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Abstract

We present PCFTL (Probabilistic CounterFactual Temporal Logic), a new probabilistic
temporal logic for the verification of Markov Decision Processes (MDP). PCFTL introduces
operators for causal inference, allowing us to express interventional and counterfactual
queries. Given a path formula ϕ, an interventional property is concerned with the satisfaction
probability of ϕ if we apply a particular change I to the MDP (e.g., switching to a different
policy); a counterfactual formula allows us to compute, given an observed MDP path τ, what
the outcome of ϕ would have been had we applied I in the past and under the same random
factors that led to observing τ. Our approach represents a departure from existing
probabilistic temporal logics that do not support such counterfactual reasoning. From a
syntactic viewpoint, we introduce a counterfactual operator that subsumes both interven-
tional and counterfactual probabilities as well as the traditional probabilistic operator. This
makes our logic strictly more expressive than PCTL⋆. The semantics of PCFTL rely on a
structural causal model translation of the MDP, which provides a representation amenable to
counterfactual inference. We evaluate PCFTL in the context of safe reinforcement learning
using a benchmark of grid-world models.

1. Introduction

Temporal logic (TL) is arguably the primary language for the formal specification and reasoning
about system correctness and safety. It has been successfully applied to the analysis of a wide
range of systems, including cyber-physical systems (Bartocci et al., 2018), programs (Manna and
Pnueli, 2012), and stochastic models (Kwiatkowska et al., 2007). In cyber-physical systems, TLs
are especially useful for expressing and verifying critical properties of these systems, to ensure
systems meet performance and safety criteria. For example, (probabilistic) TLs can express
safety and reachability properties (e.g., ‘will the system eventually reach the goal state(s) while
avoiding unsafe states?”) and fault-tolerance properties (e.g., ‘will the system return to some
desired service level after a fault?”).

However, a limitation of existing TLs is that TL specifications must be evaluated on a fixed
configuration of the system, for example a fixed choice of control policy, communication
protocol, or system dynamics. That is, they cannot express queries like ‘what is the probability
that the system throughput will stay above a certain threshold if we switch to a high-performance
controller?”, or ‘what would have been the probability that the signal would have stayed below a
given threshold if we had used a different policy in the past?” This kind of reasoning about
different system conditions falls under the realm of causal inference (Pearl, 2009), by which the
first query is called an intervention and the second a counterfactual. Even though both causal
inference and TL-based verification are well-established on their own, their combination hasn’t
been sufficiently explored in past literature (see Section 7 for a more complete account of the
related work). With this paper, we contribute to bridging these two fields.

We introduce PCFTL (Probabilistic CounterFactual Temporal Logic), the first probabilistic
temporal logic that explicitly includes causal operators to express interventional properties
(‘what will happen if : : : ”), counterfactual properties (‘what would have happened if : : : ”), and
so-called causal effects, defined as the difference of interventional or counterfactual probabilities
between two different configurations. In particular, in this paper we focus on the analysis of
Markov Decision Processes (MDPs), which are capable of modeling sequential decision-making
processes under uncertainty, a key aspect in many cyber-physical systems applications. MDPs
provide a useful framework for a variety of applications, such as reinforcement learning,
planning, and probabilistic verification. For MDPs, arguably the most relevant kind of causal
reasoning concerns evaluating how a change in the MDP policy affects some outcome. The
outcome of interest for us is the satisfaction probability of a temporal-logic formula.

Interventions are ‘forward-looking” (Oberst and Sontag, 2019), as they allow us to evaluate
the probability of a TL property ϕ after applying a particular change X  X 0 to the system.
Counterfactuals are instead ‘retrospective” (Oberst and Sontag, 2019), telling us what might
have happened under a different condition: having observed an MDP path τ, they allow us to
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evaluateϕ on thewhat-if version of τ, that is the path that we would
have observed if we had applied X  X 0 at some point in the past,
provided that the random factors that yielded τ remain fixed.Causal
effects (Guo et al., 2020) allow us to establish the impact of a given
change at the level of the individual path or overall, and they
quantify the increase in the probability of ϕ induced by a
manipulation X  X 0. Causal and counterfactual reasoning has
gained a lot of attention in recent years due to its power in
observational data studies: with counterfactuals, one can answer
what-if questions relative to an observed path, that is without
having to intervene on the real system (which might jeopardize
safety) but using observational data only. Our PCFTL logic enables
this kind of reasoning in the context of formal verification.

Our approach to incorporating causal inference in temporal
logic involves only a minimal extension of traditional probabilistic
logics. PCFTL is an extension of PCTL⋆ (Baier et al., 1997; Baier,
1998) where the probabilistic operator P⋈ p(ϕ), which checks
whether the probability of ϕ satisfies threshold ⋈ p (where
⋈ ∈ {≤,<,>, ≥ }), is replaced with a counterfactual operator
I@t.P⋈ p(ϕ), which concerns the probability of ϕ if we had applied
intervention I at t time steps in the past. Albeit minimal, such an
extension provides great expressive power: if t> 0, then the
operator corresponds to a counterfactual query; if t= 0, it
represents an interventional probability; if both t= 0 and I is
empty, then we retrieve the traditional P⋈ p(ϕ) operator.

Motivating example: To better grasp interventions and counter-
factuals, consider an example of a robot in a 2D space, modeled by
the equation Stþ 1= Stþ AtþUt, where St∈ℝ2 and At∈ℝ2 are
the state and action at time t, andUt∈ℝ2 is an unobserved random
exogenous input (e.g., white Gaussian noise). The robot must
satisfy a bounded safety property ϕ= ¬F [1,4](St ≥ [1, 2]), which
specifies that the robot must avoid entering the unsafe region
St≥ [1, 2] on all paths (up to length 3) that it takes. Suppose
we observe a path τ under some policy π, given by
τ ¼ ½0; 0� ½0;1��!½0:1; 0:5� ½1;1��!½0:8; 1:75� ½0;0��!½1:3; 2:1�, where

s a�! s0 denotes a step from state s to s 0 through action a. This

path, and hence policy π, is unsafe because it violates the safety
property in its final state. A question then arises: given τ, if we had
intervened in the past by changing the policy from π to some π 0,
could have we prevented this violation? Define the intervention
I ¼ π π0. Then, the counterfactual PCFTL query I@3.P⋈ p(ϕ)
allows us to evaluate the probability of the safety property ϕ in a
what-if version of τ where we apply I (i.e., policy π 0 instead of π) at
3 steps back from the last state of τ, that is from the beginning of the
path in this case.1 In particular, the counterfactual path is obtained
by applying I but by keeping the same values of the random
exogenous factors Ut that led to τ. These factors cannot be directly
observed, but, given the above Equation, they can be readily
determined as Ut = Stþ 1− St− At, leading to U1= [0.1,−0.5],
U2= [−0.3,0.25], and U3= [0.5,0.35]. Then, suppose the alter-
native policy π 0 chooses actions A01= [0,0.5] and A03= [−0.4,−0.2]
(but keeps A02=A2), then this induces the counterfactual path
τ0 ¼ ½0; 0� ½0;0:5��!½0:1; 0� ½1;1��!½0:8; 1:25� ½�0:4;�0:2��!½0:9; 1:4�.
Notably, now τ 0 satisfies the safety property.

