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Abstract

The new motion of embedding a centre manifold in some higher-dimensional man-
ifold leads to a practical approach to the rational low-dimensional approximation
of a wide class of dynamical systems; it also provides a simple geometric picture for
these approximations. In particular, I consider the problem of finding an approxi-
mate, but accurate, description of the evolution of a two-dimensional planform of
convection. Inspired by a simple example, the straightforward adiabatic iteration
is proposed to estimate an embedding manifold and arguments are presented for
its effectiveness. Upon applying the procedure to a model convective planform
problem I find that the resulting approximations perform remarkably well—much
better than the traditional Swift-Hohenberg approximation for planform evolution.

1. Introduction

Convective fluid flow arising from unstably density gradients is one of the
driving forces in the atmosphere, the oceans, and the earth’s mantle. A dif-
ficult problem in fluid mechanics is to predict the large-scale motion of such
convection—it is difficult even for Rayleigh numbers near the onset of the
convection in the simple geometries used in laboratory studies. Small-scale
problems, where the horizontal extent of the flow is of the same order as the
vertical extent, may be simulated directly on a computer, see [1, 13] for exam-
ple. But many geophysical fluid flows have a large horizontal extent compared
to their height. These problems are just too enormous to be simulated di-
rectly; a simple, effective and accurate approximation has to be developed. A
scheme which could do this for Rayleigh numbers relatively near the onset of
convection is developed here; but for simplicity I only treat model problems.
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FiGURE 1. The spectrum of a typical convection problem near the onset of convection as a
function of the magnitude of the horizontal wavenumber; it shows that most modes are strongly
damped with only a limited range of modes near k = k; being active.

The treatment is based on centre manifold [4] and invariant manifold theory
[23], but is significantly different due to intractable difficulties which arise if
centre manifold theory is applied directly to such a large-scale flow.

For definiteness, imagine a laboratory experiment where a fluid, heated
from below, is enclosed between two horizontal plates of large horizontal
extent. On the length-scale of the vertical separation between the plates, the
flow typically takes the form of convective rolls or possibly hexagons. On a
large scale, the rolls or hexagons in different regions may be at different ori-
entations, and will interact and evolve over a long time scale. This relatively
slow evolution of how the rolls fit together in the experimental tank is the
planform selection problem.

A linear picture of the evolution, for very small amplitudes, may be ob-
tained by taking the horizontal Fourier transform of the problem and then
solving the eigen-problem for the growth-rates of the various modes in the
vertical. A typical picture of growth-rates for the vertical modes as a function
of the magnitude, k, of the horizontal wavenumber k is shown in Figure 1,
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for a Rayleigh number just above the critical value. Note that most modes
are very strongly damped and do not even appear in this figure. Linearly,
there exists an annulus of wavenumbers in the k-plane whose amplitudes
grow. Eventually their growth is arrested by the nonlinear processes in the
fluid and the long-term dynamics is determined by the nonlinear interaction
between modes whose wavenumbers lie in and near this annulus.

As the Rayleigh number is increased through the critical value, there is a
bifurcation from the equilibrium state of no motion, to this complex evo-
lution. It is thought that centre manifold theory should provide a rigorous
and accurate low-dimensional model of these dynamics, as it does for other
(though simpler) bifurcation problems [4, 5, 20]. Indeed, there is no great dif-
ficulty in applying centre manifold theory to the case of slowly-varying pure
rolls, a one-dimensional planform problem, which was first done heuristically
by Newell and Whitehead [17] and Segel {28]. These one-dimensional rolls
may even be used to predict the evolution of a two-dimensional planform
[8], provided that in any small locale the solution field is limited to look
like a pure one-dimensional roll; the orientation and the amplitude of the
rolls may then vary significantly over the whole field. This approach is sim-
ilar to that employed by Howard and Kopell [14] for the reaction-diffusion
equation, and it similarly suffers from having to use defects and/or shocks
to fit together patches of curving roll solutions; it is also limited to solutions
based on just one, or at most a few, pure rolls. However, attempts to apply
centre manifold theory to a two-dimensional planform problem, where the
underlying structure is that of many interacting rolls, encounters apparently
intractable zero (or near-zero) divisors.? I should mention that there appears
to be no difficulty in applying centre manifold theory to the case where the
weakly unstable modes are themselves of very long wavelength [21], as occurs
in fixed heat-flux convection [19]. In that case, the unstable modes are based
upon a small disc centered on the origin in the wavenumber plane, rather
than upon an annulus.

The zero-divisors arise in the following manner. Exactly at criticality
the solution field, say a(x, y, t), has marginal modes with wavenumber
k = |k| = k;, and centre manifold theory asserts that near criticality these
modes may be used to parameterise a low-dimensional manifold on which
the long-term evolution takes place. Thus we would suggest that, to a leading

approximation,
2z iky(x cos ¢+ sin ¢)
a= A(g, De™ Y¥%% d$ + nonlinear corrections, (1)
0

2The difficulties here with zero-divisors should not be confused with the classic “zero-divisor
problem” in Hamiltonian mechanics, which was addressed by Kolmogoroff, Arnold and Moser
[27, §6.1].
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that is, a time-varying linear superposition of all the marginal modes plus
some higher-order correction terms. The evolution of A determines the low-
dimensional long-term evolution of the planform according to some rule

84

— =G(¢, A). 2

== G(#, 4) )
This rule, and the corrections to the expression for a, are normally found
by looking at the nonlinear interactions which may be cubic, say, and so we

would have

3 2 2z p2n
x o' Kol¥(c0s 8;+00s @008 $3)+y(sin ¢, +sin ¢y +sin 6] d¢,de,do,.

