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This study considers the global instability of unidirectional flows through single, and
double, bifurcation models using linear stability and direct numerical simulation (DNS).
The motivation is respiratory flows, so we consider flow in both directions, through two
geometries. We identify conditions (quantified by the Reynolds number, Re =U*D /v,
where U* is the peak centreline velocity, D is the primary pipe diameter and v is the
kinematic viscosity) where temporal fluctuations occur using DNS. We calculate the
linear stability of the steady flows, identifying the critical Reynolds number and leading
unstable modes. For flows from single to double pipe, the critical Reynolds number is
dependent on the number of bifurcations in the domain, but the mode structures are
similar, with growth observed in regions dominated by longitudinal vortices formed by the
centrifugal imbalance of flows passing through curved bifurcations. Flows in the opposite
direction, from double to single pipe, also depend on the number of bifurcations in the
domain. The flow through the double-bifurcation case undergoes two spatial symmetry-
breaking bifurcations, altering the mode structure and critical Reynolds number. In all
cases, the critical Reynolds number closely matches with temporal fluctuations observed
from DNS, suggesting transition is the result of a linear instability, similar to other curved
geometries like toroidal and helical pipes. We compare the frequencies of the modes with
the frequencies observed from DNS, finding a close match during both initial and saturated
flows. These results are important for understanding respiratory flows where turbulent
mixing and streaming contribute to gas transport.
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1. Introduction

Flow through curved piping networks is ever-present with implications throughout
engineering and physiology (Berger, Talbot & Yao 1983). Significant to the flow through
curved pipes is the presence of secondary motions in the form of pairs of counter-rotating
vortices (Kiihnen et al. 2014; Lupi, Canton & Schlatter 2020) arising due to centrifugal
forces. The introduction of simple curvature introduces new structures that are not present
in the straight pipe, leading to different instability mechanisms (Canton, Schlatter &
Orlii 2016; Gelfgat 2020; Lupi et al. 2020). Understanding these mechanisms as well as
the nature of the secondary structures is important for comprehending such flows and
manipulating their effects (Berger et al. 1983; Canton et al. 2016).

Transition to turbulence in unidirectional pipe flow is a nonlinear problem and is known
to be linearly stable at all Reynolds numbers (Darbyshire & Mullin 1995; Grossmann 2000;
Drazin & Reid 2004). The onset of instabilities in unidirectional straight pipe flow was
first investigated by Reynolds (1883) and has been studied extensively since. The critical
Reynolds number at which transition from the laminar regime occurs, and is sustained,
is reported as Re ~ 2300 (Kerswell 2005), or Re ~ 2024 by Avila et al. (2011) where a
cross-over between transient and sustained turbulence is defined. The transition point can
be significantly higher or lower depending on the inlet conditions (Eckhardt 2007). In the
study by Darbyshire & Mullin (1995), turbulent growth was observed at Re > 1800 with
sufficiently sized inlet perturbations. Below Re ~ 1760, the same study does not report
the maintenance of any growth despite attempts to disrupt the laminar state by injecting
fluid into the flow and stirring the supply tank. The onset of instabilities in unidirectional
straight pipe flow is highly sensitive to initial conditions and under controlled experiments,
the transition has been delayed to a Reynolds number of 103 (Pfenninger 1961). In practice,
this is unlikely but it highlights the dependence of transition on external disturbances,
indicating an increasing critical Reynolds number with a reduction in finite-amplitude
perturbations (Kerswell 2005).

Unidirectional, Newtonian flow through straight pipes is governed by the Reynolds
number only. Reciprocating straight pipe flows also require consideration of the frequency
and amplitude of the oscillation (Xu et al. 2017). For reciprocating flows, the experimental
study by Hino, Sawamoto & Takasu (1976) reported the nature of turbulent onset in
the Reynolds number —Stokes parameter space. Their study, which defined the Reynolds
number in terms of the Stokes layer thickness, Res, = U3, /v, where U is the velocity
amplitude, §, =+/2v/w is the Stokes layer thickness, w is the angular reciprocating
frequency and v is the fluid kinematic viscosity, and the Stokes parameter, 1 =d/(24,),
where d is the pipe diameter, found three regimes: weakly, conditionally and fully
turbulent (Hino et al. 1976). In the conditionally turbulent regime growth was observed
during the deceleration phase of the cycle before it decayed back to a laminar state during
the acceleration phase (Hino et al. 1976). In this regime the critical Reynolds number was
Res, >~ 550 for a Stokes parameter A > 1.6 (Hino et al. 1976). The study by Xu et al.
(2017) also reported similar regimes by which pulsating pipe flows could be categorised.
In the high-frequency regime for the Womersley parameter, o« = d+/27 f/v/2 > 12, where
f is the pulsation frequency, with pulsation amplitude, A = U,/ U; = 0.4, where U, is the
oscillating component and Uy is the steady component of the velocity, Xu et al. (2017)
reported that the transition threshold appeared agnostic to the frequency of the flow due
to the sustainment of turbulent puffs appearing identical to those observed in steady flow
experiments. At low frequencies (o < 2.5), Xu et al. (2017) reported the transition could
be approximated by the quasi-steady assumption. The experimental study by Trip et al.
(2012) on pulsatile pipe flow also found little influence from the Womersley parameter on
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transition in the high-frequency regime (¢ > 10), with the nature of the turbulent structure
such that growth was also observed during the deceleration phase and re-laminarisation
occurring during the acceleration phase (Trip et al. 2012).

In the straight pipe limit, the flow is stable to infinitesimal perturbations requiring finite-
amplitude perturbations to initiate turbulence when the Reynolds number exceeds a critical
threshold (Grossmann 2000; Avila et al. 2011). As the curvature increases, the base flow
is fundamentally altered due to the appearance of secondary Dean flows (Dean 1928a,b),
and subsequently, finite-amplitude perturbations are no longer required to initiate a change
to the laminar state. When the effects of the curvature are large, the laminar flow becomes
susceptible to linear transition mechanisms when the Reynolds number is above the critical
threshold.

In constant curvature pipes, secondary vortices are present in the basic flow unlike the
straight pipe. The vortices arise due to a centrifugal imbalance associated with forcing
the fluid through the curvature, appearing as two counter-rotating vortices (Dean 1928a,b)
oriented directly above and below the plane of symmetry of the pipe with their axes aligned
with the direction of the flow. Early studies by Eustice (1910) showed experimentally the
presence of secondary flows using die filaments in a series of curved tubes before Dean
(1928b) proposed a mathematical solution, limited to small curvatures, for the appearance
of the vortices which were later given his name. Canton, Orlii & Schlatter (2017) studied
the steady flow characteristics through a torus and observed that, for any Reynolds number
and curvature, there always existed secondary Dean vortices (Canton et al. 2017). Canton
et al. (2017) reported the features of the secondary flow as highly dependent on the
curvature of the pipe, in particular the shape and location of the core of the vortices, and
the position of the maximum streamwise velocity (Canton et al. 2017). Lupi et al. (2020)
studied the unidirectional flow through a pipe with localised curvature, § = 1/3, where
§ is the ratio of the radius of curvature of the centreline of the pipe to the radius of the
pipe cross-section, with a 90-degree bend. They observed two counter-rotating vortices
downstream of the curved region (Lupi et al. 2020), similar to what is observed in the
torus and helical pipe.

The instability mechanisms of the unidirectional flow through the closed-system torus
and open helical pipes were experimentally studied by Kiihnen et al. (2015) for low values
of curvature. Kiihnen et al. (2015) investigated the curvature range 6 € [0.01, 0.1] reporting
a cross-over from subcritical to supercritical transition mechanisms at § = 0.028 (Kiihnen
et al. 2015). Above curvatures of 0.028, Kiihnen ef al. (2015) observed a supercritical
mechanism. Below this, the transition mechanism was observed as subcritical (Kiihnen
et al. 2015), similar to what occurs in the straight pipe.

Canton et al. (2016) extended on the work of Kiihnen et al. (2015) in the low-curvature
range with a numerical study covering the entire curvature range, § € [0.002, 1.0], in the
closed-system torus. They found all curvatures to become unstable to a linear mechanism
at Reynolds numbers, based on the diameter of the pipe, in the range Re € [~ 2000, ~
6500] (Canton et al. 2016). Lupi et al. (2020) also reported a linear instability mechanism
in the unidirectional flow through the bent pipe at Re ~2531. In both studies on the
torus and bent pipe, the linear stability analyses were able to predict the transition closely,
matching with the observations from direct numerical simulation and confirming a linear
instability mechanism in both geometries.

Flows through more complex curved pipes were studied by Jacob ef al. (2021, 2023).
They investigated the turbulent onset of oscillatory flows in both single and double
bifurcating tubes; the same geometry that is used in this study, shown in figure 1. Similar
to the flow through the torus, helical and bent pipes, Jacob et al. (2021, 2023) also reported
the appearance of vortices as counter-rotating pairs downstream of the bifurcating joints,
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Figure 1. Single-bifurcation (1 :2) and double-bifurcation (1 : 2 : 4) geometries used in this study. The lengths
of the primary, secondary (single-bifurcation only) and tertiary pipes (double-bifurcation only) are not shown
to scale. The red markers indicate the origin (x, y, z =0). The blue markers indicate the primary pipe free
ends. The yellow markers indicate the secondary pipe free ends (single-bifurcation only). The green markers
indicate the tertiary pipe free ends (double-bifurcation only).

where one pipe transitions into two. In the opposite direction of flow, when two pipes
merge into one, two counter-rotating vortex pairs were observed. Jacob et al. (2021, 2023)
also observed the appearance of conditional turbulence at peak flow rates, in contrast to the
straight pipe where conditional turbulence is reported during the peak deceleration phase
of the cycle. Jacob et al. (2021, 2023) suggested the turbulence grows on the unstable
vortices. The frequencies at which the turbulent growth appeared were orders of magnitude
higher than the oscillatory frequency of the flow (Jacob, Tingay & Leontini 2021).

It is clear that the instability mechanisms in straight pipes and pipes with curvature
are different. The straight pipe loses stability due to a nonlinear process in contrast to
pipes with curvature which become unstable due to a linear mechanism associated with
the secondary Dean vortices. A quantitative understanding of the onset of instabilities,
and subsequent turbulence, in complex curved pipe networks, constant curvature pipes
and the bent pipe has implications for vascular and respiratory flows. Previous studies
investigating flows through helical and bent pipes as well as the torus have been motivated
by understanding the effects of curvature on transition (e.g. Canton et al. 2016; Kiithnen
et al. 2015) or to obtain accurate friction factor data from pressure drop measurements
(e.g. Cioncolini & Santini 2006; Kiihnen et al. 2014). We are motivated by trying to
understand the fundamental transition processes occurring in airway-like geometries. Even
though respiratory flows are typically reciprocating, previous work (Jacob et al. 2021,
2023) has indicated that the turbulent transition occurs at frequencies much faster than any
reciprocation with little impact from the history of the flow, even for conditions relevant
to high-frequency medical ventilation (Hibberd et al. 2024; Scott et al. 2024), suggesting
a study of the unidirectional flow is warranted.
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This study investigates the linear instabilities of the unidirectional steady flows through
the single and double bifurcations using linear stability analysis and direct numerical
simulation. We find that the critical Reynolds number, structure, wavelength and frequency
of all modes depend on the formation of the secondary Dean flows which themselves
are dependent on the flow direction through, and configuration of (i.e. the number of
generations) the geometry. We start by investigating the formation of the secondary Dean
vortices in the basic flow which drive the instabilities and then conduct linear stability
analyses, in two geometries, of the steady flows in both directions through each domain.
Our results indicate that the linear stability analyses accurately predict the transition
Reynolds number and the frequencies at which the leading linear modes oscillate. The
direct numerical simulation (DNS) confirms the linear stability analyses to accurately
predict the dynamics of the transition from laminar to time-dependent flows and the
linear stability analyses confirms that the onset of turbulence in the flows through complex
curved pipe networks is generated by linear instability mechanisms of the unstable Dean
vortices.

Note that throughout this paper the term ‘bifurcation’ has two meanings. The primary
meaning of the term describes one pipe splitting into two. The secondary meaning of
the term relates to dynamical systems and is used to describe a change in behaviour, i.e. a
spatial symmetry-breaking bifurcation (SSBB) or change in flow state. To avoid confusion,
we use the acronym SSBB to describe the dynamical systems behaviour where applicable.

The remainder of this paper is organised as follows: § 2 describes the details of the
geometries, the extent of the study and the computational set-up for performing DNS,
calculating the base flows and performing the linear stability analyses. Section 3 details
the characteristics of the base flows and the results from the linear stability. Section 4
compares the results from the linear stability with DNSs. Section 5 briefly discusses
the relevance of this research for respiratory flows and the limitations of the study, and
Section 6 provides a short discussion of the results and concluding remarks.