Despite the simplicity of this example, counterfactual reasoning
becomes challenging when dealing with discrete-state probabilistic
models like MDPs. Indeed, the state of an MDP evolves according
to a categorical distribution, for which the identification and
inference of the exogenous factors are non-trivial.

Contributions: In this paper, we introduce the syntax and
semantics of PCFTL and present a statistical model-checking
approach for verifying PCFTL properties in MDP environments.
Our approach, summarized in Figure 1, relies on translating the
MDP into a so-called structural causal model (SCM), a
fundamental model in causal inference that enables computation
of counterfactual distributions. We use a particular form of SCMs
(Oberst and Sontag, 2019) suitable for encoding categorical
counterfactuals (arising with discrete-state MDPs). After perform-
ing counterfactual inference, the SCM model is then translated
back into an MDP amenable for PCFTL model checking. Unlike
existing logics, PCFTL formulas are interpreted with respect to an
observed MDP path τ, rather than a single MDP state, as we must
keep track of the past to perform counterfactual reasoning.

Using efficient statistical model checking procedures, we
evaluate PCFTL on a reinforcement learning benchmark
(Chevalier-Boisvert et al., 2018) involving multiple 2D grid-world
environments, goal-oriented tasks, and interventional and
counterfactual properties under various policies learned through
neural-network-based reinforcement learning methods. These
results demonstrate the usefulness of PCFTL in AI safety, but our
approach could enhance the verification of probabilistic models in
a variety of domains, from distributed systems to security and
biology.

The paper covers background about SCMs, MDPs, and SCM-
based encoding of MDPs in Section 2, construction of counter-
factual MDPs in Section 3, definition of PCFTL syntax, semantics,
and decision procedures in Section 4, experimental results in
Section 6, related work in Section 7, and conclusions in Section 8.

2. Background

2.1. Causal inference with structural causal models

Structural Causal Models (SCMs) (Pearl, 2009; Glymour et al.,
2016) are equation-based models to specify and reason about
causal relationships involving some variables of interest.

Definition 1. (Structural Causal Model (SCM)). An SCM is a
tuple M ¼ ðU;V;F ;PðUÞÞ where

• U is a set of (mutually independent) exogenous variables.
• V is a set of endogenous variables, where the value of each
V 2 V is determined by a function V ¼ fVðPAV ;UVÞ. Here,
PAV � V are the set of direct causes of V, and UV 2 U.

• F is the set of functions f fVgV2V.
• PðUÞ ¼NU2U PðUÞ is the joint distribution of the (mutually
independent) exogenous variables.

Assignments in F must be acyclic, to ensure that no variable
can be a direct or indirect cause of itself. Because of this, the causal
relationships in an SCM can be represented by a directed acyclic
graph (DAG), called a causal diagram.

In an SCM, the values of the exogenous variables U are
determined by factors outside the model, which is modelled by
some distribution PðUÞ. Exogenous variables are unobserved
variables which act as the source of randomness in the system.
Indeed, for a fixed realization u ofU, that is a concrete unfolding of
the system’s randomness, the values of V become deterministic, as
they are uniquely determined by u and the causal processes F . A
concrete value u of U is also called context (or unit). We denote by
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PMðVÞ the so-called observational distribution of V, that is, the
data-generating distribution entailed by the SCM F and PðUÞ.
Interventions. With SCMs, one can establish the causal effect of
some input variable X on some output variable Y by evaluating Y
after ‘forcing” some specific values x on X, an operation called
intervention. Applying X x means replacing the RHS of
X ¼ fXðPAX ;UXÞ with x. Interventions allow to establish the true
causal effect of X on Y by comparing the so-called post-
interventional distribution PM[X x](Y) at different values x,
where M[X x] is the SCM obtained from M by applying
X  x.2 By ‘disconnecting” X from any of its possible causes,
interventions prevent any source of spurious association between
X and Y (Glymour et al., 2016) (i.e., caused by variables other than
X and that are not descendants of X).3 In the following we will use
the notation I (and M[I]) to denote a set of interventions
I= {Vi  vi}i.

Counterfactuals. Upon observing a particular realization v of the
SCM variables V, counterfactuals answer the following question:
what would have been the value of some variable Y for observation v
if we had applied intervention I on our modelM? This corresponds
to evaluating V in a hypothetical world characterized by the same
context (i.e., same realization of random factors) that generated the
observation v but under a different causal process.

Computing counterfactuals involves three steps (Glymour
et al., 2016):

1. abduction: estimate the context given the observation, that is
derive PðU j V ¼ vÞ;

2. action: modify the SCM by applying the intervention of interest,
for example M[I]; and

3. prediction: evaluate V under the manipulated model M[I] and
the inferred context.

We denote by MðvÞ½I� the counterfactual model obtained by
replacing PðUÞ with PðU j V ¼ vÞ in the SCM M and then
applying intervention I. Note that here v is a realization ofV under
M and not under M[I].

As explained above, each observation V ¼ v can be seen as a
deterministic function of a particular value u of U. Therefore, the
counterfactual model is deterministic too, assuming that such u
can be identified from V ¼ v. However, inferring u precisely is
often not possible (as discussed later), resulting in a (non-Dirac)
posterior distribution of contexts PðU j V ¼ vÞ and thus, a
stochastic counterfactual value.