(3)

on the right-hand side of a singular linear equation for the corrections to a.
To solve this equation, we would eliminate all components in the right-hand
side with wavenumber of magnitude k,, as these are not in the range of the
linear operator on the left-hand side, by an appropriate choice of G. Then
the corrections could be found; see [20] for some simple examples of this
process. Unfortunately, due to the nature of the wavenumber combinations
in the triple integral in (3), there are components in the right-hand side with
wavenumber having a magnitude arbitrarily close to k, and so the inverse of
the linear operator, in effect, divides by numbers arbitrarily close to zero—
which cannot be reasonable. This is a common obstacle in problems with a
continuous spectrum of eigen values.

As another example, zero-divisors frequently occur in wave dynamics,
where they signal resonant interactions. On the two-dimensional free sur-
face of water where there is typically a continuous spectrum of propagating
waves, these resonant interactions are almost sure to occur. However, a very
useful, if extremely complicated, approximation for the four-wave resonant
interaction in a continuous spectrum of deep water waves has been derived
by Zakharov [33). The Zakharov equation has been used in a number of
studies of wave evolution, see [32, 7]} for example, and I have commented
later on its relation to the main thrust of this paper.

In some cases, a continuous spectrum near the marginal mode can be dealt
with within centre manifold theory [21] to produce powerful approximations.
For example, one can derive shear dispersion approximations [15] and a
unified beam theory [25]. Moreover, these approximations may be derived
complete with asymptotically appropriate initial conditions [22], boundary
conditions [24)], and forcing [6]. It is also straightforward to derive evolution
equations for a one-dimensional field of convective rolls whose properties
vary in the horizontal space dimension [unpublished work by the author]).
The trick in all these applications is simply to allow the marginal mode, or
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modes, to vary slowly in space and to use the effects of these slow variations
as a perturbing term in the asymptotics. This works because, in essence, one
sweeps all the modes which are near-marginal into neighbouring marginal
modes. It is an effective approximation because the slowly-varying amplitude
does not itself resolve the length-scale of the roll, it only needs to resolve the
slow variations. Unfortunately, this approach does not seem to work for
two-dimensional planform problems in convection (nor does it seem to work
for a field of interacting waves with a continuous spectrum). To attempt this
approach, the amplitude A in (1) would be made a slowly-varying function
of the horizontal coordinates so that, instead of representing just the marginal
modes with wavenumber of magnitude k,, (1) could represent an annulus
of wavenumbers |k — k| < ¢ for some ill-defined ¢. Consequently the
components of the right-hand side (3) would either be inside the annulus, and
therefore somehow be used to determine the long-term evolution as governed
by G, or outside the annulus, and be used to determine the corrections to the
shape of the centre manifold. But there are a couple of problems here: first,
into which of a continuum of marginal modes k| = k, should a particular
near-marginal mode be swept; and second, how is anyone to determine a
definite and appropriate value for the width of the annulus £¢? This last
problem is especially uncomfortable—where in the continuous spectrum is
the dividing line to be drawn between near-marginal modes which are deemed
to be of long-term interest and those modes which are deemed not to be? All
this is most unsatisfactory. _
The current practice [18, 11, 8, 9, 3, 10] in the theoretical study of the
evolution of convective planforms is to use the model equation
%‘74 =ed— (kg +V°)'4-4° 4)
where ¢ is a small parameter measuring the difference of the Rayleigh num-
ber from its critical value. This was originally derived by Swift and Ho-
henberg [30]. The rationale is that the spectrum of the marginal modes of
this model equation can match those of the convection problem, and that
the nonlinearity is typical for the symmetry and the need to stabilise finite-
amplitude rolls. As a simplifying approximation, it does not have quite the
same appeal as the Newell and Whitehead slowly-varying roll approximation,
because it necessarily must resolve the length-scale of the rolls—this means
that the numerical simulation of a very large sized planform is unrealistic.
However, it does avoid the zero-divisor difficulties, and it does seem to model
the evolution of convection to some extent. But there are many previously
unresolved questions. Does it form an accurate model of convection? How
can this sort of approximation be put on a rational basis, rather than relying
on problem-specific heuristic arguments? How can systematic corrections be
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calculated to such an equation? Is there a simple geometric picture to sum up
the nature of this approximation? This paper answers these questions from
the point of view of centre manifold theory.

The Swift-Hohenberg equation (4) resolves not only the marginal modes
of wavenumber near k,, but also a lot of other rapidly decaying modes.
The crucial trick would seem to be that the model must get the dynamics of
the marginal modes correct—the rapidly-decaying modes are deemed to be
irrelevant to the evolution of the planform. Thus there are dynamical modes
carried along in the model other than the desired ones of importance in the
long-term evolution. Now, the model will be useful if its long-term evolution
matches that of the convective system under study; that is, the evolution
on the centre manifold of the model must be the same as that on the centre
manifold of the original system. The geometric picture is then that the model
must have embedded in it the centre manifold of the original system. This
rational philosophy of approximation is explored in a simple example in
Section 2. The simple procedure of “adiabatic iteration”, a generalisation of
adiabatic elimination as is used in synergetics [12], is discovered to form a
sequence of low-dimensional models which more and more accurately embed
the long-term dynamics of the original system.

The properties of this simple procedure to find an embedding manifold
are then examined in Section 3. There it is shown how the iteration pro-
duces more accurate approximations to an embedding manifold. Further-
more, it is shown that under suitable conditions, all solutions (not too large)
of a dynamical system approach exponentially quickly to a solution of the
low-dimensional model system which is obtained on the embedding mani-
fold. This last property justifies the use of the model system as an accurate
approximation to the long-term dynamics of the dynamical system under
study.