2. Methods
2.1. Fluid domain

The two geometries — a single and a double bifurcation — used in this study were developed
based on the approximately self-similar dimensions of the human airway detailed in
Grotberg (1994). The planar-symmetric model is based on the fundamental self-similar
features that are observed in the first sixteen generations of the human respiratory system
where a generation represents a bifurcation of an airway vessel into two smaller vessels.
Each generation, or bifurcation, is defined by its primary vessel or pipe diameter, its
secondary pipe diameter, the angle between the two secondary pipe centrelines and the
length of each straight pipe section. In this study, these relationships are as follows:
L,/D, =3.5 for pipe lengths without free ends, D,+1/D, =0.79, ¢ =64° and R, =
5D, where L, is the respective pipe length, D, is the primary pipe diameter, ¢ is the
angle between the secondary pipe centrelines, R, is the radius of curvature of the pipe
centreline and #n is the generation index. Figure 1 details a plan view of both geometries
used in this study. From top to bottom, to establish definitions, throughout this study we
refer to the top pipe as the primary pipe or generation. Where the primary pipe splits
into two, these are referred to as the secondary pipes and, in the double-bifurcation model
where the secondary pipes split again, these are referred to as the tertiary pipes. We have
used the same index, n, as detailed in Grotberg (1994), where 1, and 2 refer to the primary
and secondary generations, respectively. For this study we have chosen an angle of 64° for
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Geometry Dy D, D3 L L, L3 R, Ry 1)
1:2 1 0.79Dy - 25D 25D, - 5D - 64°
1:2:4 1 0.79D; 0.79D, 20D, 3.5D; 20D3 5Dy 5D> 64°

Table 1. Geometric relationships between generations for the bifurcation models used in this study.

all bifurcating joints to maintain geometric similarity with previous studies (Jacob et al.
2021, 2023; Wanigasekara et al. 2024). We have extended the entry and exit pipe lengths
to remove the effects imposed by the boundaries. The relationship between the primary
and secondary generations for both geometries used in this study are detailed in table 1.

The planar geometries lie in the x—z plane and the primary pipe cross-sections are
parallel to the x—y plane aligning the primary pipes with the z-axis of the global
coordinate system. Each bifurcation, where pipe n splits into pipe n + 1, transitions
through a large curved region of the domain following the centrelines shown in figure 1,
noting that the centrelines run through the centre of the pipe sections. All bifurcating
transitions feature a median value of curvature, 6 =a/R, = 0.0895, where a is the pipe
radius equal to (D, /2 4+ Dy+1/2)/2.

Throughout this study we refer to the axial and transverse components of velocity,
designated as U, and Uy, respectively. The definitions of these terms are local in nature.
The axial component of a velocity vector, at any point in the domain, is the component
of the vector that is tangent to the local pipe centreline. The transverse component of a
velocity vector, at any point in the domain, is the component of the vector that is projected
on to a plane which lies normal to the local pipe centreline. The origin of both geometries
where x, y, z =0, is located where the straight pipe section, L1, terminates. The origins
are shown as red markers in figure 1.

2.2. Boundary conditions

At the free ends of the primary pipes (indicated by blue markers in figure 1) a parabolic
Hagen—Poiseuille profile was applied

w.(r)=U* [1 4'"2} @.1)
()= - —, .
D}

where U™ is the peak centreline velocity at the primary pipe free end and r is the radial
coordinate of the pipe. At all rigid wall boundaries, zero relative motion was implemented
using a no-slip Dirichlet condition, i.e. # = 0, and the pressure gradient normal to the wall
(dp/on) is set such that mass conservation is enforced at the wall where u is the non-
dimensional velocity, p is the non-dimensional pressure and » is the vector normal to the
wall. The non-dimensionalisation is detailed in § 2.3. At the free ends of the secondary
pipes (in the single-bifurcation geometry indicated by yellow markers in figure 1) and
tertiary pipes (in the double-bifurcation geometry indicated by green markers in figure 1)
a zero pressure open Dirichlet condition was applied for the pressure, i.e. p =0, and
zero normal velocity gradient, du/dn =0. For the direction of flow from the tertiary
or secondary pipes to the primary pipe, the profile defined in (2.1) was reversed at
the primary pipe free end. For this direction of flow, the boundary condition for the
velocity at the secondary or tertiary pipe free ends was modified to preserve numerical
stability. The modified boundary condition adds a positive, mean velocity divergence to
the single layer of elements at the exits of the domain. The strength of the spatially varying
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artificial divergence, Dy(x) =Cy[1 — (x,/ EI)Z], eventually reduces to zero at some
location downstream of the boundaries. Here, Cs is a user-defined constant controlling
the strength of the artificial divergence, x,, is the normal distance to the boundary and E;
is the thickness of the element layer at the boundary (Fischer et al. 2007). The modified
boundary condition enforces some local divergence while maintaining it globally. The
modification, detailed in the study by Fischer et al. (2007), was used with the same source
code used in this study for high-Reynolds-number vascular flows where the effects were
shown to be contained near the boundary. Other studies using the same geometry and
source code to that used here reported the impact of the modified condition to be contained
to regions within 3—4 diameters of the boundary (Jacob et al. 2021, 2023), well clear of
the region in the domain of interest.

2.3. Governing equations and solver

To calculate the steady-state, three-dimensional base flows we solve the non-dimensional,
incompressible Navier—Stokes equations

ou 1
—+@-Vu=-Vp+—Vu+f,
at Re

V-u=0,

(2.2)

where u =u*/U™* is the non-dimensional velocity field and u* is the velocity, p =
p*/(pU*?) is the non-dimensional pressure, p* is the pressure and p is the fluid density,
T =1*U*/Dy is the non-dimensional time, D; is the characteristic length equal to the
primary pipe diameter (detailed in §2.1) and ¢* is the time. The Reynolds number is
Re =U*D; /v, where v is the kinematic viscosity. The acceleration term, f, is a force
introduced to implement the selective frequency damping framework detailed in § 2.5
which was used to find the steady base flows. For the DNSs, f =0. Aside from the
fluid domain and the direction of flow, the Reynolds number is the only parameter which
governs the flow conditions.

The linear stability analysis requires the calculation of the linear evolution of
perturbations of the steady base flow. By assuming the state vectors can be decomposed
into a base flow and perturbation, i.e. u = U + u’ and p = P + p’, where U is the velocity
base flow, u’ is the velocity perturbation, P is the pressure base flow and p’ is the pressure
perturbation, equations for the evolution of the perturbations are formed as

/

o +U-Vu'+ @ - V)U=~-Vp' + inu’
ot Re ’ (2.3)

V.-u=0.

The equations for the flow (2.2) and the perturbations (2.3) were solved using
the spectral element method, detailed by Patera (1984), with the open-source code,
Nek5000 (Fischer, Lottes & Kerkemeier 2008). The mesh for constructing the fluid
domain consisted of 20 800 hexahedral elements for the cases investigating the single-
bifurcation geometry, and 49 920 hexahedral elements for the cases investigating the
double-bifurcation geometry. All simulations used twelfth-order tensor-product Lagrange
polynomials, in a Galerkin formulation, using Gauss—Legendre—Lobatto quadrature points
for calculating the integrals of the equations in weak form.

The temporal domain was discretised using three-way time splitting to solve for the
terms of the Navier—Stokes equations. A third-order Adams—Bashforth scheme was used
to establish the advective substep, the Crank—Nicholson scheme was used for the diffusive
substep (Fischer 2003) and the pressure correction was achieved by forming a Poisson
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Case Geometry Direction of flow
12in Single-bifurcation Inflow
120ut Single-bifurcation Outflow
124in Double-bifurcation Inflow
1240ut Double-bifurcation Outflow

Table 2. Nomenclature for the four cases studied and their definition.

equation, formed by taking the divergence of the second substep equation and enforcing
the divergence-free condition at the end of this substep.

Grid resolution studies were performed on the base flow and perturbation calculations
to confirm convergence of global and local parameters by increasing the interpolation
polynomial order of each spectral element (p-refinement). These studies are detailed in
Appendix A. Subsequently, all simulations (base flow and perturbation) were run with total
node counts of 27 684 800 and 66 443 520 for the single- and double-bifurcation cases,
respectively. The complete system was computed on parallel architecture across typically
2048 CPUs requiring a total wall time of &~ 10 days.

2.4. Extent of the study

This study considers four cases across two geometries. We refer to inflow as the flow
direction from the primary pipe to the secondary and tertiary pipes. Outflow is the opposite
of this, with the flow direction from the secondary or tertiary pipes towards the primary
pipe. The flow directions are shown in figure 1. For simplicity, we refer to the inflow
cases as 12in and 124in for the single- and double-bifurcation geometries, respectively.
We refer to the outflow cases as 12out and 124out for the single- and double-bifurcation
geometries, respectively. These are summarised in table 2.

2.5. Direct numerical simulation

To establish the base flows for the linear stability analysis each case was initiated with a
DNS, driven by a parabolic Hagen—Poiseuille boundary condition (2.1) at the free end of
the primary pipe. Each case was run for > 10° time units ensuring a statistical steady
state was achieved using a variable time step no greater than 10~ time units. The ratio
of the run time to achieve a statistical steady state to the advective time scale, 7,4, =
Lrp/U¥*, in the double-bifurcation geometry, where L rp is the length of the fluid domain
and is equal to 7/t,4y = 1000/ L pp/U* ~ 15, confirming sufficient time for any transients
to wash through the domain.

For the linear stability analysis to proceed, a steady base state or base flow is required
about which the governing equations can be linearised (Jordi et al. 2014, 2015). Steady
solutions were found using the selective frequency damping (SFD) framework developed
by Akervik et al. (2006) that applies a forcing term to the momentum equation, expressed
as

g=N(g) — x(q —w), (2.4)
where

qg=N(q) (2.5)
1020 A32-8
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is the Navier—Stokes equation expressed in operator form, with ¢ = [u p]” representing
the state vector consisting of the velocity and the pressure, and

—x(@—w)=f, (2.6)

which is the forcing term. This form of the forcing term implements a first-order
Butterworth low-pass causal filter, applied to the momentum equation (2.2). Here, x is
the filter gain, ¢ is the flow field solution and w is the low-pass filtered solution, expressed
asw =T x q, where T is a temporal filter kernel with filter width, A. When expressed in
differential form, detailed in Pruett ef al. (2003), the filter is defined as
ow q—w
it A
The forcing term drives the flow towards the steady-state solution defined as a
modification of ¢ with reduced temporal oscillations (Akervik et al. 2006). The filter
parameters, x and A, were selected based on a priori knowledge of the statistically
stable flows. The filter width was selected to suppress the lowest unstable oscillations,
observed from the DNS. The filter width relates to the cutoff frequency, w., from the
relation A =1/(w.2m). The gain (sometimes referred to as the control coefficient) was
set as low as possible, with typical starting values of x = 0.2. This enabled the system
to converge to the steady state in the least amount of time, avoiding an over damped
and slowly evolving system. The SFD was switched on for times > 10%, and generally
required around 1.5 x 103 time units to reach the converged steady state. The base flow
was considered converged when the global L, norm reached <10~. This criterion was
established from a test of the SFD framework detailed in Appendix B.

2.7)

2.6. Linear stability analysis

The linear modes of each base flow were calculated using an Arnoldi iteration technique
(Arnoldi 1951). The technique is well established and only an outline of the main points
is provided here. If the equations of motion for the perturbation (equations (2.3)) are
expressed in operator form

g =Lq, (2.8)

where ¢’ =[u’ p']", the aim is to find the eigenvalues and the eigenvectors (or linear
modes) of L. Rather than solving for the eigenvalues of this full system, it can be related
to the linear map

q'(t+T)=Lq'(v), (2.9)

which states that the disturbance, ¢’, at time, T + T, is equal to the action of the linear
operator, L, acting on the current state of the flow, ¢/, at time, 7. In this expression T
is the time between perturbation snapshot vectors that are formed by the action of the
linear operator (i.e. integrating the linearised Navier—Stokes equations (2.3) forward from
time, 7 to T + 7T') which constructs the Krylov subspace. The formation of the complete
matrix, and solving for the eigenvalues and eigenvectors, is computationally difficult and
not required. Using the Krylov method, the eigenvalues and eigenvectors of the lower-
dimensional subspace (strictly referred to as Ritz pairs) are accurate approximations of the
eigenvalues and eigenvectors of the full matrix.
The Krylov sequence of the operator L is expressed as

K=Iq,Lq,L*q, L’q,...]. (2.10)
1020 A32-9
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Our iterative Arnoldi technique constructs an orthonormal basis, @, and a truncated
upper-Hessenberg matrix H from the Krylov matrix K. The matrix H is related to the
action of the operator L via the similarity transformation

L=QHQ* or LQ=QH, (2.11)

where Q* is the conjugate transpose. The linear modes for each base flow reported in
this study are constructed from the eigenvectors of the upper-Hessenberg matrix. The
eigenvalues of H are the multipliers p of L, which are related to the eigenvalues o of
the original system £ via 1 =¢e°7.

Specifically, the SFD-stabilised velocity field, U, calculated from (2.2) was loaded as
the base flow, for the time-stepping linearised Navier—Stokes solver in (2.3). Randomised
low-amplitude noise of the order 107> was set as the initial condition across the entire
computational domain to initiate the growth of the perturbations for the velocity and the
pressure fields. The perturbations were integrated forward in time to establish the action of
the linear operator, L, which was captured across successive perturbation snapshot vectors
that were output at intervals of 7 = 0.1 time units to establish the Krylov subspace.

The algorithm used to construct the orthonormal basis and upper-Hessenberg
approximation and to solve for the eigenvalues and eigenvectors of the linear modes
was executed outside of the time-stepping linearised Navier—Stokes solver, similar to the
technique outlined by Mamun & Tuckerman (1995). While this does not allow the common
implicitly restarted Arnoldi method to be used, it allows for the size of the Krylov sequence
to be adjusted after the calculation of the snapshots which can be beneficial. A Krylov
subspace of typically 10— 14 vectors was used to calculate the linear modes for each base
flow by iterating through a much larger vector ensemble of ~150, i.e. we calculate the
eigenvalues and eigenvectors associated with the Krylov subspace spanned by the vectors
1 to 14, then 2 to 15, through to 137 to 150 to identify the consistently recurring linear
modes.

