

and 

y e {Br\BzC\Bt) - {BX\JB*). 

Then x would commute with yi and y2 and hence with yi + y2. As before 
y 1 + y 2 + y equals 0 or 1, hence 

y = yi + Ji or y = (yx + y2)\ 

In any case x commutes with y and there would exist a block C containing 
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x and y and hence satisfying 

c r\ B1 r\ B2 * {o, 1} 3* c n J33 n s4, 

which, by an argument used earlier (see (1) of Section 3), is impossible. 
This proves 4.6. 

By what we have proved so far, L can have at most six blocks and if it 
has six blocks it must have a block of second kind and a block of third 
kind. We assume for the remainder of the proof that A is a block of third 
kind and that B is a block of second kind. By symmetry we may assume 
that ,4 C BXVJ B2\J Bz and that pi € Ar\Bi(i = 1,2, 3) are the atoms 
of A. 

4.7. It is impossible that there exist distinct indices i , j Ç {1, 2, 3} and 
distinct atoms qt Ç B C\ B{ and qô £_ B C\ By 

By symmetry we may assume that i = 1 and j = 2. Since pi = gi and 
p2 = #2 would imply A C 5 we may assume that £2 5̂  $2- The element 
£i V #2 commutes with pi and £2 and hence belongs to A. If also pi 9e qi 
we have 

Pi <pi V q2 ^ p2',qi, 

hence, since pi M q2 ^ A, p2 = pi W q2 ^ <Zi', i.e., p2 = <Zi, which is 
impossible since p2 (£ Bx. We may thus assume that pi = q\. Then there 
exists an atom q 9e qi, q2 of B such that pi, q2 ^ g'. By the same argument 
as before we obtain p2 = pi V q2 S qf, hence p2 = q £ B. But pup2 £ -B 
imply A ÇZ B, which is impossible. 

No three of the atoms of B belong to the same B * since this would imply 
that B Ç Bf. In view of 4.7 we may thus assume without loss of generality 
that two atoms of B belong to B% — (5i U B2\J B±) and that the re­
maining two atoms of B belong to B± — (Bi U B2\J J53). It follows from 
Proposition 3.4 that there exists an element x £ (B C\B2) — ( 5 i U 5 3 W 
BA). Replacing, if necessary, x by x', we may assume that p2 < x. Since x 
is neither an atom nor a co-atom there exists a co-atom q > x in B and 
this belongs to either Bz or B4. The chain \p2, x, q) belongs to some block 
C. Since p2 $ Bi W £3 , x d J54 and q d B2 this block can not be one of 
the B^ Since x (? A and p2 £ B it can not be A or £ . We would thus 
obtain a seventh block of L which, as we already know, does not exist. 
The theorem is thus completely proved. 
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