The adiabatic iteration proposed is simply adiabatic elimination iterated.
Adiabatic elimination [12, Chapter 7] is promoted as the basic tool of syner-
getics in finding accessible models of physical phenomena from the primitive
detailed equations. Thus the attractive geometric picture developed herein
and the properties established in Section 3 are directly pertinent to all the
work which has been based on synergetics. The problem of modelling the con-
vective planform is an example of the derivation of “generalised Ginzburg-
Landau equations for nonequilibrium phase transitions” [12, §7.7]—indeed,
Figure 7.4(a) in [12] is essentially the same as Figure 1. This close connec-
tion ensures that the results developed in this paper will greatly enhance and
extend the synergetics approach to modelling.

Then in Section 4 these ideas are applied to a simple planform selection
problem. There I compare the evolution of the exact system with the leading
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order approximation derived through the above ideas, and with the corre-
sponding Swift-Hohenberg equation. I conclude that the Swift-Hohenberg
equation is not an accurate model of the long-term evolution of the plan-
form, at least for this problem. For qualitative and quantitative long-term
prediction of the evolution, the approach of embedding the centre manifold
performs remarkably well.

2. A simple example of embedding a centre manifold

Consider the simple three-dimensional dynamical system

X=-y(x +2) (5)
y=—uy+x° -2 (6)
I=—z+Xxy @)

where u is some constant. For my purposes, take 0 < u < 1, so that the
linearised decay rate of y is between that of x (undamped) and that of z
(decay rate 1). To relate to the problem of planform selection in convection,
imagine that x represents the critical convective modes; y represents the
modes on the same branch of eigenvalues as x and so has decay rates which
range from near zero to large and negative; and z is representative of the
other, strongly damped, convective modes.

The system (5-7) possesses a centre manifold toward which all solutions
lying sufficiently close to the origin are attached exponentially quickly [4].
Viewing this exponential approach as being an uninteresting transient, it is
the long-term evolution on the centre manifold which is of interest, as it forms
a low-dimensional, here one-dimensional, model [23, 16] of the dynamics of
the full three-dimensional system. To find the centre manifold, I pose that it
is described by

y=n(x), z=_(x), (8)
which upon substitution into (5-7) leads to the two equations
pn=x"=Cannx+0),  C=xn+nx+0) (9)

for the centre manifold. Solving this pair of equations either by iteration or
by substitution of a power series in x [4], I find that the centre manifold is
given approximately by
2 —2u+u? 2(56 + 16u — 3u* — 34°
n=lx2+—3x4—i—l:ix6+ (56 ”7 £ ﬂ)x8+0(x9)
L u 4 I (10)

1 243 12+ 18 + 1742
C=;x3+ +3ﬂx5+ + /ts+ M
U

x| +0(x%). (11)

https://doi.org/10.1017/50334270000008717 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008717

[8] Planform evolution in convection 181

™ <
embedding =~
manifold / =~ -
2~Xy /

- centre manifold
- y-x 2y, z-x Yy

FIGURE 2. A manifold z = xy which approximately embeds the centre manifold (10-11)
of the full system (5-7).

The long-term evolution of the dynamical system is then modelled by

2X LS L o). (12)
I

%= -nx+ D) = = gx

A problem here is that if u is numerically small then these expressions give
poor approximations to the centre manifold because of the divisions by the
powers of u. Geometrically, the centre manifold is highly curved, at least
near the original where y ~ x? Ju and z ~ x° /u, and so it is hard to
approximate.

However, we may embed the one-dimensional centre manifold in a rel-
atively smooth two-dimensional surface, for example z = xy as shown in
Figure 2. This forms the basis for a different low-dimensional model of the
full system. The idea is to find some relatively smooth surface z = Z'(x, y),
called the embedding manifold, which contains the centre manifold (10-11).
Once this has been found, the reduced system

X =—y(x+Z(x, ) (13)
y=—uy+x - Z(x,y) (14)

is taken to be a long-term model of the full system (5-7). The aim is to
ensure that the reduced system (13-14) has the same centre manifold as the
original full system.

Although the long-term behaviour of the original system may then be accu-
rately modelled, the exponential transients in the reduced system (decaying
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roughly like exp(—ut)) need not have any exact counterpart in the original.
Now, if z = _Z(x, y) was to be an invariant manifold [23] of the full system,
then by substitution into (7) and using (5-6), it must satisfy

.‘2’=xy—:2=xy+%y(x+.2’)—%—'f—(—uy+x2—2'2). (15)

However, for the centre manifolds to be the same we need only ensure that
this equation is satisfied on the curve which is the centre manifold; the justi-
fication of this assertion and some subsequent steps is left to the next section.
In practice an exact expression for the embedding manifold is unobtainable;
all we seek is a sufficiently accurate approximation. One way to achieve a
sequence of approximations is by iteration—starting with the guess Z ® =9
we substitute the current iterate Z'*) into the right-hand side of (15) to then
give the next iterate .Z *+1) Here this results in the sequence

z0 = Xy (16)
_‘Z’(z)=(l+,u)xy—x3+xy2+xy3+x3y2 17
%= (1+u+ uz)xy -1 +,u)x3 +(1+ 3;t)xy2 — 5x3y
+ 2+ 5u+p0 )y - (6 —p—4p® = p0)xPy? — (1+ ap 4+ 24%)x%y
+(1+m)x" +0(x(x" +y))*) (18)

A cross-section through these surfaces is plotted in Figure 3. Note that al-
though the surfaces may be quite different from each other, near the centre
manifold (10-11) they are all nearly the same; this agreement gets better
closer to the origin. Intuitively it may be argued that this iteration forms
a useful sequence of approximations because the right-hand side of (15),
namely xy — Z, is small since xy is nonlinear, and on the centre manifold
the evolution of z is necessarily slow. Indeed, the first approximation, that
F=z0= Xy, occurs in various contexts [12, 31] as the so-called adiabatic
approximation since it neglects all the time variations of the ignored modes.