2.1.1. Causal effects
Estimating a causal effect amounts to comparing some variable Y
(outcome, output) under different values of some other variable X
(treatment, input). Interventions and counterfactuals enable this

task by ruling out spurious association between X and Y, as
discussed above. There are three main estimators of causal effects:

Individual Treatment Effect (ITE). For a context u, the ITE of
Y 2 V between interventions I1 and I0 is defined as
YI1ðuÞ � YI0ðuÞ, where YIiðuÞ is the counterfactual value of Y
induced by u under the post-intervention model M[Ii]. As
explained above, we don’t have direct access to the exogenous
values u but only to realizations v � PMðVÞ. Thus, below we
define the ITE as a function of v (rather than u) by plugging in the
average counterfactual value of Yw.r.t. the posterior PðU j V ¼ vÞ:

ITEðY ; I1; I0; vÞ ¼ EMðvÞ½I1�½Y � � EMðvÞ½I0�½Y �: (1)

Average Treatment Effect (ATE). ATE is used to estimate causal
effects at the population level and is defined as the expected value
(w.r.t. PðUÞ) of the individual treatment effect, or equivalently, as
the difference of post-interventional expectations:

ATEðY ; I1; I0Þ ¼ EM½I1�½Y � � EM½I0�½Y �: (2)

Conditional Average Treatment Effect (CATE). The CATE is the
conditional version of ATE. This estimator is useful when the
treatment effect may vary across the population depending on the
value of some variables V:

CATEðY ; I1; I0; vÞ ¼ EM½I1�½Y j V ¼ v� � EM½I0�½Y j V ¼ v�: (3)

2.2. Markov Decision Processes (MDPs)

MDPs are a class of stochastic models to describe sequential
decision making processes, where at each step t, an agent in state si
performs some action ai determined by a policy π ending up in
state siþ 1� P(⋅ ∣ si, ai). The agent receives some rewardR(si, ai) for
performing ai at si. Here, we focus on MDPs with finite state and
action spaces.Without loss of generality, we restrict the policy class
to deterministic policies (Puterman, 2014). Moreover, each MDP
state satisfies a (possibly empty) set of atomic propositions, with
AP being the set of atomic propositions.

Definition 2. (Markov Decision Process (MDP)). AnMDP is a
tuple P = (S,A, PP, PI,R, L) where S is the state space,A is the set
of actions, PP : (S × A × S)! [0,1] is the transition probability
function, PI : S ! [0,1] is the initial state distribution, R :
(S ×A) ! ℝ is the reward function, and L : S ! 2AP is a
labelling function, which assigns to each state s∈ S the set of atomic
propositions that are valid in s. A (deterministic) policy π for P is
a function π : S ! A.

An agent acting under policy π in an MDP environment will
induce an MDP path τ, as follows:

Figure 1. Overview of our approach to PCFTL verifica-
tion, with section pointers.
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Definition 3. (MDP path). A path τ= (s1, a1), (s2, a2), : : : of an
MDP P = (S,A, PP, PI,R, L) induced by a policy π is a sequence of
state-action pairs where si∈ S and ai= π(si) for all i≥ 1. The
probability of a path τ is given by PPðτÞ ¼ PIðs1Þ �

Q
i�1

PPðsiþ1 j si; aiÞ. For a finite path τ= (s1, a1), : : : , (sk, ak), we
denote by PathsP, π(τ) the set of all (infinite) paths with
prefix τ induced by MDP P and policy π, which has probability
PP(PathsP, π(τ))= PP(τ).

We denote by |τ| the length of the path, by τ[i] the i-th element
of τ (for 0< i≤ |τ|), by τ[i :] the suffix of τ starting at position i
(inclusive), and by τ[i : iþ j] the subsequence spanning positions i
to iþ j (inclusive). Even though τ[i] denotes the pair (si, ai) of the
path, we will often use it, when the context is clear, to denote only
the state si. We slightly abuse notation and write PathsP, π(s) to
denote the set of paths induced by π and starting with s.

Usually, an MDP is stationary, meaning that its transition
probability function and/or reward function remain fixed over
time. However, there exists a variant, called a non-stationary MDP
(Lecarpentier and Rachelson, 2019), where the transition
probability function and/or reward function may change over
time. A non-stationaryMDP can be converted to a stationaryMDP
by augmenting its state space with a variable that keeps track of
the time.

An MDP under a fixed policy can be described as a
deterministic-time Markov Chain (DTMC), as follows.

Definition 4. (Induced DTMC). An MDP P = (S,A, PP PI,
R, L) and a policy π : S ! A induce a discrete-time Markov Chain
(DTMC) DP, π= (S, PDP, π, PI, RP, π, L) where for s, s 0 ∈ S,
PDP, π(s 0∣s)= PP(s 0 ∣ s, π(s)), and for s∈ S, RP, π(s)= R(s, π(s)).
Paths of DP, π are sequences of states, and their probabilities are
defined similarly to Def. 3.

2.3. SCM-based encoding of MDPs

We now present the SCM-based encoding of MDPs introduced in
(Oberst and Sontag, 2019). For a given path length T, the SCM
MP, π, T induced by an MDP P and a policy π characterizes the
unrolling of paths of P of length T, that is it has endogenous
variables St and At describing the MDP’s state and action at each
time step t, where t= 1, : : : , T. These are defined by the structural
equations:

Stþ1 ¼ f ðSt ;At ;UtÞ; At ¼ πðStÞ; S1 ¼ f0ðU0Þ; (4)

where the probabilistic state transition at t, PP(Stþ 1 ∣ St, At), is
encoded as a deterministic function f of St, At, and the (random)
exogenous variablesUt, while the random choice of the initial state,
PI(S1), as a deterministic function f0 of U0.

We stress that the SCM encoding does not require any
assumptions about the structure of theMDP: such encoding results
in an acyclic graph, while the original MDP need not be. Figure 2
shows the causal diagram resulting from this SCM encoding.

Note that both PP(Stþ 1 ∣ St, At) and PI(S1) are categorical
distributions and encoding them in the above SCM form (i.e., as
functions of a random variable) is not obvious. Oberst and Sontag
(2019) proposed a solution termed Gumbel-Max SCM, as given by:

Stþ1 ¼ f ðSt ;At ;Ut ¼ ðGs;tÞs2SÞ
¼ arg max

s2S
log PPðStþ1 ¼ s j St ;AtÞð Þ þ Gs;t

� �
(5)

where, for s∈ S and t∈ 1= : : : , T, Gs, t�Gumbel. This is based
on the Gumbel-Max trick, by which one can sample from a
categorical distribution withk categories (corresponding to the |S|
MDP states in our case) by first drawing realizations g1, : : : , gk of a
standard Gumbel distribution and then by setting the outcome to
arg maxj {log(P(Y= j))þgj}. By using the Gumbel-Max trick, the
assignment Stþ 1= f(St, At, (Gs, t)s∈ S) in (5) will be equivalent to
sampling Stþ 1� PP(S ∣ St,At):

Proposition 1. (Gumbel-Max SCM correctness). Given an
MDP P, policy π, and time bound T, then for any path τ of P
induced by π of length T,we have PMP, π, T(τ)= PP(τ),whereMP, π, T

is the Gumbel-Max SCM for P, π, and T.