Modes with multipliers (eigenvalues of L) such that |u|> 1 grow over time and
therefore are unstable. If the mode has an associated time scale, i.e. there is a imaginary
component of the eigenvalue, the frequency at which the mode oscillates is established

from the relation
1 .
f=—tan"! (ﬂ) (2.12)

where u; is the imaginary component and w, is the real component of the eigenvalue. If the
mode is purely real, i.e. there is no imaginary component associated with the eigenvalue,
then there is no periodic behaviour associated with the growth of the mode.

The in-house Arnoldi algorithm used in this study has been verified against the work by
Lupi et al. (2020) in the bent pipe with excellent results. The verification study is detailed
in Appendix C.

3. Results
3.1. Observations of flow transitions and states from direct numerical simulations

We start by investigating the characteristics of the base flows. In all four cases we ran the
DNS computations at increments in Reynolds number of 250 to isolate where the flows
transition from a steady to a time-dependent regime. All DNS computations were run for
7 > 1000 time units to ensure a statistical steady state was reached (detailed in § 2.5).
From the DNS data we have plotted the standard deviation of the velocity magnitude,
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Figure 2. Results from DNS computations to approximate where each case transitions from steady to time-
dependent. Each panel displays the standard deviation ((SD), red triangles) calculated from DNS of the velocity
magnitude (y-axis) plotted as a function of Re (x-axis), a power-law curve fit (red dashed lines) and an
interpolated value of Re (black filled circles) calculated from the power-law curve fit. Panel (a) is from the
single-bifurcation inflow. The probe point is located ~5.0D; along the z-axis, from the origin, in the secondary
pipe. Panel (b) is from the double-bifurcation inflow. The probe point is located &~ 5.0 D; along the z-axis, from
the origin, in the secondary pipe. Panel (c) is from the single-bifurcation outflow. The probe point is located
~ —4.0D; along the z-axis, from the origin, in the primary pipe. Panel (d) is from the double-bifurcation
outflow. The probe point is located ~ — 6.0D; along the z-axis, from the origin, in the primary pipe.

Umag = /U2 + u% + u2, as a function of the Reynolds number, shown in figure 2 where

Uy, uy and u; are the velocity components in the x, y and z directions, respectively. From
this relationship we have fitted a power-law curve and extrapolated the curve to the zero
crossing to approximate only the transition Reynolds number for each case, also shown in
figure 2 and listed in table 3. Note in all plots we have used three data points, except for
the case of the double-bifurcation outflow, 124out, where we have used five data points
due to the outlier at Re = 6500.

In the double-bifurcation outflow study, 124out, we observe two SSBBs in the
temporally stable base flow that is unique to this case. The first SSBB occurs between
Re =4250 and 4500 where the base flow symmetry is altered. The symmetry is then
partially recovered due to a second SSBB arising between Re = 5750 and 6000. The range
of Re where the symmetry breaks occur are detailed in the third and fourth columns of
table 3 and discussed in § 3.2.3.
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Case Critical Re  Symmetry-breaking range (Re) ~ Symmetry resurrection range (Re)

12in 7381 NA NA
124in 5051 NA NA
120ut 4601 NA NA
1240ut 5924 4250—4500 5750—6000

Table 3. Results from DNS computations to isolate where each case transitions from laminar to time-dependent
and where symmetry breaks occur and are resurrected. The values of Re were calculated from Figure 2. Each
case number is detailed in Table 2.

3.2. Steady base flows obtained using selective frequency damping

Steady flows were obtained using SFD. For all cases, the SFD was started from a DNS
case that was statistically stationary. We implemented this process regardless of whether
the DNS case showed any temporal variation; this way we could guarantee that the SFD did
not introduce any spurious flow features, and the eventual steady states found were reliable.
In all cases, the stabilised base flow solution calculated with the SFD framework, at a value
of Reynolds number just above the critical value, appeared visually indistinguishable to the
base flow solution just below the critical value (obtained with the SFD framework switched
on and the unforced naturally steady solution obtained with the SFD switched off). In all
four comparisons the difference in the Reynolds number was 250. This confirmed that the
base flow solution at a Reynolds number just above the critical value was representative of
the base flow solution at the critical Reynolds number.

3.2.1. Inflow topology
The stable base flows all exhibit pairs of counter-rotating Dean vortices in regions of the
flow downstream of the curvature. For the inflow cases, 12in and 124in illustrated in
figures 3 and 4, respectively, the vortices are observed as a counter-rotating pair that are
mirror symmetric about the x—z plane. The single vortex pairs appear in both secondary
pipes and are mirror symmetric about the y—z plane. In both cases, it is not until the
flow enters the straight section of the secondary pipes that the vortices start to form clear
structures. The double-bifurcation inflow case, 124in, consists of two counter-rotating
pairs (four vortices) appearing in the tertiary pipe, that are mirror symmetric about the
x—z and y—z planes, before recovering the two-vortex system (one counter-rotating pair).

Figure 3 shows the structure of the stable base flow for the single-bifurcation inflow case,
12in, at Re = 7500. At pipe section 3D, upon exiting the curved region of the geometry,
the vortices start to form clear structures. The structure of the vortex pairs assumes a
kidney-like profile where a deficit in the secondary flow is evident at the inside of the
secondary pipe (left-hand side of the pipe section with respect to the image on the page).
Between sections 3D and 4D the vortex centres start to shift towards the centre of the pipe
as the deficit in the secondary flow is reduced. By pipe section 5D the structure of the
two vortices occupy almost the full pipe cross-section. Only small changes to the location
of the vortex centres are observed as they move horizontally towards the inner pipe wall
as the flow progresses further down the secondary pipe. Downstream of pipe section 6 D
the secondary flow structure is fully formed. Two small vortices can be seen forming at
approximately pipe section 5D where a deficit in the secondary flow grows on the outside
of the pipe, increasing in size as the primary vortices shift across the pipe section.

Figure 4 shows the structure of the stable base flow for the double-bifurcation inflow
case, 124in, at Re = 5000. The formation of the vortices in the secondary pipe (panel (a))
undergo a similar evolution to what is observed in the single-bifurcation case, 12in, with
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Figure 3. Single-bifurcation inflow case, 12in, secondary pipe base flow topology. The pipe section views
display the spatially evolving stable base flow at Re = 7500. The local axial velocity (U,y) is overlaid by the
transverse velocity (U, ) streamlines. The left-hand side of each pipe section view pertains to the inside of the
secondary pipe from the image on the right-hand side. The direction of flow through the pipe section views
is into the page. The image on the right-hand side shows the location of each pipe section in the secondary
pipe. The vertical arrow indicates the direction of flow through the domain. The curved arrows indicate the
direction of the vortices. The location of each pipe section is with respect to the position along the z-axis, from
the origin. The orientation of the coordinate system relates to the image on the right-hand side.

the core of the vortices following an almost identical path as the flow progresses through
the domain. In case 124in, by pipe section 5D the structure of the two vortices occupies
almost the full pipe cross-section, and is fully formed downstream of pipe section 6D.
The spatially evolved base flow topologies for both inflow cases, shown in figures 3 and 4,
appear qualitatively similar despite the difference in Reynolds number. Panel () of figure 4
shows the stable base flow in the tertiary pipe of the double-bifurcation inflow case, 124in,
at Re =5000. The vortices emerge from the second bifurcation as two counter-rotating
pairs before eventually recovering the two-vortex system.

3.2.2. Outflow topology

When the direction of flow is reversed for the outflow cases, 12out and 124out illustrated
in figures 5 and 6, respectively, the vortices are observed as two counter-rotating pairs
downstream of the first bifurcation (the bifurcation separating the tertiary and secondary
pipes in the case of 124o0ut). In the unique case of 124out, in the primary pipe, four
counter-rotating pairs are observed before eventually decaying back to a four-vortex system
(two counter-rotating pairs). The structure of the four-vortex system observed in the
primary pipe of the outflow case, 12out, and the secondary pipe of case, 124out, is
characterised by symmetry about the vertical and horizontal planes running through the
centre of the pipe sections (until pipe section 3D, in 124out, where the symmetry is lost
about the horizontal plane). The topology of the flow in the secondary pipe, in case 124out,
also inherits symmetry about the y—z plane. However, the eight-vortex system, in the
primary pipe of case 124out, only displays symmetry about a horizontal plane running
through the centre of the pipe section.

Figure 5 shows the structure of the stable base flow for the single-bifurcation outflow
case, 12out, at Re = 4750. The structure of the vortices exhibit symmetry about the x—z
and y—z planes. Upon exiting the bifurcation (section 0D) the vortices are essentially
established with only subtle changes in the location of the vortex centres, moving towards
the centre of the pipe section, as the flow progresses downstream of the bifurcation.
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(a) Secondary pipe
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Figure 4. Double-bifurcation inflow case, 124in, base flow topology. The pipe section views display the
spatially evolving stable base flow at Re = 5000. The local axial velocity (U,y) is overlaid by the transverse
velocity (U;,) streamlines. The left-hand side of each pipe section view pertains to the inside of the pipe from
the image on the right-hand side. The direction of flow through the pipe section views is into the page. The
images on the right-hand side show the location of each pipe section in the secondary (a) and tertiary () pipes.
The vertical arrows indicate the direction of flow through the domain. The curved arrows indicate the direction
of the vortices. The location of each pipe section is with respect to the position along the z-axis, from the
origin. The orientation of the coordinate system relates to the images on the right-hand side in both panels.

Panel (b) of figure 6 shows the structure of the stable base flow in the secondary pipe of
case, 124out, at Re = 6250 which appears qualitatively similar to the features observed in
figure 5, after pipe section 3D.

Panel (a) of figure 6 shows the structure of the stable base flow for case, 124out, at
Re = 6250 in the primary pipe. Upon exiting the bifurcation, the secondary flow exhibits
four significant counter-rotating vortex pairs orientated around the circumference of the
pipe section. A symmetry is apparent about the x—z plane; however, the symmetry
about the y—z plane is lost. This vortex structure is preserved until pipe section —2D,
after which the two vortex pairs on the left-hand side begin to merge and relocate towards
the centre of the pipe. The two vortex pairs on the opposite (right-hand) side survive until
pipe section —5 D, after which the four-vortex system is recovered. However, the symmetry
about the y—z plane is never recovered.
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Figure 5. Single-bifurcation outflow case, 12out, primary pipe base flow topology. The pipe section views
display the spatially evolving stable base flow at Re =4750. The local axial velocity (U,,) is overlaid by the
transverse velocity (U;,) streamlines. The left-hand side of each pipe section view pertains to the left-hand side
of the primary pipe from the image on the right-hand side. The direction of flow through the pipe section views
is out of the page. The image on the right-hand side shows the location of each pipe section in the primary
pipe. The vertical arrow indicates the direction of flow through the domain. The curved arrows indicate the
direction of the vortices. The location of each pipe section is with respect to the position along the z-axis, from
the origin. The orientation of the coordinate system relates to the image on the right-hand side.

3.2.3. Spatial symmetry-breaking bifurcation in the double-bifurcation outflow

In the (natural) temporally stable 124out base flow we observe a loss of vortex symmetry
in the primary pipe of the basic flow, shown in panel (a) of figure 6. With respect to
the orientation of the pipe section views in the plane of the page, a symmetry about
the horizontal plane is clear but the symmetry about the vertical plane is lost. This
asymmetry in the temporally stable secondary flows is not a feature of all Reynolds
numbers and we first detect this modification between Re = 4250 and 4500, shown in
figure 7. At Re =4250, shown in the top rows of panels (a) and (b), up to eight clear
vortex structures are present with symmetry about the vertical and horizontal planes. By
Re = 4500 the symmetry of the basic flow is altered as the vortices appear to distort around
the circumference of the pipe, detailed in the bottom rows of panels (a) and (b). The
temporally stable base flow undergoes a SSBB at Reynolds number Reg, ~ 4375, where
the flow structure is altered.

The evolution of the temporally stable flow, on a representative selected plane (—3D),
in the primary pipe is shown in figure 8. Starting at Re = 4250, vortex symmetry about
the horizontal and vertical planes is well defined. Lines, S; and S5, used to illustrate the
orientation of the vortex centres, show the four main vortices are both orientated at an
angle of 39° to the horizontal plane. By Re = 4500, the symmetry about the horizontal
and vertical planes is lost, as the vortices appear to stretch in a clockwise direction around
the perimeter of the pipe section. Line Sj, running through the centres of the vortices
lying in the second and fourth quadrants, now makes an angle of 47° with the horizontal
plane, while line S, running through the centre of the vortices lying in the first and third
quadrants, is reduced to an angle of 26° with the horizontal plane. The position (the angle
between S and the horizontal plane) of the vortex centres lying in quadrants two and four
remain fixed from Re = 4500 to 5750 despite the changes in their topology. The two main
vortices, lying in quadrants one and three, gradually move closer to the horizontal plane
as the Reynolds number is increased throughout the same range (Re = 4500 to 5750). At
Re = 5000, the vortices in quadrants two and four continue to stretch around the perimeter
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(a) Primary pipe
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Figure 6. Double-bifurcation outflow case, 124out, base flow topology. The pipe section views display the
spatially evolving stable base flow at Re = 6250. The local axial velocity (U,y) is overlaid by the transverse
velocity (U,,) streamlines. The left-hand side of each pipe section view pertains to the left-hand side (panel
(a)) and inside (panel (b)) of the pipe from the image on the right-hand side. The direction of flow through the
pipe section views is out of the page. The image on the right-hand side shows the location of each pipe section
in the primary (top) and secondary (bottom) pipes. The vertical arrows indicate the direction of flow through
the domain. The curved arrows indicate the direction of the vortices. The location of each pipe section is with
respect to the position along the z-axis, from the origin. The orientation of the coordinate system relates to the
images on the right-hand side in both panels.

of the pipe before two smaller vortices eventually detach by Re = 5500. At Re = 5750, the
two smaller detached vortices have drifted to quadrants one and three where they begin to
merge with the two main vortices occupying the same quadrants.