However, the definitive test is to see whether the reduced system (13-14)
does indeed have the same centre manifold as the original, to some order of
accuracy. Using the initial approximation that .Z © — 0 the reduced system
becomes

X=-xy, y=-my+x,

which has a centre manifold y = Y(O)(x) = n(x) + 0(x6) . Using the first
approximation, that .2 M xy , the reduced system becomes

. . 2 2
Xx=-xy(l1+y), y=—uy+x(1-y9)
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FiGURE 3. The x = 0.2 cross-sections of the approximate embedding manifolds for u = 0.5
showing the close agreement at the centre manifold (10-11) near y = 0.08: Z M s the solid
line; .2 @ s dashed; Z 3} is dotted.

which has a centre manifold y = Y(l)(x) = n(x) + O(xs). Evidently the
y location of the centre manifold of the kth version of the reduced equa-
tions has errors of 0(x2k+6). The errors in the z location are larger, with
Zz (k)(x , Y(k)) = {(x) + O(xz"+3 ), but they still decrease by two orders in
Xx at each iteration. Thus this adiabatic iteration does seem to provide in-
creasingly accurate embeddings of the centre manifold of the original system
(5-7).

One important property of this iteration occurs for small x. Adjoining
the equation 2 = 0 to (5-7), a standard trick to study bifurcations [4] and
slowly-varying solutions in space [21, 15, 25], we would find that there ex-
ists a centre manifold z = Z(u, x, y) to the enlarged system. This centre
manifold is guaranteed to exist and be a useful approximation sufficiently
close to the origin in uxyz-space; that is, for small 4 no matter what its
sign. The relevance of this observation here is that one procedure to find this
centre manifold z = Z(u, x, y) is precisely the iteration scheme outlined
above! Thus the iterates (16-18) based on (15) are guaranteed to be accurate
for small g, not only for the ultimate algebraic evolution but also for the
evolution on a time-scale of order 1/u. Furthermore, this accuracy is also
achieved for small and positive u in which case the embedding manifold
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approximates the centre-unstable manifold of the system. These properties
are essential for the convective planform problem where there can be no
clear distinction between the dynamically active, marginal nodes (x) and
the weakly damped modes (y) which all lie on the top branch of eigenvalues
shown in Figure 1.

Note that the iteration has other desirable features. There is no possibility
of zero or near-zero divisors occurring in the scheme; the only division is
by the coeflicient of decay of the z mode, and this coefficient is always
significantly different from zero for any sensible approximation. Also there
is no need to distinguish between the variables x and y; this is crucial
to its application in planform selection where marginal modes transform
indistinguishably into decaying modes, and vice versa, as the wavenumber k
is varied.

3. Adiabatic iteration to embed a centre manifold

Consider a general dynamical system in R'*™"" in the following simple
form

Xx=Ax+ f(x,y, z) (19)

y=By+g(x,y,z) (20)

2=Cz+h(x,y, 2) (21)

where x € R’ ,¥y € R™ and z € R". Furthermore, the eigenvalues of / x /
A must have zero real-part and those of mxm B and nxn C are taken
to have negative real parts. The vector functions f, g and £ are strictly
nonlinear functions which are differentiable some number of times near the
origin (where they and all their first derivatives vanish).

Given the constraints on the eigenvalues of 4, B and C it is apparent
[4] that the system (19-21) possesses an /-dimensional centre manifold de-
scribed by y = n(x), z = {(x), at least near the origin, where

O (x + f(x, m, ©) = Bu+ 8z, 1, 0),

9 (Ax+ fx, 1, 0) = CL+hx, m, 0).

Furthermore, for all initial conditions sufficiently close to the origin (at least
provided the origin is stable) the solution of the original system approaches
the centre manifold exponentially quickly, and once there it evolves according
to

(22)

X =Ax+ f(x, n(x), {(x)). (23)
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This last equation is of immense value as a low-dimensional (with just /
degrees of freedom) and slowly-evolving model of the full system (19-21).
In practice, the requirement that the eigenvalues of 4 have precisely zero real
part is not restrictive. If x represents all the desired modes in the model then
a standard trick [4, 5, 20] is to parameterise their growth rates by a variable
¢, such that some finite ¢ recovers the desired system, and that ¢ = 0 gives
the modes a zero growth rate. Then appending the variable ¢ to those in x,
and the equation é = 0 to (19) puts the desired equations in the requisite
form.

The motivation for studying the properties of the dynamical system (19—
21) is that it, in principle, has a similar eigen-structure to a convection prob-
lem. As in Section 2, the vector x represents the active marginal modes, the
vector y represents the decaying modes which come from the same branch
of eigen-solutions as the marginal modes, and the vector z represents all the
other decaying modes in the system. Of course, for convection in a large
container, all these variables are effectively infinite dimensional rather than
the finite dimensional vectors that I have posed above; I leave the problem
of how all this is justified in infinite dimensions to an analyst with a more
appropriate background. Actually, it is the infinite dimensionality of convec-
tion which is the crux of the difficulty. If the system was of finite dimensions,
then there would be little difficulty finding the centre manifold of the system
as the approximation to its long-term evolution. The difficulty in infinite di-
mensional problems is that it may be impossible to distinguish between the
variables which appear in x and those which appear in y. Although I make
such a distinction in this section, it is only done to establish properties of the
embedding of a centre manifold—ultimately I describe a procedure which
does not treat differently the variables in x and y.