Importantly, theGumbel-Max SCM encoding enjoys a desirable
property called counterfactual stability:

Definition 5. (Counterfactual stability (Oberst and Sontag,
2019)). An SCM M satisfies counterfactual stability relative to a
categorical variable Y of M if whenever we observe Y= i under
some intervention I, then the counterfactual value of Y under I 0 ≠ I
remains Y= i unless I 0 increases the relative likelihood of an
alternative outcome j≠ i, that is unless PM[I 0](Y=j)/PM[I]

(Y=j)> PM[I 0](Y=i)/PM[I](Y=i).

Intuitively, the above definition tells us that, in a counterfactual
scenario, we would observe the same outcome Y= i unless the
intervention increases the relative likelihood of an alternative

outcome Y= j, that is, unless
p0j
pj
> p0i

pi
holds for some j.

Gumbel-Max SCMs are the most prominent encoding that can
express categorical variables as functions of independent random
variables and that satisfy counterfactual stability.4 However, there
also exists methods that generalise to other causal mechanisms
with the counterfactual stability property (see Section 7).

Counterfactual inference. Given we observed an MDP path
τ= (s1,a1), : : : , (s|τ|,a|τ|), counterfactual inference in this setting
entails deriving P((Gs, t)s∈ S

t= 1, : : : , |τ|− 1 ∣τ). Essentially, this means
finding values for the Gumbel exogenous variables compatible with
τ. By the Markov property, the above can be factorized as follows:

PððGs;tÞt¼1;...;jτj�1s2S j τÞ ¼ PððGs;1Þs2S j s1Þ �
Yjτj�1
t¼2

PððGs;tÞs2S j st; at; stþ1Þ:

However, the mechanism of (5) is non-invertible, i.e., given st and
at, there might be multiple values of (Gs, t)s∈ S leading to the same
stþ 1. This implies that MDP counterfactuals can’t be uniquely
identified, a problem that affects categorical counterfactuals
in general and not just Gumbel-Max SCMs (Oberst and
Sontag, 2019).

Figure 2. Causal diagram for the SCM encoding of an MDP. Black circles represents
exogenous variables, while white circles represent endogenous ones.
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As suggested by Oberst and Sontag (2019), we can perform
(approximate) posterior inference of P((Gs, t)s∈ S∣st,at,stþ 1)
through rejection sampling. This involves sampling from the prior
P((Gs, t)s∈ S), and rejecting all the realizations (gs, t)s∈ S for which
f(st,at,(gs, t)s∈ S)≠ stþ 1.

Interventions in MDPs. In principle, we can consider any kind of
intervention I over the SCM encoding of an MDP. Arguably, the
most relevant case is when I affects theMDP policy π. For instance,
in some applications, we might want to replace π with a more
conservative or aggressive policy. Hence, in the following, we
assume interventions of the form I= {(π π 0)} for some policy π 0
(i.e., we change the RHS of the equation for At in the SCM (4)).

Example 1. (MDP counterfactuals). Consider anMDPmodel of
a light switch. The MDP has two states, S ¼ fOn;Offg, and we can
take two actions, A ¼ fSwitch; Nopg. If we take action Switch, the
state of the MDP changes (from On, to Off, or vice versa) with
probability 0.9, and it remains the same with probability 0.1. If we
take action Nop, with probability 0.9 the MDP’s state does not
change, and with probability 0.1 the state changes. We fix the
following policy: π(On)= NOP and π(Off)= Switch.

Assume we observe the path τ ¼ Off Switch�!On NOP�! Off,
where the first step has probability 0.9 and the second step 0.1. First,
we want to show that the Gumbel-max SCM formulation (5) yields
the same probability values, modulo sampling variability. In
Figure 3a and Figure 3b we show the values of log (PP(Off ∣St,
At))þGOff, t (x-axis) and log (PP(On ∣St,At))þGOn, t (y-axis)
obtained by sampling 1000 realizations of the Gumbel variables
G. We see indeed that, at t= 2, 89.7% of these points lie above the
identity line, that is they yield On as the next state. At t= 3, we find
that 10.9% of the points yield Off as the next state.

In Figure 3c and Figure 3d, we show the computation of
counterfactuals. Assume an intervention that changes the policy into
one that constantly performs action Switch. Now, we want to see
what is the probability of path τ0 ¼ Off Switch�! On Switch�! Off
given that we observed τ. That is, we compute the probability of τ 0 in
the counterfactual SCM model where the (prior) Gumbel variables
are replaced by G0 ¼ G j τ, that is those inferred from τ.

First note that τ and τ 0 perform the same first step. Hence, this step
has probability 1 under G0 because G0 is defined such that it assigns
probability 1 to the observed path (see also Proposition 3 for a similar
statement). In the second step, the observed path τ transitioned intoOff
after performingNop, despite a probability of 0.9 of jumping into On.
This means that G0 strongly favours Off (over On) to happen in the
second step. Hence, we expect that the probability ofOn Switch�! Off in
the counterfactual world will be higher than the nominal probability
PP(Off ∣ On, Switch). In particular, by counterfactual stability (Def. 5),
such probability should be 1 because the intervention doesn’t make
state On more likely to happen (rather the opposite: the relative
likelihood ofOn is indeed 0.1/0.9,while it is 0.9/0.1 for Off). This can be
proven also by showing that, by rejection sampling, we have that:

PG0 log PPðOff j On; NopÞð Þ þ G0Off;t > log PPðOn j On; NopÞð Þ þ G0On;t
� �

¼ 1:

Since 0.9= PP(Off ∣ On; Switch)> PP(Off ∣ On; NOP)= 0.1 and
0.1 = PP(On ∣ On; Switch)< PP(On ∣ On; NOP)= 0.9, it follows that

PG0 log PPðOff j On; SwitchÞð Þ þ G0Off;t > log PPðOn j On; SwitchÞð Þ þ G0On;t
� �

¼ 1;

i.e., performing action Switch at state On has probability 1 of leading
into state Off in the counterfactual world. In particular, since
PP(Off ∣ On; Switch)> PP(Off ∣ On; NOP), the points in Figure 3d
(corresponding to the counterfactual step) are shifted to the right
compared to Figure 3b (observed step).