Throughout the Reynolds-number range spanning Re = 4250 to 5750, where we observe
a loss of vortex symmetry about the horizontal and vertical planes, we also observe a
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(a) Pipe sections 0D through —-3D

Re 4250

Re 4500

Figure 7. Double-bifurcation outflow case, 124out, primary pipe base flow topology, detailing the first SSBB
where the geometric symmetry of the Dean vortices is lost. The pipe section views display the spatially
evolving, temporally stable, base flows. The top row of panel (a) details the pipe sections at locations 0D
to —3D, along the z-axis, of the primary pipe at Re = 4250 where the symmetry is maintained. The bottom
row of panel (a) details the pipe sections at locations 0D to —3D, along the z-axis, of the primary pipe at
Re = 4500 where the symmetry is lost. Panel (b) details the same information for pipe sections —4D to —7D.
Both panels are displayed as the local axial velocity (U, ) overlaid by the transverse velocity (U;,) streamlines.
The direction of flow is out of the page. The curved arrows indicate the direction of the vortices. The location
of each pipe section, in the primary pipe, is shown in the image on the right-hand side of panel (a) in
figure 6.

180° vortex reflection about both lines, S; and S;. However, the base flow undergoes a
second SSBB, at Reg, ~ 5875, where the point symmetry through the origin is lost but a
symmetry about the horizontal plane is recovered, shown at Re = 6000. We now observe
two significant vortices in quadrants two and three. Lines S; and S> both make an angle
of 28° with the horizontal plane noting that the lines (1 and S») pierce the vortex centres

1020 A32-17


https://doi.org/10.1017/jfm.2025.10670

https://doi.org/10.1017/jfm.2025.10670 Published online by Cambridge University Press

T.J.A. Scott, C. Jacob, F. Cheng, R. Manasseh and J.S. Leontini

Re 4250 Re 4500 Re 4750 Re 5000

Figure 8. Evolution of the temporally stable base flow for the double-bifurcation outflow case, 124out. The
local axial velocity (Uy,y) is overlaid by the transverse velocity (U;,) streamlines. Each pipe section view is
shown at increments of Re =250 starting at Re =4250 to Re = 6000. All section views are from the plane
located —3D downstream of the origin in the primary pipe shown in the image on the right-hand side of panel
(a) in figure 6. The direction of flow is out of the page. The lines used to illustrate the orientation of the vortex
centres are denoted as Sy, S», S3 and S4. The four quadrants are denoted as Q1, Q2, O3 and Qg4.

in the adjacent quadrants. That is, S; pierces the centre of the vortices lying in Q1 and
Q3 and S pierces the centre of the vortices lying in Q2 and Q4. The remaining two
vortices in quadrants two and three make an angle of 22° with the vertical plane, shown as
lines S3 and S, in red. However, they do not pass through a vortex centre in the adjacent
quadrants.

The angles of the lines S, S2, S3 and S4, with the horizontal plane, illustrated in figure 8,
are shown plotted as a function of the Reynolds number in figure 9. The two SSBBs are
summarised in table 4.

Another way to summarise the SSBBs is to consider the symmetry group of the resulting
flows. Prior to SSBB 1, there are two reflection symmetries, one about the horizontal
axis, and one about the vertical axis. After SSBB 1, these reflection symmetries are lost;
the remaining symmetry is the combination of a reflection about the horizontal, then a
reflection about the vertical, axis. Finally, after SSBB 2, the only remaining symmetry is
the reflection about the horizontal axis. These changes in symmetry group are outlined in
table 5.

The basic flow condition shown at Re = 6000 (Re > Re,,) in figure 8 is close to the
(Hopf) bifurcation to a time-dependent flow. We note there exists a true basic flow which
is mirror symmetric about the x-axis (y =0) and the y-axis (x =0) which undergoes
a stationary symmetry-breaking bifurcation leading to the condition shown in figure 8.
Therefore, the flows shown in figure 8 could also occur mirrored about either axis, with
the choice of direction set by the initial conditions. These changes in the base flow structure
affects the mechanism by which the base flow loses stability, in comparison with the first
three cases, and is discussed in § 3.3.3.
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Case SSBB Re
1240ut 1 Reg, =4375
124out 2 Reg, = 5875

Table 4. Summary of SSBBs detected from the temporally stable base flows.

Re range Symmetry group
Re < Reyg, (prior to SSBB 1) Rp, Ry

Reg, < Re < Reg, (between SSBB 1 and SSBB 2) Ry X Ry

Re > Reg, (post SSBB 2) Ry

Table 5. The symmetry groups of the flow with progression of Re for the 124out case. Reflection about the
horizontal and vertical axes are designated Ry and Ry, respectively.
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Figure 9. Evolution of the location of the Dean vortices in the temporally stable base flow for the double-
bifurcation outflow case, 124out. The markers show the angular locations of the main vortex centres with
respect to the horizontal plane shown in figure 8. On the y-axis is the absolute value of the angle (in degrees)
between the lines Sy, S», S3 and S4 and the horizontal plane as a function of Re (x-axis). The black filled
markers show the angle between S; and the horizontal plane. The black unfilled markers show the angle
between S, and the horizontal plane. The red filled marker shows the angle between the lines S3 and Sy,
and the horizontal plane. The values of Re at angles 39° and 28° (4250 and 6000, respectively) between lines
S1 and S, and the horizontal plane are the same. They are shown offset by Re = 20 for visibility.

3.3. Linear stability analyses

3.3.1. General
In this section we report the results of the linear stability analyses of the steady base
flows reported in § 3.2, which are either naturally stable or obtained by stabilising the flow
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Mode Re |l W i Frequency
1 7000 0.974 0.933 +0.279 0.46
1 7250 0.987 0.935 +0.316 0.52
1 7500 1.017 0.956 + 0.347 0.55
1 7750 1.023 0.958 +0.358 0.57
1* 7369* 1.000* - - 0.52*
2 7000 0.941 0.596 +0.728 1.41
2 7250 0.975 0.603 +0.766 1.44
2 7500 1.005 0.611 + 0.797 1.46
2 7750 1.033 0.612 +0.832 1.49
2% 7480* 1.000* - - 1.46*
3 7000 0.979 0.343 + 0.917 1.93
3 7250 0.989 0.346 +0.927 1.93
3 7500 0.998 0.347 + 0.936 1.93
3 7750 1.005 0.351 +0.941 1.93
3* 7580* 1.000* - - 1.93*

Table 6. Eigenvalues for the leading modes in the single-bifurcation inflow case, 12in, as a function of Re.
An asterisk indicates the interpolated value of Re at which the mode becomes unstable using a power-law fit.
Mode 1 becomes unstable at the critical Re.

using SFD. The primary result reported here is that all four cases transition to a time-
dependent flow via a linear instability mechanism when the Reynolds number exceeds a
critical threshold. The leading modes in all cases exhibit complex conjugate eigenvalue
pairs, indicating a Hopf bifurcation.

We perform the stability analysis on each base flow, calculating the leading modes,
where ‘leading’ refers to the fastest growing, or slowest decaying modes, i.e. those with
the largest magnitude multiplier, ||. We first do this at one value of Re, repeating the
process at the next value of Re, continuing over values of Re for which we have calculated
base flows. We identify the linear modes belonging to the same solution branch, at each
value of Re, via their values of |u|, frequency and spatial structure. The transition values
of Re (those at marginal stability where || = 1) for each mode are found by interpolating
between the values of |x|. This process allows us to determine the most unstable mode
from each case. The most unstable mode transitions at the lowest, or critical, Reynolds
number.

3.3.2. Inflow
For inflow case 12in, we predict the most unstable mode to transition at a critical Reynolds
number, Reqzin, & 7369, growing with a frequency of f ~ 0.52. Specifically, to predict the
critical Reynolds number (i.e. when |it| = 1), we established a power-law relationship of
the multiplier (|u|) as a function of the Reynolds number from the data in table 6. The
most unstable mode is referred to as mode 1 (table 6). We detect two more leading modes
throughout the range of Reynolds numbers that become unstable very close to Rej2;y,,
growing with higher frequencies of f =~ 1.46 and f ~ 1.93. These two modes become
unstable at Reynolds numbers Re2;,, =~ 7480 and Rej2in; ~ 7580, and are referred to as
modes 2 and 3, respectively (table 6).

The second inflow case, 124in, becomes unstable at a lower critical Reynolds number
than case 12in, while growing with a higher frequency of f = 0.89. The most unstable
mode transitions at critical Reynolds number Re24;,, ~ 4844, and is referred to as mode
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Mode Re |l Iy Wi Frequency
1 4500 0.970 0.820 +0.518 0.90
1 4750 0.991 0.834 +0.536 0.91
1 5000 1.007 0.858 +0.527 0.88
1 5250 1.042 0.889 +0.544 0.87
1* 4844* 1.000* - - 0.89*
2 4500 0.975 0.725 + 0.652 1.17
2 4750 0.976 0.735 + 0.642 1.14
2 5000 1.012 0.741 4 0.690 1.19
2 5250 1.046 0.758 +0.722 1.21
2% 4850* 1.000* - - 1.18*

Table 7. Eigenvalues for the leading modes in the double-bifurcation inflow case, 124in, as a function of Re.
An asterisk indicates the interpolated value of Re at which the mode becomes unstable using a power-law fit.
Mode 1 becomes unstable at the critical Re.

1 (table 7). At a slightly higher Reynolds number a second mode becomes unstable,
growing with a higher frequency of f & 1.18. The second leading mode becomes unstable
at Reynolds number Rej24in, ~ 4850, and is referred to as mode 2 (table 7). The leading
modes for both inflow cases, from the data in tables 6 and 7, are plotted in terms of the
multiplier and frequency as a function of the Reynolds number, displayed in figure 10.

The structures of the leading modes from both inflow cases in the secondary pipes are
qualitatively similar, as shown in figures 11 and 12. In both geometries, when visualised
as the axial component of the velocity (U, ), the modes grow on the inside leg of both the
secondary pipes (the outer region of the pipe with respect to the curvature), downstream
of the first bifurcation, appearing as narrow crescent-like profiles truncated by small lobes
near the centre of the pipe. The crescent-like profile in the double bifurcation, 124in,
almost forms a half-circle in comparison with a quarter-circle in the single bifurcation,
12in. It is not until the curvature of the first bifurcation is cleared that the structure of
the modes begin to appear. The location where growth occurs in both cases is ~ 5D
downstream of the origin in case, 12in (mode 1), and &~ 4.1 D; downstream of the origin
in case, 124in (mode 1). Due to the altered conditions in the double bifurcation, the lobe-
like structure of the modes near the centre of the pipe is affected as it approaches the next
generation. In case 12in, the growth of each mode is preserved for ~4—5D;, where a
clear wavelength is sustained, shown in the inset detail views of figure 11. In case 124in,
growth is observable in the outermost tertiary pipes and both secondary pipes. For the most
unstable mode (mode 1), growth is most evident in the outermost tertiary pipes with a faint
trace in the secondary pipes, displayed in the top rows of panels (a) and (b) of figure 12.
The second leading mode, in case 124in, exhibits a slightly more defined structure in
the secondary pipes as well as clear growth in the outermost tertiary pipes. Both modes
have clear streamwise wavelengths in both generations that survive for ~2—2.4 D1 in the
secondary, and & 7.4 D in the tertiary, pipes. There is no observable structure in the inner
tertiary pipes, for either mode, of case 124in.

Despite the subtle differences observed in the mode structures of the inflow cases in
the secondary pipes, and the difference in the critical Reynolds number, the topology of
the base flow that triggers the linear instability appears almost identical in both cases. The
similarity in the secondary pipe base flows is shown on the left-hand side pipe section
views in figures 11 and 12. The leading modes subsequently arise in similar locations,
growing in the region of high strain rates on the inside of the secondary pipes where the
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Figure 10. Multipliers, |u|, and frequencies, f, of the leading modes from inflow studies 12in and 124in
plotted as a function of Re. Panel (a) shows the data from case, 12in, from table 6. Panel (b) shows the data
from case, 124in, from table 7. The top row in each panel shows the multiplier, ||, of each mode as a function
of Re. The dashed line indicates where the multiplier is equal to unity. The bottom row in each panel shows
the frequency, f, of each mode as a function of Re. Filled circles indicate the mode is stable. Unfilled circles
indicate the mode is unstable.

two base flow vortices start to diverge before wrapping around the perimeter of the pipe.
In both inflow cases, the spatial position in the geometry where the growth is observed
coincides with this typical base flow topology when the Reynolds number exceeds the
critical threshold. Figure 13 contrasts the base flow topology for cases 124in (top half)
and 12in (bottom half) illustrating the similarities in the vortex size and orientation.