The aim is to find a manifold z = Z(x, y) which embeds the centre
manifold, satisfying (22), of the original system (19-21). Once this has been
found we would use the reduced system

X=Ax+ f(x,y,2Z) (24)

as a low-dimensional (here / + m dimensional) model of, or approximation
to, the original system. It would be easier to solve than the original in at least
two respects: firstly, it would have much fewer unknowns; and secondly, the
most rapidly decaying modes typically occur in z which do not appear in
the reduced system and this results in the reduced system being much less
stiff to solve numerically.

There are a number of important properties of an embedding manifold,
and its approximation, which can be established.
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(1) If Z(x, y) is differentiable near the origin and Z (0, 0) =0 then the
reduced system (24-25) possesses a centre manifold y = Y (x) which satisfies

%;:—(Ax+f(x,Y,.‘Z'(x,Y)))=BY+g(x,Y,2’(x,Y)). (26)

This is a straightforward consequence of the restrictions which were placed
upon A, B, f and g at the outset.

(2) The manifold z = Z (x,y) embeds the centre manifold of the original
system if and only if it satisfies

CZ =-h(x,y, Z)+%(Ax+f(x, y,.‘Z”))+%—'§(By+g(x, y,Z)) (27)

on the centre manifold of the original system y = n(x).
This is established via the chain rule:

z = Z (x, y) embeds the centre manifold
& =2 (x, n(x)) and (22)
0Z 0Z an _
(3;+Wa) (Ax+f)—C2’+h
0Z 0z
& W(Ax+f)+7,’;—(Br;+g) =CZ +h.

An interesting aspect of (27) is that it is the equation for an invariant mani-
fold of the original system [23] based on the x and y modes. The difference
here is that we only require it to be satisfied on the centre manifold, rather
than for all x and y, and this makes finding approximate solutions to (27)
considerably easier.

(3) If the origin is stable then sufficiently near the origin the long-term

behaviour of the original system (5-1) is identical, to within an exponentially
decaying difference, to the long-term behaviour of a solution of the reduced
system (24-25).
The conditions that the origin be stable and that the statements are necessarily
true only in some neighbourhood of the origin are immediate consequences of
the conditions of Theorem 2 in Carr [4]. Applying this theorem I may assert
that the solutions of the reduced system (24-25) approach its centre manifold
y = Y(x) exponentially quickly. This is the same as the centre manifold of
the original system, since (27) is the equation for an invariant manifold which
must contain the centre manifold, and to which solutions are exponentially
attracted. Thus all solutions of the original system exponentially quickly
approach a solution of the reduced system.

(4) If A =0 then the adiabatic iteration procedure to find approximations
to the embedding manifold z = Z'(x, y) is as follows (the case when 4 # 0
will be commented on later). Start with the approximation Z ®_9 , and
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then iterate by substituting the current approximation .2 ®) into the right-
hand side of (27) and then solving CZ**" = right-hand side to give the
next approximation; thus the first iterate is simply 2 M- —C"'k(x ,¥,0).
At all stages this iteration is straightforward to do as the eigenvalues of C
are all bounded away from zero. The main complication is that algebraic
details increase very quickly, as may be seen in Section 2.

The exact centre manifold of the reduced system based upon the iterative ap-
proximation Z (ky differs from the centre manifold of the original system by
an amount which is O(\Z ® _ “‘*”D where this is evaluated on the centre
manifold.

To deduce this let y = ?(x) be the exact centre manifold of the reduced
system (24-25) based on the iterate z = Z (k)(x , ¥) for the embedding man-
ifold; it must thus satisfy

Y
ax

On the approximate embedding manifold this curve has z = Z (x) =
z (k)(x, Y(x)). Consider

(Ax+f(x Y, 29, 7)) =87 +¢(x, 7,2%x, 7)) . (28)

CZ+h(x,¥,2)- g—f-(Aerf(x, ¥, 2Z)

=CZY v hx, ¥, %) - =

0.7® o¥ (k)
5 ax X+ S0, v,z
. (k)

=CZY hx, ¥, 2% - 6?; (Ax+ f(x, ¥, 2%

(k)
ag (BY+g(x Y, 2%y

- C[Z —Z(kH)]

where these are evaluated on the centre manifold y = Y(x). This result
together with (28) shows that the centre manifold on _the approximate em-
bedding manifold, described by y = Y(x) and z = Z(x), satisfies (22) to
an error O(|.Z ® _ (k“)l) . Thus by Theorem 3 in Carr [4] it approximates
the centre manifold of the original system to the same order of error.

How quickly will the adiabatic iteration procedure give more accurate em-
beddings of the centre manifold? For example, in Section 2 it was noted that
each iteration gave the centre manifold of the original system to two more
orders of accuracy in x. Again only consider the case when 4 = 0 and

https://doi.org/10.1017/50334270000008717 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008717

188 A.J. Roberts (15]

consider the iterates 2% = Z (x,y)+ O(k)(x, y) where 2 satisfies (27)
exactly. Linearising for small © gives the iteration for 6™ o be

®+1)y _ [ 8h OZdf  0Z og a. de }(k)
€0 _{ gzt oxo: T ayaz T f+ (By+g) e (29)

where e is a place-holder for 6™ | We are interested in how this iteration
behaves on the original centre manifold y = 5(x). Using r to measure
distance from the origin, and recognising that dominantly f, g, 4 and Z
are 0(r2) this iteration looks like

ce® = {o(r) + O(%) + O() + O(r) + (0(1) + O(r))}8.