3. Construction of counterfactual MDP

Consider a Gumbel-max SCMMP for an MDP P under policy π,
and a (finite) path τ of MP. Let G0 ¼ ðG0s;iÞi¼1;...;jτj�1s2S be the set of
posterior Gumbel variables, where, for i= 1, : : : , |τ|− 1, G 0s, i�
PMP(Gs, i∣τ) and Gs, i�Gumbel. That is, G 0s, i is the value of the
exogenous variable (associated to position i and state s) inferred
from τ. Then, for i= 1, : : : , |τ|− 1, we have the following
transition probability function, which directly follows from the
SCM (5):

PP;i;τðs0 j s; aÞ ¼ Pr
ðG0

s00 ;i
Þ
s002S

s0 ¼ argmax
s002S

log PPs00 j s; aÞð Þ þ G0s00;i
n o !

: (6)

See also (Tsirtsis, De, and Rodriguez, 2021) for a similar
definition. Then, we can express this non-stationary MDP as a
stationary one by augmenting its state space as follows.

Definition 6. (Counterfactual MDP). GivenanMDPP,policyπ,
and a finite path τ of P under π, the corresponding (stationary)
counterfactual MDP Pτ= (Sτ,A, PPτ, PIτ,R 0, L 0). Here, Sτ=
S × {1, : : : , |τ|} is an augmented state space where each state s 0 ∈ Sτ

corresponds toatuple s 0 = (s, i),whereeachstate s∈S fromthenominal
MDPP has been augmented with a timestep i,R 0 : (Sτ×A) ! ℝ is
a reward function such that R 0((s, i), a)=R(s, a), L 0 : Sτ ! 2AP

Figure 3. Light switch MDP (example 1). X-axis: log (PP(Off∣St, At))þ GOff, t; Y-axis:
log (PP(On∣St, At))þ GOn, t. Plots (a) and (b) are relative to the prior Gumbel G and the
observed path τ (using 1000 realizations for G). Plots (c) and (d) are relative to
the posterior GumbelG τ and the counterfactual path τ 0. Points leading to state On are
in red, while those for Off are in blue.
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is a labelling function such that L 0((s, i))= L(s), PIτ(τ[1],1)= 1, and
for any (s, i), (s 0, i 0)∈ Sτ and a∈A,

Pτ
Pðs0; i0 j s; i; aÞ ¼

PPðs0 j s; aÞ if i ¼ i0 ¼ jτj
PP;i;τðs0 j s; aÞ if i < jτj and i0 ¼ iþ 1

0 otherwise

:

8><
>:

In other words, inPτwe introduce an extra variable to track the
position i of the observed path τ. Then, for i< |τ|, Pτ behaves
according to the transition probabilities of the counterfactual
model, as per Eq. 6. For i= |τ|,Pτ is equivalent to the originalMDP
model P, because we do not have an observation on which we can
condition our Gumbel exogenous variables. Also, PIτ is defined
such that Pτ admits only one initial state, that is, the first state of τ.
The following proposition shows that the counterfactual MDP
reduces to the original MDP in the special case when |τ|= 1.

Proposition 2. If |τ|= 1, then the counterfactual MDP Pτ of an
MDP P is equivalent to P(τ[1]).

Proof. It is easy to see that, by applying Def. 6, we recover the
definition of the original MDP P (with the provision that
Sτ= S × {1}) initialised at τ[1], the only state of τ. Indeed, if τ
contains only one state, then we do not have any observed
transitions to perform posterior inference of the Gumbel
exogenous variables. □

Another useful property is that if we do not perform any
interventions, that is we maintain the original policy π, then the
counterfactual MDP induces the observed path τ with probability
1, as expected.

Proposition 3. Given P, π, and τ as per Definition 6, then the
resulting counterfactual MDP Pτ is such that PPτ(τ)= 1.

Proof. It is enough to show that, for any 1≤ i< |τ|, it holds that

PP;i;τðsiþ1 j si; aiÞ ¼ Pr
ðG0

s00 ;i
Þ
s002S

�
siþ1 ¼ argmax

s002S
log PPðs00 j si; aiÞð Þ þ G0s00 ;i
n o�

¼ 1:

This is true because the posterior Gumbel variables G 0s″, i are
inferred in order to be consistent with the observed path. This
holds also for (approximate) inference via rejection sampling: since
we discard all the Gumbel realizations incompatible with the
observation, we have that

Pr
ðG0

s00 ;i
Þs002S

siþ1 ¼= argmax
s002S

log PPðs00 j si; aiÞð Þ þ G0s00 ;i
n o !

¼ 0;

which proves the above equality. □

In the following, for simplicity, we will use policies π defined
over S (the state space of the original MDP P) also for the
augmented state space Sτ of the counterfactual MDP, by assuming
π(s, i)= π(s) for any i.

4. PCFTL: a probabilistic temporal logic with
interventions, Counterfactuals, and Causal Effects

In this section, we formally definePCFTL (Probabilistic CounterFactual
Temporal Logic). A PCFTL formula is interpreted over an MDP P, a
policy π, and an observed path τ resulting from P and π.

PCFTL extends PCTL⋆ (Baier et al., 1997; Baier, 1998) with a
counterfactual operator I@t.P⋈ p(ϕ), a counterfactual reward
operator I@t.R⋈ r

≤k , and two causal effect operators, ΔI1;I0
@t .P⋈ p(ϕ)

and Δ
I1;I0
@t .R⋈ r

≤k . The latter two formulas are defined as the
difference of counterfactual probabilities (resp., cumulative
rewards) between interventions I1 and I0, in line with the definition
of treatment effects in Section 2.1.

PCFTL syntax. The syntax of PCFTL is as follows:

Φ :: ¼ > j ρ j :Φ j Φ ^Φ j I@t:P⋈pðϕÞ j I@t :R�k⋈r j ΔI1;I0
@t :P⋈p0 ðϕÞ j ΔI1;I0

@t :R�k⋈r

ϕ :: ¼ Φ j :ϕ j ϕ ^ ϕ j ϕU ½a;b�ϕ

where I, I0, I1 are (possibly empty) interventions, t∈ℤ≥ 0, ρ ∈ AP,
p∈ [0,1], r∈ℝ, p 0 ∈ [−1, 1], ⋈ ∈ {<,≤,≥,> }, k∈ℤ≥ 1, and
[a, b] is an interval with a∈ℤ≥ 0 and b∈ℤ≥ 0 ∪ {∞}. State
formulas Φ can be atomic propositions, counterfactual or causal
effect formulas, or logical combinations of them. Path formula
ϕ1U[a,b]ϕ2 is satisfied by paths where ϕ2 holds at some time point
within the (potentially unbounded) interval [a, b] and ϕ1 always
holds before that point. Other standard bounded temporal
operators are derived as: F[a,b]ϕ	⊤U[a,b]ϕ (eventually),
G[a, b]ϕ	 ¬F[a,b]¬ϕ (always), and Xϕ	F[1,1]ϕ (next).