3.3.3. Outflow

For the outflow case, 120ut, we detect a distinct leading mode that becomes unstable
at critical Reynolds number Re1p,,s, &~ 4734. The mode grows with a frequency of f ~
3.21, and is referred to as mode 1 (table 8). No other modes approaching transition are
observed. The flow in the second outflow case, 124out, becomes unstable at a higher
critical Reynolds number than the single-bifurcation case, 12out, while growing with a
lower frequency of f ~0.23. The most unstable mode transitions at critical Reynolds
number, Req240ur, ~ 6000, and is referred to as mode 1 (table 9). At a higher Reynolds
number a second mode becomes unstable, growing with a higher frequency of f ~2.11.
The second mode becomes unstable at Reynolds number, Re12404r, & 6312, and is referred
to as mode 2 (table 9). The leading modes for both outflow cases, from the data in tables 8
and 9, are plotted in terms of the multiplier and frequency as a function of the Reynolds
number, displayed in figure 14.
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Figure 11. Leading unstable modes for the single-bifurcation inflow case, 12in. The image on the left shows the
region of growth of all unstable modes in the secondary pipe. The inset detail views show the wavelength, from
top to bottom, of modes 1, 2 and 3, respectively, as the axial component of the velocity, Uy, . The pipe section
views show the typical base flow condition as the streamlines of the transverse component of the velocity,
U, (left), the mode structure as the axial component of the velocity, U, (centre), and the mode structure as
the horizontal transverse component of the velocity, U, (right). The velocity perturbations are normalised by
the maximum magnitude. The left-hand side of each pipe section view (side A) pertains to the inside of the
secondary pipe (side A) of the far left image. The right-hand side of each pipe section view (side B) pertains to
the outside of the secondary pipe (side B) of the far left image. The direction of flow through the pipe sections
is into the page. The curved arrows indicate the direction of the vortices. The location of each pipe section is
with respect to the position along the z-axis, from the origin. The orientation of the coordinate system relates
to the image on the left-hand side.

The structure of the leading unstable mode for case 120ut is shown in figure 15. The
mode grows on a fully symmetric four-vortex base flow in the high strain regions where
the two counter-rotating vortex pairs diverge. The mode appears at ~ 0.25D; downstream
of the origin and is preserved for ~2.95D; with a clear wavelength. In case 124out, we
observe a completely different mode structure due to the changes in the base flow, shown
in figure 16. The most unstable mode (mode 1) grows in the primary and secondary pipes.
In the primary pipe, growth is apparent across the entire pipe section, concentrated in
regions around the cores of the main vortices. It appears at & 1.0D; and is preserved for
~ 5.3D;. In the secondary pipe, a wavelength is evident, however, a relationship between
the regions of growth, shown in the pipe section, and the vortices is not apparent. The
second leading mode is concentrated in the primary pipe, appearing at ~ 1.0D; and
preserved for &~ 6.2 D;. There is no observable structure in the secondary pipe.

Similar to both inflow cases, the distinct unstable mode observed in outflow case 12out
grows in regions of high strain in the centre of the primary pipe. In contrast, in the outflow
case 124out, the modes no longer display clear wavelengths and the growth does not
emanate from the high strain regions associated with the diverging base flow vortices.
In the primary pipe, the growth now appears to concentrate in the regions around the
main vortex cores, occupying large areas of the pipe section. Further, we note that, in the
1240ut case, the unstable mode bifurcates from a base flow that is not reflection symmetric
about the y-axis, and therefore the unstable mode can grow from the base flow shown in
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Figure 12. Leading unstable modes in the double-bifurcation inflow case, 124in. The top row of images are
from the secondary pipe. The bottom row of images are from the tertiary pipe. The image on the left of each
row shows the region of growth of all unstable modes in the secondary and tertiary pipes. The inset detail views
show the wavelength, from top to bottom, of modes 1 and 2, respectively, as the axial component of the velocity,
U,x. The pipe section views show the typical base flow condition as the streamlines of the transverse component
of the velocity, Uy, (left), the mode structure as the axial component of the velocity, U, (centre), and the mode
structure as the horizontal transverse component of the velocity, U, (right). The velocity perturbations are
normalised by the maximum magnitude. The left-hand side of each pipe section view (side A) pertains to the
inside of the secondary or tertiary pipe (side A) of the far left image. The right-hand side of each pipe section
view (side B) pertains to the outside of the secondary or tertiary pipe (side B) of the far left image. The direction
of flow through the pipe sections is into the page. The curved arrows indicate the direction of the vortices. The
location of each pipe section is with respect to the position along the z-axis, from the origin. The orientation
of the coordinate system relates to the images on the left-hand side.

figure 8, or its mirror image. In the secondary pipe, in the case of mode 1, there is no clear
relationship between the location of the growth and the base flow vortices.

4. Comparison with direct numerical simulation

We have carried out a series of DNS studies to compare the results from the linear stability
analyses with the nonlinear solutions. We compare the critical Reynolds numbers and
the frequencies, calculated from the time histories obtained from DNS, with the linear
stability results. We also compare the mode structures obtained from the linear stability
results with the mode structures from the DNS solutions as well as compare the dominant
wavenumbers of the linear and nonlinear cases obtained from spatial analyses of the
streamwise flows.
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Mode Re [ WLy Wi Frequency
1 4500 0.986 —0.423 + 0.891 3.21
1 4750 1.003 —0.429 +0.906 3.20
1 5000 1.014 —0.439 +0.914 3.21
1 5250 1.028 —0.448 =+ 0.925 322
I* 4734* 1.000* - - 3.21*

Table 8. Eigenvalues for the leading mode in the single-bifurcation outflow case, 12out, as a function of Re.
An asterisk indicates the interpolated value of Re at which the mode becomes unstable using a power-law fit.
Mode 1 becomes unstable at the critical Re.
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Figure 13. Comparison of the typical base flow topology present in the single- and double-bifurcation inflow
cases, 12in and 124in. The image contrasts the size and orientation of the vortices in the single-bifurcation
(bottom half) and double-bifurcation (top half) studies which trigger the linear instability after Re has exceeded
the critical threshold. The red crosses indicate the location of the vortex centres. The curved arrows indicate
the direction of the vortices.

For the frequency comparisons, the DNS solutions were restarted from the same stable
base flows about which the nonlinear Navier—Stokes equations were linearised (detailed
in §2.5), with the SFD switched off. Each case was run until a statistical steady state
was reached, enabling inspection of the frequencies from both the early and saturated
time histories. The frequencies were obtained by fast Fourier transform within a sliding
Hanning window. In both inflow cases, we observe long transient periods in the early
time history that differ to what is observed in the saturated DNS solution. The linear
stability analyses, from the inflow studies, detect the early transient frequencies and match
closely with the saturated nonlinear frequencies. In comparison with the inflow studies, the
outflow cases reach a saturated solution almost instantaneously in the DNS time history,
which matches well with the linear stability analyses from the outflow studies.

For the mode structure comparisons, we visualise the DNS flow topology at similar
pipe section locations to where the linear modes were visualised in § 3.3. For the cases
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Mode Re |

1 5500 0.989
1 5750 0.999
1 6000 1.000
1 6250 0.999
1 6500 0.994
1* 6000* 1.000*
2 5500 0.905
2 5750 0.915
2 6000 0.985
2 6250 0.989
2 6500 1.004
2% 6312* 1.000*

Ity

0.979
0.989
0.989
0.989
0.981

0.191
0.199
0.216
0.218
0.268

Wi Frequency
+ 0.141 0.23
+0.143 0.23
+0.145 0.23
+0.151 0.24
+ 0.159 0.25

- 0.23*
+0.885 2.16
+0.893 2.15
£ 0.961 2.14
+ 0.965 2.14
£ 0.968 2.07

- 2.11*

Table 9. Eigenvalues for the leading modes in the double-bifurcation outflow case, 124out, as a function of
Re. An asterisk indicates the interpolated value of Re at which the mode becomes unstable using a power-law
fit. Mode 1 becomes unstable at the critical Re.
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Figure 14. Multipliers, |u|, and frequencies, f, of the leading modes from outflow studies 12out and 124out
plotted as a function of Re. Panel (a) shows the data from case, 12out, from table 8. Panel (b) shows the data
from case, 124out, from table 9. The top row in each panel shows the multiplier, |i|, of each mode as a function
of Re. The dashed line indicates where the multiplier is equal to unity. The bottom row in each panel shows
the frequency, f, of each mode as a function of Re. Filled circles indicate the mode is stable. Unfilled circles
indicate the mode is unstable.
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Figure 15. Leading unstable mode in the single-bifurcation outflow case, 12out. The image on the left shows
the region of growth of the unstable mode in the primary pipe. The inset detail view shows the wavelength as
the axial component of the velocity, U,,. The pipe section views show the typical base flow condition as the
streamlines of the transverse component of the velocity, U;, (left), the mode structure as the axial component
of the velocity, U, (centre), and the mode structure as the horizontal transverse component of the velocity,
U,, (right). The velocity perturbations are normalised by the maximum magnitude. The left-hand side of each
pipe section view (side A) pertains to the left-hand side of the primary pipe (side A) of the far left image. The
right-hand side of each pipe section view (side B) pertains to the right-hand side of the primary pipe (side B) of
the far left image. The direction of flow through the pipe sections is out of the page. The curved arrows indicate

the direction of the vortices. The location of each pipe section is with respect to the position along the z-axis,
from the origin. The orientation of the coordinate system relates to the image on the left-hand side.
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in the single-bifurcation geometry (12in and 120ut), we observe an almost identical
match between the mode structures. For the cases in the double-bifurcation geometry
(124in and 1240ut), we observe very similar structures in the pipes where growth is
dominant (the tertiary pipe in case 124in and the primary pipe in case 124out). In the
pipes where growth is faint, the similarities are fewer. Similarly, for the comparisons
of the spatial analyses, we illustrate the results from identical streamwise locations to
where the corresponding linear modes were visualised in § 3.3. The velocity data for the
spatial analyses were obtained from a line orientated through regions of prominent mode
growth in the streamwise direction, parallel to the local pipe centreline. The instantaneous
wavenumbers were obtained by fast Fourier transform within a sliding Hanning window. In
all cases, we observe similar dominant wavenumbers from the linear and nonlinear flows
over similar spatial locations.

In §§4.1 and 4.2 we compare the nonlinear characteristics with the stability results for
the inflow and outflow studies, respectively.

4.1. Inflow

Figures 17-20 show samples of the time history and frequency spectrum from cases, 12in
and 124in, respectively. In both cases, the time history shown in figures 17 and 19 have
been measured at a Reynolds number slightly higher than when the leading modes are all
unstable. In both figures, the DNS has been restarted from the stabilised base flow, with
the SFD switched off, and run until the solution saturates to a statistical steady state.

For the first DNS inflow case, 12in, we detect a dominant low-frequency signal in the
spectrum of f & 0.70, at time t < 1308, shown in panel (a) of figure 18. At time 1309 <
T < 1315, in the same figure, we observe two higher-frequency components of f ~ 1.52
and f ~ 1.99. Panel (b) in figure 18 shows the changes to the spectrum over the time
interval 1315 < t < 1450. The highest-frequency mode ( f ~ 1.99) becomes less dominant
with only a light trace observable at time 7 > 1380. The lower-frequency mode (f = 1.52)
is observed briefly at time t & 1340, before it reduces and the spectrum starts to break
up (r > 1400). At time 1450 < t < 1600, in panel (c) there is still a light trace of the
high-frequency signal (f ~ 1.99) but the dominant frequency is much lower (f ~0.55).
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Figure 16. Leading unstable modes in the double-bifurcation outflow case, 124out. The top row of images are
from the primary pipe. The bottom row of images are from the secondary pipe. The image on the left of each
row shows the region of growth of all unstable modes in the primary and secondary pipes. The inset detail
views show the wave structure, from top to bottom, of modes 1 and 2, respectively, as the axial component
of the velocity, U,,. The pipe section views show the typical base flow condition as the streamlines of the
transverse component of the velocity, U;, (left), the mode structure as the axial component of the velocity,
U, (centre), and the mode structure as the horizontal transverse component of the velocity, U;, (right). The
velocity perturbations are normalised by the maximum magnitude. The left-hand side of each pipe section view
(side A) pertains to the left-hand side of the primary pipe and the inside of the secondary pipe (side A) of the
far left image. The right-hand side of each pipe section view (side B) pertains to the right-hand side of the
primary pipe and the outside of the secondary pipe (side B) of the far left image. The direction of flow through
the pipe sections is out of the page. The curved arrows indicate the direction of the vortices. The location
of each pipe section is with respect to the position along the z-axis, from the origin. The orientation of the
coordinate system relates to the images on the left-hand side.

At times 7 > 1850, in panel (d), there is a single dominant frequency in the spectrum.
The most unstable mode, detected from the linear stability, oscillates with a frequency
of f~0.52, matching closely with the initial frequency from the early time history in
panel (a). Further, it is almost identical with the saturated frequency from panel (d) of
figure 18. The two higher transient frequencies of f ~ 1.52 and f &~ 1.99, that appear most
dominant at time 1309 < t < 1317, in panels (a) and (b) are close to the second and third
unstable modes detected from the linear stability analysis with frequencies of f ~1.46
and f ~ 1.93, respectively.