The presence of the O(1) from the term g—;By shows that this iteration
does not produce iterates which only change at increasing orders of r; see
the previous section where the coefficient of the xy term changes by an O(1)
amount at each iteration (unless u is asymptotically small). However, we
are only interested in the centre manifold y = n(x) where By + g = gz f=

O(r*)! Thus the iteration is actually
ce® = {0(n) +0¢™) + 0(*) + 0() + 0" 8" .

Furthermore, on the centre manifold y and z are actually of order x2—
they should be counted as quantities of order 2 in r rather than order 1.
Doing this, I observe that if f is of order 3 and g—f is of order 2, as occurs
in (5-7), then the centre manifold of the reduced system will approximate
the actual centre manifold by two more orders of accuracy at each iteration,
as seen in Section 2.

This adiabatic iteration seems to be the simplest effective procedure to find
an embedding manifold for the centre manifold. There is a lot of freedom
in choosing the embedding manifold which is not apparent in this iteration;
where this freedom is hidden and how it may be used to advantage is a
problem for further study. Another problem for study is what should be
done if A is not zero. If 4 were in Jordan form but still had purely-zero
eigenvalues, then I would expect that simple modifications could be made to
the iteration procedure in order to restore its usefulness. However, if 4 has
pure imaginary eigenvalues, as occurs in the analysis of a Hopf bifurcation
for example, I surmise that more significant changes would have to be made.
These changes would involve the separation of the time dependence into a
fast and a slow part as is needed in the sub-centre manifold [29] theory of
slowly-varying waves [26], and as is used in the derivation of Zakharov’s
equation for interacting deep water waves [32, page 115].

In summary, I comment on what the iteration looks like when it is practi-
cally impossible to disentangle the x and y modes of the dynamical system—
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the only reason for considering this approach in the first place. In this case
the equations of the dynamical system may be in the standard form

x=Ax+ f(x, 2) (30)
2=Cz+h(x, 2z) 31
where the previous x and y modes are now indistinguishably grouped into
the vector x; the matrix 4 has some essentially zero eigenvalues (corre-
sponding to the weakly damped, weakly growing and neutral modes) and
some significantly negative eigenvalues; and the matrix C has all negative

eigenvalues bounded away from zero. The procedure is then to seek an em-
bedding manifold z = Z'(x) by the adiabatic iteration

(k+1) k), OZF (k) (k)
cZ =—-h(x,Z )+—éx—(Ax+f(x,-‘Z' ), (32)

starting from 2 @ — 0. Then the approximate reduced system
% = Ax + f(x, 2% (x) (33)

models the long-term behaviour of the dynamical system (30-31) as they
both have the same centre manifold, to some order of accuracy in x. The
order of accuracy should increase with increasing k ; however, I have only
shown this if the marginal eigenvalues of 4 have no imaginary part and have
a complete eigenspace.

4. A specific planform selection problem

Consider the simple problem in two-spatial dimensions (x and y)

‘Z—‘;‘ —ra-(1+VYa— 2928+ %p(aw) (34)
aa—f =rf-2Va—-(1+VY8 - %a(a+ﬂ), (35)

where r is a forcing parameter analogous to the Rayleigh number in con-
vection. For simplicity, the boundary conditions on « and B are that they
are L-periodic in both x and y for some box length L. This periodic-
ity unfortunately eliminates interesting planform shapes generated by side
walls; however, it is easy to implement numerically and is sufficient for my
illustrative purposes. If the boundary conditions were not periodic then the
appropriate boundary conditions for the mathematical model would not be
known. My experience with one-dimensional slowly-varying approximations
[24, 25] shows that there are little known subtleties in deriving asymptotically
correct boundary conditions, and these need further research.
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These equations are not in the standard form (30-31) and so I change to
the mean and difference variables a = (e + 8)/2 and b = (e - 8)/2. In
these variables the governing partial differential equations become

%:ra-(1+vz)2a—ab=.‘2ja—ab (36)
%:rb-(l—vz)2b+a2; (37)

with both g and b being L-periodic in both x and y.

The linear picture is straightforward to establish. Linearly the a and
b equations are decoupled and the horizontal structure of the eigenmodes
is simply exp(ik - x) where x = (x,y). The corresponding eigenvalues,
forming the spectrum of the linear problem, are

Ay=r—(1-KY?, Ay=r-(1+k%’ (38)

where k = |k| as shown in Figure 4. As discussed earlier, there are two
different types of eigenvalues. The A4, branch is always strongly dissipative
and the corresponding modes are expected to have simply a modifying role on
the evolution of the solutions. On the other hand the 4, branch is composed
of marginal modes for wavenumbers k near 1, and dissipative modes for
small and large wavenumbers. Thus at the onset of “convection”, which
occurs for r > 0, the horizontal width of a “convective roll” is roughly =n
units. The difficulty for a centre manifold derivation is that there is no clear
dividing line between the two types of modes on the 4, branch. Strictly
speaking, because of the finite size of the convective problem, the linear
spectrum is actually discrete and zero-divisors cannot occur. However, even
in a relatively small container the gaps in the spectrum are quite small, which
results in small (near zero) divisors; in the example described later, L = 16n
is used, for which there are only a few gaps in the spectrum as big as 0.03—it
is effectively a continuous spectrum.