Before introducing the semantics of PCFTL, we define the
quantitative counterfactual operators I@t.P= ?(ϕ)(P, π, τ) and
I@t.R= ?

≤k(P, π, τ). These quantify the probability of a path formula
ϕ (resp., the expected cumulative reward up to step k) in the
counterfactual model obtained from MDP P, given that we
observed path τ under policy π, and by applying I from t steps back
in the past (we emphasise that t is a local indexing).

I@t :P¼?ðϕÞðP;π; τÞ ¼ PP0 ðfτ0 2 PathsP0;π0 j ðP 0;π0; τ0; 1Þ 
 ϕgÞ (7)

I@t :R
�k
¼? ðP;π; τÞ ¼

X
τ02 PathsP0 ;π0

PP0 ðτ0Þ �
Xk
i¼1

Rðτ0½i�Þ
 !

(8)

whereP 0 =Pτ[|τ|−t:] is the counterfactualMDP derived fromP and
τ[|τ|−t :], i.e., the path suffix starting at the time of intervention,
and π 0 is the intervention policy (corresponding to π if I= 0=). Note
that the probability of ϕ is evaluated in the counterfactual model
starting from the time of intervention, not from the last state of the
path (to do so, one can simply replace ϕ with F[t,t]ϕ). The
satisfaction relation for path formulae is as follows.

Definition 7. (Semantics of PCFTL). Given a PCFTL formula
Φ, an MDP P, and a path τ of P under some policy π, the PCFTL
satisfaction relation ⊨ is defined by the following rules:

ðP;π; τÞ 
 ρ if ρ 2 Lðτ½jτj�Þ
ðP;π; τÞ 
 :Φ if ðP;π; τÞ 
= Φ

ðP;π; τÞ 
 Φ1^Φ2 if ððP;π; τÞ 
 Φ1Þ ^ ððP;π; τÞ 
 Φ2Þ
ðP;π; τÞ 
 I@t :P⋈pðϕÞ if I@t:P¼?ðϕÞðP;π; τÞ⋈p

ðP;π; τÞ 
 I@t :R
�k
⋈r if I@t :R

�k
¼? ðP; π; τÞ⋈r

ðP;π; τÞ 
 Δ
I1;I0
@t :P⋈p0 ðϕÞ if ðI1@t :P¼?ðϕÞðP;π; τÞ � I0@t :P¼?ðφÞðP;π; τÞÞ⋈p0

ðP;π; τÞ 
 Δ
I1;I0
@t :R�k⋈r if ðI1@t :R

�k
¼? ðP;π; τÞ � I0@t :R

�k
¼? ðP;π; τÞÞ⋈r

ðP;π; τ; tÞ 
 Φ if ðP;π; τ½1 : t�Þ 
 Φ

ðP;π; τ; tÞ 
 :ϕ if ðP; π; τ; tÞ 
= ϕ
ðP;π; τ; tÞ 
 ϕ1 ^ ϕ2 if ððP;π; τ; tÞ 
 φ1Þ ^ ððP;π; τ; tÞ 
 φ2Þ
ðP;π; τ; tÞ 
 ϕ1U ½a;b�ϕ2 if 9t1 2 ½a; b�:ððP;π; τ; t þ t1Þ 
 φ2^

8t2 2 ½0; t1Þ:ððP;π; τ; t þ t2Þ 
 φ1ÞÞ:
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Remark 1. Amain difference compared to existing temporal logics
like PCTL⋆ is that a PCFTL formula Φ is evaluated over a path of
observed states and actions rather than the current state only.
Keeping track of the past allows us to perform counterfactual
reasoning; see Equations 7 and 8. Without counterfactuals, there
would be no need to carry over the path, but only the current state
because the system is Markovian.5 Also, PCTL⋆ formulas evaluated
over a DTMC model, while in our logic, it is convenient to
keep P and π separated rather than working with the DTMC
induced by P and π.

Remark 2. Normally, probabilistic model checking of MDPs is
concerned with computing the maximum or minimum satisfaction
probability across the policy space (Baier and Katoen, 2008). In this
work, we instead want to compute probabilities w.r.t. given nominal
and interventional/counterfactual policies, not across the entire
policy space.

Building on the intuition that our counterfactual operator
generalizes PCTL⋆’s probabilistic operator, we demonstrate below
that our logic subsumes PCTL⋆.

Proposition 4. Every PCTL⋆ formula is a PCFTL formula, but not
viceversa.

Proof. It suffices to prove that PCTL⋆’s probabilistic operator (see
Baier and Katoen, 2008) is a special case of our counterfactual
operator. Path formulas and their semantics are indeed equivalent
between the two logics, with the only difference being that in
PCFTL we keep track of the point t in the path at which ϕ is
evaluated.

In particular, we show that, for s ∈ S, P= ?(ϕ)(P, π, s)= ;@0.
P= ?(ϕ)(P, π, (s)), where P= ?(ϕ)(P, π, s)= PP(s)({τ 0 ∈ PathsP(s), π∣
(P(s), π, τ 0,1)⊨ϕ}) is the quantitative probabilistic operator. By
applying (7), we have that

;@0:P¼?ðϕÞðP;π; ðsÞÞ ¼ PP0 ðfτ0 2 PathsP0;π0 j ðP 0;π0; τ0; 1Þ 
 ϕgÞ

where π 0 = π (the intervention is empty), and P 0 =P(s). By
Proposition 2, we have that P(s)=P(s). □

Expressiveness. We discuss the counterfactual operator
I@t.P⋈ p(ϕ) (a similar reasoning holds for I@t.R⋈ r

≤k). When t= 0,
our operator captures the post-interventional probability; that is,
the probability of a path formula ϕ after we apply intervention I at
the current state. In this case, no counterfactuals need to be
inferred because, trivially, we don’t have any observed MDP states
beyond the time of intervention (see Figure 4b). Indeed, by
Proposition 2, we have that Pτ[|τ|−0:]=P(τ[|τ|−0])=P(τ[|τ|]),
that is the counterfactual MDP conditioned on the last state of τ
corresponds to the original MDPP initialized at that state. For this
reason, as also shown in the proof of Propositon 4, our operator
subsumes PCTL⋆’s probabilistic formula (which is indeed omitted
in PCFTL): when t= 0 and I = ;, I@t.P⋈ p(ϕ) corresponds to
evaluating P⋈ p(ϕ) w.r.t. the original MDP P initialized at
τ[|τ|−0]= τ[|τ|] and under the original policy π (see Figure 4a).
Thus, ;@0.P⋈ p(ϕ)≡ P⋈ p(ϕ).