Figure 19 shows the time history samples from case 124in. In panel (a) of figure 20 at
times 2435 < t < 2447, we detect a strong frequency signal of f ~ 0.88. This signal starts
to break up over the time interval 2448 < 7 < 2600, shown in panels (a) and (b). At time
2600 < T < 2700, the signal appears to saturate, shown in panel (c¢), which is confirmed
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Figure 17. Velocity time series from the single-bifurcation inflow study, 12in, at Re =7750. The sample
has been restarted from the stabilised base flow with the SFD switched off at time T = 1295 and run until
a statistical steady state was reached. Panel (a) shows the full time series, 1295 < v < 2220. Panel () is at time
1295 < t < 1315, from the sample between the first two vertical dashed lines in panel (a). Panel (c) is at time
1315 < © < 1450, from the sample between the second and third vertical dashed lines in panel (a). Panel (d)
is at time 2170 < 7 < 2220, from the sample between the fourth and fifth vertical dashed lines in panel ().
The time series is the x-component of velocity from a probe point located ~ 5.0D; along the z-axis, from the
origin, in the secondary pipe.

in panel (d) over the time interval 2700 < T < 2800, where the signal appears almost
identical. The saturated frequency spectrum appears to consists of three components; a
high, low and intermediate frequencies of f ~1.12, 0.88 and 1.0, respectively. In both
panels (¢) and (d) of figure 19 a time-dependent switching is apparent where we observe
intermittent mode dominance, potentially due to pattern competition (Ciliberto & Gollub
1984). The almost periodic switching in the nonlinear solution sees the frequency oscillate
between the two frequencies similar to those detected from the linear stability analysis. The
initial frequency of f ~0.88, in the early time history (t < 2447) is almost identical with
the frequency of the most unstable mode with a frequency f = 0.89, which also forms
the lower bound of the switching in the saturated flow in panels (¢) and (d). The second
unstable mode detected from the linear stability analysis with a frequency of f ~1.18
appears slightly higher than the upper bound of the switching in the saturated flow with a
peak frequency of f =~ 1.12.
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Figure 18. Frequency spectrum for the single-bifurcation inflow study, 12in, calculated from the time series
shown in figure 17. Panel (@) is the inital spectrum from the sample restarted from the stabilised base flow
over the time interval 1295 < 7 < 1315. Panel (b) is the spectrum over the time interval 1315 < 7 < 1450. Panel
(c) is the spectrum from the time interval 1450 < 7 < 1850. Panel (d) is the spectrum over the time interval
1850 < t < 2220. The leading linear modes in each panel are shown as solid, dashed and dotted lines.

Throughout the frequency spectrum of case 124in, we also observe a very low-
frequency signal of f ~ 0.1 that is most prominent in panel (a). Interestingly, in the
saturated solutions shown in panels (¢) and (d), we observe this signal, albeit with a very
low intensity, appearing with similar periodicity; essentially at a similar time to when the
main signal jumps to the upper bound, i.e. at times 7 &~ 2620 and 2665, in panel (¢) and
times T &~ 2715 and 2760, in panel (d). However, this frequency is not detected in the linear
stability analysis.

Shown in figures 21 and 22 is a visual comparison of the mode structures from the
linear stability analyses and the DNS solutions for the inflow cases 12in and 124in,
respectively. The structures are compared in the pipe section views at similar locations.
For the nonlinear DNS flows we illustrate the structure at two values of the Reynolds
number to see if the mechanisms observed from the linear stability analyses are likely to
be preserved at values above the critical threshold. To obtain the nonlinear mode structures
the DNS solution was decomposed into a mean velocity component and a temporally
fluctuating velocity component, u = u + &. The displayed fluctuating velocity component,
u, was calculated by subtracting the mean velocity field, #, from the full velocity field, u.
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Figure 19. Velocity time series from the double-bifurcation inflow study, 124in, at Re = 5000. The sample
has been restarted from the stabilised base flow with the SFD switched off at time 7 = 2435 and run until a
statistical steady state was reached. Panel (a) shows the full time series 2435 < v < 2750. Panel (b) is at time
2435 < T < 2455, from the sample between the first two vertical dashed lines in panel (a). Panel (¢) is at time
2455 < t < 2700, from the sample between the second and third vertical dashed lines in panel (a). Panel (d)
is at time 2700 < 7 < 2750, from the sample between the third and fourth vertical dashed lines in panel ().
The time series is the x-component of velocity from a probe point located ~ 5.0D; along the z-axis, from the
origin, in the secondary pipe.

For the single-bifurcation inflow case, 12in in figure 21, the nonlinear modes from the
DNS are displayed at Re = 7750 and 8250. At Re = 7750 the structure is almost identical
to what is observed from the linear stability. At Re = 8250 the profile of the crescent is
slightly reduced but the basic structure is preserved.

For the double-bifurcation inflow case, 124in in figure 22, the nonlinear modes from
the DNS are displayed at Re = 5250 and 5500. At Re = 5250 in the secondary pipe,
the cresent on the left-hand side of the pipe section in the nonlinear mode is smaller
than what is observed in the linear mode. However, at Re = 5500 these profiles are much
closer in appearance. In the top row of figure 22 the structure from the secondary pipe is
barely visible at Re = 5250, but is slightly more defined at Re = 5500. At both values of
Reynolds number the structures are less prevalent in the secondary pipes (compared with
the tertiary pipe), similar to what is observed in the linear modes. In the tertiary pipe, the
nonlinear mode is clearly visible at both values of Reynolds number. At Re = 5250 the
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Figure 20. Frequency spectrum for the double-bifurcation inflow study, 124in, calculated from the time series
shown in figure 19. Panel (a) is the initial spectrum from the sample restarted from the stabilised base flow over
the time interval 2435 < t < 2455. Panel (b) is the spectrum over the time interval 2455 < t < 2600. Panel
(c) is the spectrum from the time interval 2600 < 7 < 2700. Panel (d) is the spectrum from the time interval
2700 < 7 < 2800. The leading linear modes in each panel are shown as solid and dashed lines.

structure in the tertiary pipe is visible in the outer pipe only, the same as what is observed
from the linear stability analysis.

Shown in figures 23, 24 and 25 are the spectra from the streamwise spatial analyses for
both inflow cases. Figure 23 displays the wavenumbers detected in the secondary pipe from
case 12in, and figures 24 and 25 display the wavenumbers detected in the secondary and
outer tertiary pipes, respectively, from case 124in. In all plots, the spectra of the linear
modes are calculated for data extracted over an identical streamwise location as the
corresponding mode displayed in § 3.3. The results from DNS are calculated from the
temporally fluctuating component, &, of the decomposed flows shown in figures 21 and 22
and are displayed over the entire range.

Mode 1, from case 12in, displays a dominant wavenumber of k ~ 1.0 that remains
largely unchanged, shown in panel (b) of figure 23, before the signal breaks up at
location &~ 9.0D;. Mode 2 in panel (c) and mode 3 in panel (d) show clear wavenumbers
which gradually start to increase near the end of the domain analysed. Mode 2 has a
dominant wavenumber of k & 2.46 that increases to k & 2.6, by location & 10.6 D before it
eventually breaks up. Mode 3 displays a slightly higher dominant wavenumber of k = 3.61.
The wavenumber (k &~ 3.61) gradually starts increasing after location &~ 8.5D1 to k ~ 4.9
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Figure 21. Comparison of linear (a) and nonlinear (b) mode structures for the single-bifurcation inflow study,
12in. The linear modes 1, 2 and 3 are identical to the images displayed in figure 11. The nonlinear mode
structures from DNS are at Re = 7750 and Re = 8250. All images are displayed as the local axial component
of velocity, U,,. Nonlinear mode at Re = 7750 colour range, U, £ 10~4. Nonlinear mode at Re = 8250 colour
range, Uy, 3.0 x 1074,

Linear Nonlinear
a Mode 1 Mode 2 Re =15250 Re =5500
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23.35D1 22.75D1 23.45D, 21.5D,

Figure 22. Comparison of linear (a) and nonlinear (») mode structures for the double-bifurcation inflow study,
124in. The linear modes 1 and 2 are identical to the images displayed in figure 12. The nonlinear mode
structures from DNS are at Re = 5250 and Re = 5500. The images in the top row are from the secondary pipe.
The images in the bottom row are from the tertiary pipe. All images are displayed as the local axial component
of velocity, U,y . Nonlinear mode at Re = 5250 colour range, U, + 10~2. Nonlinear mode at Re = 5500 colour
range, U,, £ 1071,

by location 10.5D;. From the DNS spectrum in panel (a) a dominant wavenumber of
k ~ 1.0 is detected that is almost identical to mode 1.

Figure 24 displays the wavenumbers in the secondary pipe for inflow case, 124in. Mode
1 in panel (b) displays a dominant wavenumber of k &~ 0.7 that remains unchanged until
location & 5.6 D1. The signal then breaks up and a higher wavenumber of up to k ~ 8.5
can be observed. Mode 2, in panel (c) displays a dominant wavenumber of k & 2.51 up to
location &~ 4.9 D before it increases to k &~ 3.8. The signal is observed to increase again to
k ~ 7.0 between locations &~ 5.7D; and ~ 6.2D. The DNS spectrum in panel (a) displays
a clear wavenumber of k *2 2.0 between locations ~4.2D; and &~ 5.9D;. From location
5.9D; to 6.5D; a lower wavenumber of k~ 0.7 is detected. In the outer tertiary pipe,
in figure 25, mode 1 displays a dominant wavenumber of k£ = 2.05 in panel (b) before
the signal starts to change after location ~22.5D7. Mode 2 displays a higher dominant
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Figure 23. Single-bifurcation inflow case, 12in, streamwise spatial analysis. In all plots the spectrum is
obtained from the fast fourier transform (FFT) of the local axial component of the velocity, (U, ), over a line
orientated in the secondary pipe. The line spans the coordinates x = 1.35, y =0, z=4.15to x =5.88, y =0,
z=11.4, orientating it parallel to the centreline near the inner wall. The x-axis is the streamwise position
along the line in the secondary pipe. The y-axis is the wavenumber (k). Each linear mode is displayed over
an identical streamwise position and length as the corresponding mode displayed in the inset detail view in
figure 11. The nonlinear plot is displayed over the entire range (5.0D to 11.5D). Panel (a) is the nonlinear
solution from DNS at Re = 7750. Panel (b) is linear mode 1. Panel (c¢) is linear mode 2. Panel (d) is linear
mode 3.

wavenumber of k & 2.97 up to location &~ 22.0D before the signal starts to increase to
k ~5.0. The DNS spectrum in panel (a) displays a dominant wavenumber of k£ ~ 1.92 up
to location & 22.5 D1, slightly less than the wavenumber observed from mode 1 (k & 2.05).
Thereafter, at least two short-lived signals of k & 3.8 and 1.7 are observed.

Results from the linear stability analyses and the DNS, for inflow case 124in, show the
growth is predominantly in the outer tertiary pipes. Only faint traces are observable in
the secondary generation. Subsequently, the streamwise spatial analyses detect no obvious
similarities between the linear and nonlinear structures, unlike what is observable in the
outer tertiary pipe. The tertiary generation shows a close match between the DNS and
linear mode 1 where the growth is well established. For the first case, 12in, the streamwise
spatial analysis also indicates a close match between linear mode 1 and the saturated DNS
flow, similar to what is observed from the frequency spectrum in figure 18.

The linear stability analysis predicts the inflow cases become unstable at critical
Reynolds numbers Re = 7369 and Re = 4844 for cases 12in and 124in, respectively. The
DNS results in § 3.1 approximated critical Reynolds numbers of Re ~ 7381 and Re ~ 5051
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Figure 24. Double-bifurcation inflow case, 124in, streamwise spatial analysis. In all plots the spectrum is
obtained from the FFT of the local axial component of the velocity, (U,y), over a line orientated in the
secondary pipe. The line spans the coordinates x =0.92,y =0,z =3.5tox =2.795, y =0, z = 6.5, orientating
it parallel to the centreline near the inner wall. The x-axis is the streamwise position along the line in the
secondary pipe. The y-axis is the wavenumber (k). Each linear mode is displayed over an identical streamwise
position and length as the corresponding mode displayed in the inset detail view in figure 12. The nonlinear plot
is displayed over the entire range (4.1D to 6.5D). Panel () is the nonlinear solution from DNS at Re = 5500.
Panel (b) is linear mode 1. Panel (c¢) is linear mode 2.

for cases, 12in and 124in, respectively. The inflow comparisons are summarised in the first
five rows of table 10.

4.2. Outflow

Figures 26-29 show the samples of the time history and frequency spectrum from cases,
120ut and 124o0ut, respectively. In both cases the time histories shown in figures 26 and
28 have been measured at a Reynolds number slightly higher than when the leading modes
are all unstable. In both figures, the DNS has been restarted from the stabilised base flow,
with the SFD switched off, and run until the solution saturated to a statistical steady state.

Figure 26 shows the sample of the time history from the first DNS outflow case, 120ut.
We detect three short-lived low-frequency signals in the spectrum (f ~ 1.2, f ~ 1.0 and
f=0.1) at time t < 1815, shown in panel (a) of figure 27. At times 7 > 1815, there is a
single dominant frequency in the spectrum of f ~ 3.21. From the linear stability, we detect
a single unstable mode with an identical frequency ( f ~ 3.21).

Figure 28 shows the sample of the time history from case, 124out. In panel (a) of
figure 29 at time, T > 3935, we detect a signal almost immediately of f ~0.25. At time
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Case Mode Linear transition (Re)  DNS transition (Re)  Linear (f) DNS (f)

12in 1 Rein, = T7369* 7381* 0.52 0.55
12in 2 Re1in, = 7480 1.46 1.52
12in 3 Re1in, = 7580 1.93 1.99
124in 1 Reiain, = 4844* 5051* 0.89 0.88
124in 2 Re124in, = 4850 118 112
120ut 1 Re1oou, = 4734* 4601* 3.21 321
1240ut 1 Re1240ur;, = 6000 5924* 0.23 0.25
124out 2 Re1240ur, = 6312 2.11 1.95

Table 10. Summary of transition (neutrally stable) Re and frequencies detected from linear stability and DNS.
An asterisk indicates the critical Re for each case.