However, it is easy to derive an approximate reduced system for this sys-
tem. I just pose that b = % (a), which upon substituting into (36-37) gives

[(1-v2)2-r]g=a2-aa;fi[.?;a—w] (39)

where %—?— is a Fréchet derivative. Now, this is the equation for an invariant
manifold [23] based on the ¢ modes and to solve it properly I should really
have the term %%[.S?,a] on the left-hand side; but this is very difficult to do.
However, the analysis of the previous sections suggests that I may effectively
approximate the embedded centre manifold of the system by an iteration

based on the above equation. Define the Green’s function & by

[(1 ~-vY)? - r] £ =6(x). (40)
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FIGURE 4. The spectrum of the mode! planform selection problem (34-35) for slightly super-
critical forcing r =0.1.

For example, &, = #Ko(|x|) x K,(|x|) where » denotes convolution, and
the Green’s function for r = 0.4 is shown in Figure 5 (see next page). The
iteration to find the embedding manifold starts with Z =0 and then (39)

gives
2" =% xd’ (41)
B? =g x{d’ - 2% [aLa-dgxd|}. (42)
Thus, for example, the approximate reduced system based on the first iterate
@Y s
g—‘;=.€’,a—a$(l)=ra~(1+V2)2a—a.?,*a2. (43)
This will be discussed as the principal model equation for the original system
(34-35).

The unfamiliar feature of this evolution equation is the appearance of the
non-local convolution operator £ x. In particular, this implies that distant
boundaries have a direct effect on the interior dynamics, albeit exponentially
small. In convection this sort of non-local operator was first observed by Swift
and Hohenberg [30] in their equation (A24). However, they very swiftly
assumed, in the paragraph around their equation (A26), that it could be
replaced with a localised operator. In essence they assumed that &, could be
replaced by a delta-function spike with the same volume underneath. Doing
this here would suggest that the Swift-Hohenberg equation

da

E=.€ﬂ,a-a3/(1-r)=ra-(1+v2)2a—a3/(1—r) (44)
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FIGURE 5. The Green’s function ¥, for r = 0.4 showing its radial symmetry and exponential
decay. Note that each of the horizontal sides of the box are of length 87, that is, eight marginal
“convective rolls” long.

would be a useful approximation, in some sense, to the original problem.
Indeed there has been a lot of research on planform selection [18, 11, 8, 9,
3, 10] which is based on the assumption that the Swift-Hohenberg equation
does provide a reasonable model for convection. My numerical solutions for
the various equations above indicate that the Swift-Hohenberg equation is
deficient—the non-local nature of ¥« is essential in the accurate modelling
of the evolution of the convective planform.

As explained by Bestehorn et al.[2], the synergetics [12] approach to plan-
form selection also leads to a non-local evolution equation. However, Beste-
horn et al then proceed to also approximate the non-local operator by a lo-
calised differential operator by requiring that the interactions on the critical
circle |k| = k, be nearly correct.

The numerical solution of the evolution equations (36-37), (43) and (44)
in a periodic box is straightforward. Using a box with sides of length L = 16%
(twice that shown in Figure § for £), about 16 “convective rolls” may fit
along each side. The unknowns a and b were discretised on a 64 x 64
grid so that wavenumbers |k| < 4 were resolved. All the derivatives were
calculated spectrally, as was the convolution & x. The time integration may
be effectively done by an implicit backward Euler method; I used a second
order scheme with variable step size. To provide a genuine test, the initial
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motion should lie on or near to the centre manifold so that the comparisons
are not corrupted by the differing rapid transients in the various evolution
equations. This was achieved by generating a field of white noise of amplitude
proportional to +/r and then filtering it to leave only those wavenumber
components whose linear growth-rate is non-negative; the resultant field was
used as the initial condition for a. To start the original system, b was set to
3’, *xa , to ensure that its evolution commenced on the embedding manifold.
Deriving asymptotically correct initial conditions for a model obtained by
adiabatic iteration will require further research based on the ideas developed
for centre manifold models [22].

I discuss only the set of simulations with » = 0.4 ; other simulations were
similar. In some respects this is quite a large value of the parameter—it
should be compared to the decay-rate of zero-wavenumber modes which is
r—1=-0.6 and to the decay-rate of the b-mode near wavenumber 1 which
is r—4 = -3.6. In wavenumber space the annulus of linearly unstable
modes is 0.80 < |k| < 1.28. Seen in Figure 6 (see next page) are some
snapshots of a during the evolution® of: the exact system (36-37); the first
embedded centre manifold approximation (43); the Swift-Hohenberg approx-
imation (44). Observe that the agreement between the first approximation
and the exact system is extremely good: visually there is no difference at all;
quantitatively the difference throughout most of the simulation was about
0.3%. Remarkably, in the very early stages of the evolution, ¢ < 10, the
difference is as high as a few percent, but the two systems then converge to
be close to each other until the end of the simulations. On the other hand,
the evolution of the Swift-Hohenberg approximation is markedly different
to that of the exact system. Although they both seem to evolve ultimately
towards a two-dimensional roll structure, they do it in significantly differ-
ent ways. Firstly, the Swift-Hohenberg model convection is of a significantly
lower amplitude than the exact system. Secondly, the Swift-Hohenberg model
evolves to convective rolls much more quickly than the exact system which
has a strong tendency to linger in a square pattern for a long time. Indeed,
the last defect in the Swift-Hohenberg model has just disappeared at the last
time shown of ¢ = 310, while in the exact system and the embedded centre
manifold approximation, the last defect does not disappear until soon after
time ¢ = 1000.