When t> 0, our operator expresses a counterfactual query,
which answers the question: given that we observed τ, what would
have been the probability of ϕ if we had applied a particular
intervention I at t steps back in the past (but under the same
random circumstances that led to τ)? A common choice is to apply
I at the beginning of τ (t= |τ|− 1) but other options are possible,
for example intervening before some violation has happened in τ.
We stress, however, that our operator goes beyond the usual notion
of counterfactuals, by which the outcomes of interest are obtained
only from the observed (or counterfactual) path. Indeed, depend-
ing on the bounds in the temporal operators of ϕ, evaluating ϕ
might require paths that extend beyond τ. Hence, up to the length
of τ, ϕ is evaluated on counterfactual paths; beyond that point,
paths follow the original MDP model P (which is precisely how
our counterfactual MDP is constructed, see Def. 6) because there
are no observations to condition on. We show why this matters in
Example 2 below.

Example 2. Consider an MDP P and an obstacle avoidance
property φH= G[0,H]¬obstacle for some horizon H > 0. Let τ be an
observed path ofP under some policy π. Let τI,with |τI|= |τ|, denote
the counterfactual path obtained from τ by applying some
intervention I= {π  π 0} at the start. (For simplicity, we assume
that only one counterfactual path is possible.) Now suppose that no
obstacle is hit in τ or τI. So, in usual counterfactual analysis, one

Figure 4. Three scenarios for the evaluation of I@t.P⋈ p(ϕ). The observed path τ is in black. The counterfactual path (induced by the counterfactual MDP P 0 =Pτ[|τ|−t:] and the
intervention policy π 0) is in dark blue (in general we have a distribution of such paths, but here we show only one for simplicity). Paths extensions under the nominal policy π are in
gray, and those under π 0 in light blue. The horizontal axis represents time (or path positions), and the vertical axis the MDP state (continuous and one-dimensional for illustration
purposes). While none of the three examples hit the obstacle within the observed/counterfactual path, moving forward, π yields a higher probability of this happening.

Research Directions: Cyber-Physical Systems 7

Downloaded from https://www.cambridge.org/core. 29 Jul 2025 at 10:01:58, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


would conclude that the nominal policy and the intervention policy
are equivalent relative to propertyφH and observation τ.However, if
the safety property bound H extends beyond the length of τ, then it is
necessary to reason about the future evolution of the MDP beyond
τ (or τI): in one case, starting from the last state of τ and under the
nominal policy; in the other, from the last state of the counterfactual
path τI and under I’s policy. At this point, it is entirely possible that
going forward from the counterfactual world yields a higher
probability of obstacle avoidance than remaining with the nominal
policy, as illustrated in Figures 4a and 4c. Thus, limiting the analysis
to outcomes within the observed/counterfactual past, as done in
previous work (Oberst and Sontag, 2019; Tsirtsis, De, and
Rodriguez, 2021), would lead to the wrong conclusion that the
two policies are equivalent safety-wise.

Encoding treatment effects. We explain how the introduced
causal effect operators ΔI1;I0

@t .P⋈ p 0(ϕ) and Δ
I1;I0
@t .R⋈ r

≤k can be used
to express the traditional CATE and ITE estimators (defined in
Section 2.1). We saw that CATE is the difference of post-
interventional probabilities, conditioned on a particular value
V= v of some variable V. In reinforcement learning with MDPs,
one sensible choice is to condition on the first state of the post-
interventional path (Oberst and Sontag, 2019). Therefore, for the
same argument made above about defining post-interventional
probabilities with I@0.P⋈ p(ϕ) formulas, we can express this notion
of CATE in PCFTL with the formula Δ

I1;I0
@t .P⋈ p(ϕ). The latter

indeed is the effect in the probability of ϕ between interventions
I1 and I0, conditioned on paths starting with τ[|τ|−0]= τ[|τ|]
(the last state of τ).

ATE, the unconditional version of CATE, cannot be directly
expressed in PCFTL because our semantics is defined over a non-
empty path τ, and hence, probabilities are implicitly conditional on
the last state τ[|τ|]. An equivalent of ATE can be defined as the
expected value of the CATE formulaΔI1;I0

@t .P⋈ p(ϕ) evaluated at the
initial states S� PI(S) of the MDP.

Finally, akin to how I@t.P⋈ p(ϕ) with t> 0 expresses a
counterfactual probability (as discussed previously), the operator
Δ

I1;I0
@t .P⋈ p(ϕ) with t> 0 provides a notion of ITE, because, like

ITE, our operator is defined as the difference of the counterfactual
probabilities I1@t.P= ?(ϕ) and I0@t.P= ?(ϕ).

4.1. Example properties

Below, we provide examples of useful properties that can be
expressed with the newly introduced counterfactual and causal
effect operators of PCFTL, for the verification of cyber-physical
systems.

Example 3. Let τ denote an observed path (of length τ) in an
arbitrary MDP P under policy π. Let π 0 represent an alternative
policy that we can intervene on, defined by I 0 = π  π 0, and let ϕ be
a path formula describing some requirement of interest. Using
PCFTL, we can express many interventional and counterfactual
properties related to cyber-physical systems, such as:

• Safety:
– I@|τ|− 1.P≥ 0.99(G[0,20]signal< threshold): ‘If we had replaced

the nominal policy π with π 0 at the beginning, would the
probability of the signal remaining below a specified safety
threshold over the next 20 steps have been at least 99%?”

– Δ@0
I 0 , ;.P> 0(G[a,b]ϕ): “Is π 0 safer than πmoving forward from the

current state (between bounds a and b)?” (this is a CATE-like
query)

– ;@t.P< p(G[a,b]ϕ) ! I 0@t.P≥ p(G[a,b]ϕ): “Had we deployed
π 0 t steps in the past, would we have observed a safety
probability of at least p if π failed to achieve so?”

– I 0@t.P= ?(F [t 0 ,t 0](¬ϕ∧Δ@0
I″, ;.P> 0F [1,H]ϕ)),where I″= {(π π″)}

and H≥ 1 : “What would have been the probability, had we
appliedπ 0 t steps in the past, of observing a violationafter time t 0,
and subsequently, of a different policy π″ yielding a better
recovery probability than π 0?”