(@) Nonlinear (b)25 Linear mode 1

20

0 0
17.6D, 213D, 25.0D, 17.6D, 213D, 25.0D,

() Linear mode 2

0
17.6D, 213D, 25.0D,

Figure 25. Double-bifurcation inflow case, 124in, streamwise spatial analysis. In all plots the spectrum is
obtained from the FFT of the local axial component of the velocity, (U,y), over a line orientated in the
tertiary pipe. The line spans the coordinates x =5.0, y =0, z="7.35 to x = 11.05, y =0, z = 10.3, orientating
it parallel to the centreline approximately through the centre of the pipe. The x-axis is the streamwise position
along the line in the tertiary pipe. The y-axis is the wavenumber (k). Each linear mode is displayed over
an identical streamwise position and length as the corresponding mode displayed in the inset detail view in
figure 12. The nonlinear plot is displayed over the same range (17.6D; to 25.0D1). Panel (a) is the nonlinear
solution from DNS at Re = 5500. Panel (b) is linear mode 1. Panel (c) is linear mode 2.
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Figure 26. Velocity time series from the single-bifurcation outflow study, 12out, at Re =4750. The sample
has been restarted from the stabilised base flow with the SFD switched off at time v = 1785 and run until a
statistical steady state was reached. Panel (a) shows the full time series, 1785 < t < 2360. Panel (b) is at time
1785 < 7 < 1800, from the sample between the first two vertical dashed lines in panel (a). Panel (c) is at time
1800 < t < 1825, from the sample between the second and third vertical dashed lines in panel (a). Panel (d) is
at time 2340 < v < 2350, from the sample between the fourth and fifth vertical dashed lines in panel (a). The
time series is the x-component of velocity from a probe point located &~ — 4.0D; along the z-axis, from the
origin, in the primary pipe.

3936 < t < 3938, we observe a short-lived component in the spectrum with a low intensity
peak frequency of f = 1.95. At time 3940 < t < 3965, the spectrum begins to saturate
with a dominant frequency plus low intensity peaks of up to f & 2.1, shown in panels (a)
and (b). At time t > 4025, in panels (c) and (d), there is a clear low-frequency signal. The
first frequency of f ~0.25 closely matches with the most unstable mode detected from
the linear stability analysis of f ~0.23. The short-lived component in the spectrum at
time 3936 < v < 3938, with the low intensity peak frequency of f & 1.95, is close to our
second leading mode with a frequency of f & 2.11.

Shown in figures 30 and 31 is a visual comparison of the mode structures from the linear
stability analyses and the DNS solutions for outflow cases 12out and 124out, respectively,
obtained in the same way as the inflow comparisons. For the single-bifurcation outflow
case, 12out in figure 30, the nonlinear modes from the DNS are displayed at Re = 4750
and 5250. At Re =4750 the structure is almost identical to what is observed from the
linear stability. At Re = 5250 the structure is slightly modified but the basic structure is
preserved, similar to the single-bifurcation inflow study when the Reynolds number is
increased.
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Figure 27. Frequency spectrum for the single-bifurcation outflow study, 120ut, calculated from the time series
shown in figure 26. Panel (a) is the initial spectrum from the sample restarted from the stabilised base flow
over the time interval 1785 < t < 2015. Panel (b) is the spectrum over the time interval 2015 < t < 2350. The
linear mode in each panel is shown as a solid line.

For the double-bifurcation outflow case, 124out in figure 31, the nonlinear modes from
the DNS are displayed at Re = 6250 and 6500. In the top row is the mode structure
from the primary pipe and in the bottom row is the mode structure from the secondary
pipe. At Re =6250 the growth of the nonlinear mode is concentrated in the primary
pipe and almost undetectable in the secondary pipe. The structure in the primary pipe
is very similar, but not identical, to mode 1 detected from the linear stability. The
nonlinear mode at Re = 6250 appears predominantly in the top and bottom regions of
the pipe (with respect to its orientation on the page) around the periphery of where
the vortex centres appear, similar to both the linear mode structures. At Re = 6500 the
nonlinear mode structure in the primary pipe has altered significantly with only small
remnants of the structure that are observable at Re = 6250, like the small lobe-like profiles
around the periphery of the pipe section, being preserved when the Reynolds number is
increased above the critical threshold. At Re = 6500, structures in the secondary pipe
are observable, and similar to the linear modes although dissimilar in topology, appear
relatively independent of the base flow vortex structures. Unlike the previous three cases
which appear to maintain the basic mode structure detected from the linear stability
analysis when the Reynolds number is increased (over the values tested), the comparison of
the linear and nonlinear mode structures for the double-bifurcation outflow case, 124out,
suggests that this mechanism may only be present near the critical threshold.

Shown in figures 32, 33 and 34 are the streamwise spatial analyses for both outflow
cases, obtained in the same way as the inflow studies. Figure 32 displays the wavenumbers
in the primary pipe from case 12out. Mode 1 displays a dominant wavenumber of k ~ 6.1,
that is unchanged throughout the spectrum, shown in panel (b). From the DNS spectrum,
in panel (a), a dominant wavenumber of k & 6.15 is detected that is almost identical to the
linear mode.

Figures 33 and 34 display the wavenumbers in the primary and secondary pipes
respectively, from case 124out. In the primary pipe, mode 1 in panel (), has a dominant
wavenumber of k= 0.32 from location 1.0D; to —1.5Dq, before briefly increasing,
followed immediately by a decrease to k ~ (.25 at location —4.3D;. Mode 2, in panel
(c) displays a clear wavenumber of k & 1.2 from spatial position 1.0D to —2.2D; before
the signal breaks up and at least two (higher and lower) wavenumbers are detected.
From the DNS spectrum in panel (a), a dominant wavenumber of k ~ 0.29 is observed
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Figure 28. Velocity time series from the double-bifurcation outflow study, 124out, at Re = 6500. The sample
has been restarted from the stabilised base flow with the SFD switched off at time 7 = 3925 and run until a
statistical steady state was reached. Panel (a) shows the full time series, 3925 < t < 4660. Panel (b) is at time
3925 < t < 3945, from the sample between the first two vertical dashed lines in panel (a). Panel (¢) is at time
3945 < 7 < 4025, from the sample between the second and third vertical dashed lines in panel (a). Panel (d) is
at time 4400 < 7 < 4650, from the sample between the fourth and fifth vertical dashed lines in panel (a). The
time series is the x-component of velocity from a probe point located &~ — 6.0D; along the z-axis, from the
origin, in the primary pipe.

between locations 0.5D; to —5.2D;. Slightly higher short-lived signals are also detected
throughout the spectrum of up to k &~ 1.2.

In the secondary pipe, for case 124out, a single wavenumber of k ~ 0.81 is detected
from linear mode 1 over the spectrum. From the DNS case, a brief, length-varying signal
is detected between locations 3.2 D1 and 4.5 D1 ranging from k ~ 1.2 to k &~ 4.0 before the
signal settles to k & 0.77. In both the linear and nonlinear cases, growth in the secondary
pipes is far less prominent than what is observed in the primary pipe. For linear mode 2,
growth in the secondary pipe is undetectable (highlighted in figure 31).

From the DNS in the primary pipe a clear wavenumber of k= (.29 is apparent
throughout the majority of the spectrum, slightly below what is detected from linear
mode 1 (k= 0.32). A significantly higher wavenumber of k ~ 1.2 is dominant in linear
mode 2, however, this is only detected intermittently in the DNS spectrum. In the
secondary pipe, we also detect similar wavenumbers between the DNS and linear mode 1.
For case 124out, where multiple unstable linear modes are detected, the streamwise spatial
analysis indicates a close match between linear mode 1 and the saturated DNS flow, similar
to what is observed from the frequency spectrum in figure 29.
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Figure 29. Frequency spectrum for the double-bifurcation outflow study, 124out, calculated from the time
series shown in figure 28. Panel (a) is the initial spectrum from the sample restarted from the stabilised base
flow over the time interval 3935 < t < 3950. Panel (b) is the spectrum over the time interval 3950 < 7 < 4025.
Panel (c) is the spectrum from the time interval 4025 < v < 4400. Panel (d) is the spectrum over the time
interval 4400 < t < 4650. The leading linear modes in each panel are shown as solid and dashed lines.
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Figure 30. Comparison of linear (a) and nonlinear (b) mode structures for the single-bifurcation outflow study,
120ut. The linear mode is identical to the image displayed in figure 15. The nonlinear mode structures from
DNS are at Re = 4750 and Re = 5250. All images are displayed as the local axial component of velocity, Uy, .
Nonlinear mode at Re = 4750 colour range, Uy, % 5.0 x 1072, Nonlinear mode at Re = 5250 colour range,
Uax £7.0 x 1072,
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Figure 31. Comparison of linear (@) and nonlinear (b) mode structures for the double-bifurcation outflow
study, 124out. The linear modes 1 and 2 are identical to the images displayed in figure 16. The nonlinear
mode structure from DNS are at Re = 6250 and Re = 6500. The images in the top row are from the primary
pipe. The images in the bottom row are from the secondary pipe. All images are displayed as the local axial
component of velocity, U,,. Nonlinear mode at Re = 6250 colour range, U, £ 2.0 x 10~2. Nonlinear mode
at Re = 6500 colour range, U, + 1.5 x 1071,
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Figure 32. Single-bifurcation outflow case, 120ut, streamwise spatial analysis. In all plots the spectrum is
obtained from the FFT of the local axial component of the velocity, (Uyy), over a line orientated in the primary
pipe. The line spans the coordinates x = 0.015, y =0, z=—-0.25 to x =0.15, y =0, z = —5.25, orientating it
parallel to the centreline and offset 0.015 in the x-direction from the centre of the pipe section. The x-axis is
the streamwise position along the line in the primary pipe. The y-axis is the wavenumber (k). The linear mode
is displayed over an identical streamwise position and length as the corresponding mode displayed in the inset
detail view in figure 15. The nonlinear plot is displayed over the same range (—0.25D to —3.2D). Panel (a) is
the nonlinear solution from DNS at Re = 4750. Panel () is linear mode 1.

The linear stability predicts that the outflow cases become unstable at critical Reynolds
numbers of Re & 4734 and Re ~ 6000 for cases 12out and 124out, respectively. The DNS
results in § 3.1 approximated critical Reynolds numbers of Re =~ 4601 and Re = 5924 for
cases, 12out and 124out, respectively. The outflow comparisons are summarised in the
last three rows of table 10.
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(@) Nonlinear (b)lo Linear mode 1

0 0
1.0D, -2.1D, -5.2D, 1.0D, -1.6D, -43D,

(C)l 0 Linear mode 2

-

0
1.0D, -2.1D, -5.2D,

Figure 33. Double-bifurcation outflow case, 124out, streamwise spatial analysis. In all plots the spectrum is
obtained from the FFT of the local axial component of the velocity, (U, ), over a line orientated in the primary
pipe. The line spans the coordinates x = 0.3, y =0,z =1.0to x =0.3, y =0, z = —14.0, orientating it parallel
to the centreline near the wall. The x-axis is the streamwise position along the line in the primary pipe. The
y-axis is the wavenumber (k). Each linear mode is displayed over an identical streamwise position and length
as the corresponding mode displayed in the inset detail view in figure 16. The nonlinear plot is displayed over
the entire range (1.0D to —5.2D). Panel (a) is the nonlinear solution from DNS at Re = 6500. Panel (b) is
linear mode 1. Panel (c) is linear mode 2.

5. Implications for respiratory flows
5.1. Medical ventilation

Respiratory flow applications are the motivation for this research. The frequencies at
which our unstable modes oscillate are much higher than the oscillatory frequency of the
flows encountered during regular breathing, and the frequencies currently used during
high-frequency ventilation, which suggests that the current results of this paper using
steady flows are potentially relevant. Further evidence for this comes from the studies of
Jacob et al. (2021, 2023), in which turbulent bursts were observed in reciprocating flows
through geometries identical to those used here. In the double bifurcation, Jacob, Tingay
& Leontini (2023) reported frequencies of f ~0.23. In all cases, the turbulent bursts
were shown to be a function of the instantaneous flow rate, suggestive of a quasi-steady
instability mechanism.

In the double-bifurcation study by Jacob et al. (2023), during the outflow portion of
the cycle, the onset of turbulence was apparent near an instantaneous Reynolds number
Re ~ 6500 (based on the instantaneous flow rate) in the primary pipe. Whereas during the
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Case  Mode Linear Re Linear frequency Scaled frequency (Hz)

12in 1 7369 0.52 ~ 1900
12in 2 7480 1.46 ~ 5450
12in 3 7580 1.93 ~ 7300
124in 1 4844 0.89 ~2150
124in 2 4850 1.18 ~ 2850
120ut 1 4734 321 ~ 7580
1240ut 1 6000 0.23 ~ 690

1240ut 2 6312 211 ~ 6650

Table 11. Dimensional frequencies of the leading unstable modes scaled to an infant patient respiratory
system with a trachea diameter of 5.5 mm.

(a) Nonlinear (b) Linear mode 1

0 0
32D, 5.1D, 7.0D, 32D, 5.1D, 7.0D,

Figure 34. Double-bifurcation outflow case, 124out, streamwise spatial analysis. In both plots the spectrum
is obtained from the FFT of the local axial component of the velocity, (U,y), over a line orientated in the
secondary pipe. The line spans the coordinates x =0.83, y =0,z=2.7tox =3.52, y =0, z = 7.0, orientating
it parallel to the centreline approximately through the centre of the pipe. The x-axis is the streamwise position
along the line in the secondary pipe. The y-axis is the wavenumber (k). The linear mode is displayed over
an identical streamwise position and length as the corresponding mode displayed in the inset detail view in
figure 16. The nonlinear plot is displayed over the same range (3.2D to 7.0D). Panel (a) is the nonlinear
solution from DNS at Re = 6500. Panel (b) is linear mode 1.

inflow portion of the period, in the double bifurcation, the onset of turbulence was apparent
near Re ~7000. In both directions, the onset was localised within the primary and
secondary pipes (during outflow), and the secondary and tertiary pipes (during inflow),
before turbulence propagated through the domain.