Another demonstration of the inaccuracy of the Swift-Hohenberg approx-
imation may be obtained by investigating the behaviour of slowly-varying
one-dimensional rolls. Consider rolls which are independent of y for small

3A complete sequence of raster fields, which may be animated in colour to show the evolution,
may be obtained electronically from the author (email:aroberts@maths.adelaide.edu.au).
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Swift-Hohenberg

FIGURE 6. Comparison of the exact evolution of the planform with the two types of approx-
imation: the non-local embedded centre manifold (first iteration), and the Swift-Hohenberg
localising approximation. All simulations started at t = 0 with the initial planform shown at
the top-left.

supercritical r, and whose complex amplitudes A(x, ¢) vary slowly. An
asymptotic analysis based on these ideas, first done in convection by Newell
and Whitehead [17], predicts that a field of rolls governed by the Swift-
Hohenberg equation (44) is approximately described by

ix = —ix 1 3i3x 1 -3 _i3x
a=Ae + Ae - 6_4A e aA e (45)
where — denotes complex conjugation, and the evolution of the field is given
by
84 84 2
—— = — - A. 4
37 rA+4ax2 3|4] (46)
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In contrast, the exact system (36-37) and the first approximation to the em-
bedded centre manifold (43) describe a one-dimensional field of rolls, for
the above regime, by precisely the same equations. In one dimension, the
Green’s function may easily be found to be

g -1 (Le—lnm _ Le—uxt)

T A \%, %, (47)
where A, = /1 -yrand A, =1+ /r
~ %(1 +lxpe ™ asr—0. (48)
Thus the roll field for both exact and the first approximation is
R 1 3 ix 1 —3 _i3x
a=Ae” + Ae —mAe 1600A e (49)
with the component b correspondingly being
_ 1 2 i =, 122 —iox
where the evolution of the field is
oA %4 51 2

For example, the Swift-Hohenberg equation would predict that a steady field
of rolls of wavenumber k = 1 would be a ~ 2,/7/3 cos x , while the equation
based on either of the embedded centre manifold or the exact system would
predict rolls a =~ 2,/25r/51 cosx which are some 21% larger. Furthermore,
the smoothing effect of & very nicely predicts the small size, A3 /1600, of
the third harmonic in the wavefield a, while the Swift-Hohenberg equation
predicts A4° /64 which is a factor of 25 too large. This last discrepancy can
also be seen easily in Fourier transforms of the two-dimensional numerical
simulations.

The quantitative errors seen for one-dimensional slowly-varying rolls may
be dismissed as having little qualitative importance. However, my two-
dimensional simulations suggest that these errors may be indicative of serious
qualitative discrepancies in the two-dimensional evolution of the planform.
The Swift-Hohenberg approximation performs poorly, while the embedded
centre manifold approach, albeit with an unusual non-local operator, per-
forms well—here it is virtually indistinguishable from the exact system.

5. Conclusion

This approach of embedding the centre manifold in a higher dimensional
manifold seems to be a new and valuable idea in the rational approxima-
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tion of the evolution of dynamical systems. The simple “adiabatic iteration”
scheme proposed to calculate the embedding manifold is relatively straight-
forward to apply and already appears in principle in the derivation of the
Swift-Hohenberg equation. Furthermore, the iteration is based upon adia-
batic elimination which is the fundamental tool of synergetics. Synergetics
has been used to produce models in many branches of science [12, Chapters
7-11]; the properties outlined herein will also illuminate the nature of these
models. Here I have placed this scheme within a simple geometric picture,
that of embedding the centre manifold, so that its nature can be appreciated.
Using this new geometric view it should be possible to adapt and generalise
other analytic tools which are based on centre manifold theory to provide
appropriate initial conditions [22], transformation of forcing [6] and, most
interestingly for convection, boundary conditions [24]. The consequence is
that this approach forms a practical and complete scheme for modelling.

The proposed adiabatic iteration seems to be rather inefficient to carry out
beyond the first one or two iterations, due to the rapidly increasing algebraic
detail, as seen in Section 2. This was not a difficulty in the convection prob-
lem studied in Section 4, as the embedding manifold produced by just the
first iteration formed a very effective approximation. Moreover, the itera-
tion does not seem to take advantage of the great freedom allowed within
the principle that the centre manifold be embedded. There is perhaps some
scope here to produce a modified scheme which is improved in some sense,
although such improvements might only add complication. One hope is that
a modified scheme may be found that avoids the non-local nature of the
straightforward adiabatic iteration approximation. There is one property of
the iteration, as posed, which is important and must not be lost: that the
iteration reduces naturally to the scheme used to calculate a centre mani-
fold whenever the growth-rate of a mode is nearly zero. This last property
ensures that the scheme makes no sharp distriction between marginal and
non-marginal modes, there is just a continuous transition.

This guiding principle of the scheme is directly akin to that employed in
Zakharov’s equation, which describes the interaction of deep-water waves.
There, the approximate integral equation for four-wave interactions is only
accurate when the waves are in resonance [32, page 116, 3rd paragraph]—the
approximation process results in a specious four-wave interaction whenever
the four waves are significantly out of resonance. It produces a reasonable
model because the inaccurate interaction coefficients out of resonance are
small when compared to the valid coefficients in resonance. In direct analogy
with the convection problem, there is an ill-defined and gradual transition
between the resonant and non-resonant interactions.

In view of the difficulties discussed in the Introduction, this centre man-

https://doi.org/10.1017/50334270000008717 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008717

[24] Planform evolution in convection 197

ifold embedding approach to calculating global approximations to the evo-
lution of a planform seems to be the only viable one known. Furthermore,
the results obtained for the model planform problem in Section 4 are im-
pressive. However, I emphasise that the nonlocal nature of the resulting
approximations, as seen in Section 4, seems to be essential to their accurate
performance.
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