In the clinical application of high-frequency ventilation, for the treatment of an infant
patient, the peak instantaneous Reynolds number reaches (O(10%) with an oscillatory
frequency of ventilation in the range 10—15 Hz (Scott et al. 2024; Hibberd et al. 2024).
Scaling the frequencies that are observed from the leading unstable modes to an infant
respiratory system with a tracheal diameter of 5.5 mm (Griscom 1982), using the definition
of the Reynolds number in § 2.3, a non-dimensional frequency defined as f = fD;/U*
and the kinematic viscosity of air v=1.51 x 107, gives the dimensional frequencies
listed in table 11.
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Turbulent fluctuation, and subsequent mixing, is often considered to be of importance
to gas transport in the airway, especially during high-frequency ventilation (Hibberd et al.
2024; Scott et al. 2024). Our results suggest that the mechanisms we observe from the
linear stability analysis are potentially preserved above the critical threshold, before fully
turbulent flows prevail, in at least three of the four cases which potentially provide a gas
transport mechanism through the upper airway generations.

Some computational models of the airway network have attempted to include the
impacts of turbulence (Herrmann, Tawhai & Kaczka 2016), with parameterised models
based on the turbulent transition in the reciprocating flow in a straight pipe. However,
this study shows that turbulent onset is significantly different in the bifurcation geometry
inherent to the airway with likely ramifications for turbulent mixing, as well as other
transport mechanisms including mean streaming (Chang 1984; Wanigasekara et al. 2024).

We note that what is referred to as turbulent flow throughout this study, is not turbulence
in the classic sense, i.e. large velocity fluctuations with multiple scale structures and an
energy cascade. What is observed from DNS, just above the stability threshold, are in fact
small fluctuations at very high frequencies (detailed in table 11). Despite these flows not
being characterised by fully developed turbulence, there appears to be capacity for the
flows to conditionally generate non-negligible Reynolds stresses, and by extension eddy
viscosity and potentially enhanced mixing. Although the induced transport may only be a
fraction of the speed of the underlying convective flow, this may be important over longer
time scales for medical ventilation.

5.2. Limitations

The focus of this study is the linear instability of flows through idealised airway models
using planar-symmetric geometry with a Hagen—Poiseuille velocity profile at the inlet
to simulate the unidirectional flows. Our results indicate there is a fundamental linear
instability mechanism that results in the transition from laminar to time-dependent,
and subsequently turbulent, conditions when the Reynolds number exceeds the critical
threshold and it is likely that this mechanism translates, to some extent, to the respiratory
flows through more complex human systems. However, the linear mechanisms reported are
likely not the entire picture when considering the complex dynamics of oscillatory flows
through the human respiratory system. There are potentially other external perturbations
which may contribute to instability mechanisms in the human airway. This study has not
considered the presence of finite-amplitude perturbations from the upper or lower airway
generations, or convective instabilities and non-modal mechanisms that may result in large
transient growth of disturbances.

6. Discussion and conclusion

Our results confirm that the flows through complex curved pipe networks transition from
laminar to temporally varying flows, and subsequently turbulence, via a linear mechanism
associated with the longitudinal vortices, driven by a centrifugal imbalance when the flow
passes through the curved regions of the geometry. This is in contrast to the nonlinear
process that occurs in flow domains approaching the straight pipe limit. We verify the
results from the linear stability, with DNS, and observe the frequencies of these slightly
supercritical flows to be approximately equal to the frequencies detected from the linear
stability analysis. The structures and frequencies of the unstable modes are completely
dependent on the formation of the vortices, which themselves depend on the direction
of the flow through the geometry and the number of bifurcations in the domain. For
inflows, we observe a decrease in the critical Reynolds number with the addition of

1020 A32-44


https://doi.org/10.1017/jfm.2025.10670

https://doi.org/10.1017/jfm.2025.10670 Published online by Cambridge University Press

Journal of Fluid Mechanics

the tertiary bifurcation. However, the instability mechanism and mode structure in the
secondary pipes are qualitatively similar, growing on two-vortex base flow topologies.
In the tertiary pipes, in case 124in, the base flow evolves to a four-vortex system where
similarities in the mode structure with that seen in outflow case 12out are apparent. The
modes grow near the centre of the pipe, in regions of high strain rates, on the four vortices.
For outflows, we observe an increase in the critical Reynolds number with the addition
of the tertiary bifurcation. More importantly, the tertiary bifurcation triggers a different
instability mechanism which arises due to a modification of the secondary base flow
structure. We track this modification to two regular SSBBs in the (natural) temporally
stable base flow. These results are potentially important for understanding and modelling
gas transport through the upper generations of the human respiratory system.
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Appendix A
A.l Grid resolution study

A grid resolution study was carried out to confirm the accuracy of the results. The grid
resolution study was performed by monitoring both global and local parameters. Globally,
the energy norm based on the average of the root-mean-square of the velocity across the
solution domain was tracked and the linear modes from the stability analysis eigendata
were inspected. Locally, the structure of the flow at a section downstream of the bifurcation
(into the secondary pipe) that is known to be susceptible to the onset of instabilities was
inspected in the base flow and the structure of an unstable mode was inspected where
growth occurred.

For the single-bifurcation geometry, the first global and local resolution studies, relating
to the base flow, were run across polynomial orders (p-order) of the basis functions of
the spectral elements of &, 10, 12, 14 and 16 at Re =9600. The results of the global
resolution study showed a decreasing global energy norm as the p-order was increased. An
exponential curve, expressed as a function of the p-order (E,orm = 0.33¢~0-201p—order
0.5663), was fitted to the measured global data to estimate a converged energy norm. Using
this approximation for convergence (0.5663), the errors associated with each p-order were
estimated (detailed in table 12).

For the local indicator of convergence, the flow structure located 5.5 diameters
downstream of the bifurcation at time, T = 100 was monitored. By p-order 12 the main
features of the flow were resolved and changes in the structure appeared qualitatively
diminished with respect to subsequent increases in the p-order (shown in figure 35).

Based on the energy norm convergence criterion, the error in the solution for p-order
12 was less than 6 %. The maximum critical value for the Reynolds numbers investigated
in this study was less than 7750, equating to ~ 20 % less than the Reynolds number used
in the grid convergence study, suggesting the error associated with p-order 12 is likely
to be less than the reported estimation. The local indicator of convergence showed that
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p-order E,orm Error (%) CPU hours

8 0.65 14.0 2.1
10 0.62 8.7 5.0
12 0.60 53 9.7
14 0.59 35 17.9
16 0.58 1.7 335

Table 12. Results from the first global grid resolution study relating to the global energy norm. Results show
the error associated with p-orders 8, 10, 12, 14 and 16 at Re = 9600 under inflow conditions. The reported
values of E,,, were obtained at time, T = 115. The last column, CPU hours, indicates the total wall clock
time required to run each case from the study.

P8 P
P14
[0.2
0x10°

Figure 35. Results from the first local grid resolution study. All pipe sections shown are located downstream
of the bifurcation in the secondary pipe. Results from all p-orders are shown as the velocity magnitude at
Re = 9600 under inflow conditions.

I 1.0x 100

0.8
0.6
0.4

Velocity mag

10 P12
P16

the structure of the flow was resolved by p-order 12, giving confidence that the important
features were captured. Refining the grid resolution further required significantly greater
computational resources making this difficult. To decrease the estimated error to below
2 % required changing the p-order from 12 to 16, resulting in three times more wall
clock time (based on this study), rendering the improvement in accuracy not worth the
computational expense. Subsequently, interpolation polynomial order 12 was used to
establish all base flows reported in this study.

The second global and local resolution studies considered the linear modes outputted
from the Arnoldi algorithm and the local structure in the flow where the growth was
evolving. Based on the global and local resolution results, relating to the base flow
solution, the base flow for calculating the leading modes was p-order 12. From this base
flow, the perturbations were evolved forward in time using p-orders 12, 14 and 16 for
the linear solver. Three Arnoldi calculations were performed, for each linearised run, to
confirm the leading modes being tracked were the same (detailed in table 13). Based on the
value of the multipliers (relating to the growth rate), the error across the three interpolation
polynomial orders was <1 %.

Locally, the growth of the leading modes was compared to confirm the structure across
the three resolutions relating to the linear solver. The mode structures were fully resolved
by p-order 12. Subsequently, all simulations (base flow and perturbation) were run with
p-order 12, giving a total node count of 27 684 800.

For the double-bifurcation geometry, we have used a p-order of 12 for all base flow and
perturbation calculations, based on the resolution study detailed in Jacob et al. (2023), who
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P-order Multiplier Real component Imaginary component
12 1.146 0.944 +0.649
14 1.143 0.964 +0.642
16 1.149 0.956 +0.637

Table 13. Results of the global grid resolution study relating to the unstable modes from interpolation
polynomial orders 12,14 and 16 calculated from the interpolation polynomial order 12 base flow
at Re = 9600.

P12 P14 P16

Figure 36. Results from the second local grid resolution study. All pipe sections are located downstream of the
bifurcation in the secondary pipe. Results from all p-orders are shown as the velocity magnitude at Re = 9600
under inflow conditions.

)

used an identical macro-mesh. Subsequently, all simulations (base flow and perturbation)
were run with a total node count of 66 443 520.

Appendix B
B.1 Selective frequency damping framework convergence study

Figures 37 and 38 show the results from a convergence test of the SFD framework from
the single-bifurcation inflow case, 12in, at Re =7250. The test tracked the difference
in the velocity magnitude time history from two set-ups: a DNS solution with the SFD
framework switched off, and a DNS solution with the SFD framework switched on. The
difference was correlated with the global L2 norm outputted from the SFD framework. In
figure 37, the undamped velocity magnitude time history is plotted from a probe point
located & 15 diameters downstream of the origin in the secondary pipe of the DNS
solution in black, which stabilises naturally given sufficient time. Plotted in red is the
solution after the SFD framework has been switched on, from the same probe, with all
other parameters remaining identical. In this validation case, the SFD framework was
switched on at time T = 75, just prior to the epoch of time where the turbulence appeared
most prominent, and run until a selected convergence criterion was reached. The final
values of the dimensionless velocity magnitude shown in figure 37 were both equal to
0.609119 correlating with an root-mean-square error (L2) norm of 10~ confirming a
convergence criterion accurate to six or more significant figures. Figure 38 shows the
truncated convergence history plotting the L2 norm, outputted by the SFD algorithm,
correlating with the red trace as the solution approaches the true steady state.

This test case was known to stabilise naturally given enough time making it suitable
for testing the accuracy of the algorithm and establishing an adequate convergence
criterion. The steady-state base flow solutions were considered converged when the global
L2 norm < 1079. These converged base flow solutions formed the basis around which
the governing equations were linearised and subsequently used for all linear stability
calculations.
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Figure 37. SFD framework convergence test at Re = 7250 from the single-bifurcation inflow case, 12in. The
black line tracks the velocity magnitude of the undamped DNS solution. The red line tracks the velocity
magnitude of the same case after the SFD framework has been switched on at T =75. All other parameters
are identical. The probe point from which the data was collected is located & 15 diameters downstream of the
origin in the centre of the secondary pipe. The time history of the SFD solution is correlated with an L2 norm
time history shown in figure 38. The SFD solution used a filter gain of 0.15 and filter width of 3.2. The initial
ramping up velocity data (t < 35) from the DNS trace has been omitted for clarity.
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Figure 38. The SFD framework convergence test at Re = 7250 from the single-bifurcation inflow case, 12in.
The three traces are outputted from the SFD algorithm plotting the global L2 norm from each grid point after
the forcing was switched on at T =75. The time history of the L2 norm is correlated with the time history of
the SFD solution (red trace) in figure 37. The SFD solution used a filter gain of 0.15 and filter width of 3.2.
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Code A Imaginary component Frequency
In-house 0.0271 +i1.4389 0.2290
Lupi et al. (2020) 0.0284 +i1.4399 0.2291

Table 14. Results of the validation study comparing the eigenvalues generated from our in-house Arnoldi
algorithm with the results reported in Lupi et al. (2020) from the uni-directional flow through the 90 degree
bent pipe.

(a) In-house algorithm (b) Reference algorithm

o 0
1 !
2 2
3 3
4 4
5 5 %
——— 6 6
—0.0002 —0.0001 0 0.0001 0.0002 7 7
8 8
9 9
10 10

Figure 39. Comparison of the unstable eigenmode structure obtained from our in-house Arnoldi algorithm
(panel (a)) and the reference results reported by Lupi et al. (2020) (panel (b)). Both eigenmode structures are
shown at Re =2550. In the plane of symmetry, pseudocolours of the outward velocity component are shown.
In the pipe cross-sections, in-plane streamlines and pseudocolours of the streamwise velocity component are
shown. The heat map is arbitrary units. The arrow indicates direction of flow through the domain. Inset is a
magnified view of the mode structure inside the bend.

Appendix C
C.1 In-house Arnoldi algorithm validation

A validation study was carried out to verify the accuracy of the results obtained from
our in-house Arnoldi algorithm. We compare the results generated by our in-house code
with the study detailed in Lupi et al. (2020). We develop an identical numerical set-up to
replicate the conditions for unidirectional flow through a 90 degree bent pipe and compare
the eigenvalues and frequency of the unstable eigenmode, as well as the mode structure.
The data reported from our in-house code were run at Re = 2550, the same as that reported
in Lupi et al. (2020).

Our algorithm successfully identifies a pair of unstable complex conjugate eigenvalues
which are in excellent agreement with the values reported by Lupi et al. (2020), detailed
in table 14.

Figure 39 presents a direct comparison between the computed eigenmode structure
from our in-house code (left) and the reference structure reported by Lupi et al. (2020)
(right). The spatial structure of the eigenmode computed from our code reproduces the
key features observed by Lupi et al. (2020).
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