• Liveness:
– I@|τ|− 1.P≥ 0.99(G[0,20]waiting_for_resource<F acquired_re-

source): ‘If we had replaced the nominal policy πwith π 0 at the
beginning, would the probability of avoiding resource
starvation over the next 20 steps have been at least 99%?”

• Reachability:
– I@0.P≥ 0.95(F [0,10]goal): “If we apply the intervention

I 0 = {(π π 0)} in the current state, will the probability of
reaching the goal state(s) within 10 steps be at least 95%?”

– Δ@0
I 0 , ;.P≥ 0(F [0,10]goal): “If we replaced the nominal policy π

with π 0 at the current time step, would this increase
the likelihood of reaching the goal state(s) within the next
10 steps?”

• Reward-based properties:
– I@10.R≥ 200

≤ |τ| : “If we replaced the nominal policy πwith π 0 in the
last 10 time steps, would the expected reward be over 200?”

– Δ@|τ|− 1
I 0 , ; .R≥ 30

≤ |τ| : “If we replaced the nominal policy π with π 0 at
the beginning, would the expected reward over τ steps under π 0
have been at least 30 higher than the expected reward under π”

4.2. Decidability

Despite the added expressiveness, PCFTL remains decidable. First,
we note that the transition probability function of a counterfactual
MDP, defined in (6), is a well-defined probability measure.
Therefore, the set of paths induced by a counterfactual MDP P 0
and some policy is also measurable (Baier and Katoen, 2008),
which ensures that we can quantify the probability of a path
formula.

A decision procedure for PCFTL can be adapted from the
standard model checking algorithm for a DTMC D= (S, PD, PI,
R, L) and a PCTL* formula Φ (Baier and Katoen, 2008), which we
summarise next. The procedure traverses the parse tree of Φ
bottom-up. For each node, representing a subformula Ψ, the
satisfaction set Sat(Ψ)= {s∈ S ∣ s⊨Ψ} is computed. When Ψ is a
simple Boolean formula, computing Sat(Ψ) is straightforward, so
we focus on the case Ψ= P⋈ p 0(ϕ). Here, all maximal state
subformulas of ϕ are replaced with new atomic propositions
representing their satisfaction sets. This step is possible because the
satisfaction sets are precomputed during the bottom-up traversal.
This operation effectively transforms ϕ into an LTL property,
which enables the computation of PD(s ⊨ ϕ) using a standard
automata-based approach (Baier and Katoen, 2008). Hence, we
can compute the satisfaction set of Ψ as Sat(Ψ)= {s∈ S ∣
PD(s⊨ ϕ)⋈ p 0}.

Model-checking PCTL* has double-exponential time complex-
ity in |ϕ| due to the transformation of ϕ 0 into a deterministic Rabin
automaton and polynomial complexity in the size of the DTMC.
Moreover, as demonstrated by Kwiatkowska et al. (2007),
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determining reward properties does not impact the decidability or
time complexity of the model-checking procedure, so we will not
discuss this case here.

The decision procedure for PCFTL follows a similar approach.
We do not discuss Boolean and reward properties and cover
the case when Ψ= I@t.P⋈ p(ϕ) (from which a procedure for
Δ

I1;I0
@t .P⋈ p 0(ϕ) can be easily derived). The key difference here is

that the satisfaction set for Sat(Ψ) cannot include states, but it must
include paths because the satisfaction of I@t.P⋈ p(ϕ) depends on an
(observed) path. It is important to note that this set will include
paths of at most length T where T is the largest t offset of an
intervention appearing in any state subformula. Indeed, it is easy to
see that the satisfaction of I@t.P⋈ p(ϕ) w.r.t. a path τ (with |τ|≥ t)
depends only on the t-length suffix of τ (which is the suffix used to
construct the counterfactual MDP, see (7)). To transform the path
formula ϕ into an equivalent LTL formula (as done above), we now
need to express these satisfaction sets (defined over finite paths, i.e.,
sequences of states) as atomic propositions (defined over states).
This is possible by augmenting the MDP with memory to keep
track of the last T− 1 visited states.6 In this way, there is a direct
correspondence between the elements of Sat(Ψ) and the states of
the augmented MDP, as desired. So, we can now construct our sets
as done for the PCTL* case above, as Sat(Ψ)= {τ∈⋃1≤ i≤ T

Si ∣ PDτ, π 0(τ[1]⊨ϕ)} where Dτ, π 0 is the (counterfactual) DTMC
induced by the interventional policy π 0 and by the counterfactual
MDP associated to the original MDP and path τ. Having shown
that PCFTL model checking reduces to PCTL* model checking,
its complexity is still polynomial in the size of the induced
(counterfactual) DTMC, as the state space size of the augmented
model is polynomial in that of the induced DTMC.

5. PCFTL verification with statistical model checking

We use statistical model checking (SMC) (Younes and Simmons,
2006; Legay et al., 2010) to determine whether our properties are
satisfied, that is by sampling finite paths of the (counterfactual)
MDPmodel. We leave the study of numerical-symbolic algorithms
for future work.

Since we deal with finite paths, we consider a fragment of the
logic with bounded temporal operators. Also, we restrict to non-
nested properties, that is those where path sub-formulas ϕ do not
contain in turn counterfactual operators (even though we allow for
arbitrary nesting of temporal operators in ϕ). The complication
with nested formulas is that we require multiple executions to
determine the satisfaction of ϕ, leading to a sample size that is
exponential in the depth of the nested operator (Younes and
Simmons, 2006; Legay et al., 2010). Nevertheless, the fragment we
consider is rich enough to express a variety of reinforcement
learning tasks (see Section 6) and subsumes Probabilistic Bounded
LTL (Zuliani, Platzer, and Clarke, 2013) (because our counterfac-
tual formulas generalize probabilistic ones).

In short, with SMC we reduce the problem of checking
I@t.P≥ p(ϕ) to one of hypothesis testing, given a sample of MDP
realizations. As in (Younes and Simmons, 2006; Legay et al., 2010),
we employ a sequential scheme that allows sampling only the
number of paths necessary to ensure a priori probabilities α and β
of type-1 errors (wrongly concluding that the property is false) and
type-2 errors (wrongly concluding that it is true), respectively. Our
approach builds on (Younes and Simmons, 2006; Legay et al.,
2010) and extends it to handle reward and causal effect properties,
by defining a suitable sequential test for T-distributed outcomes

(rather than Bernoulli ones as done in Younes and Simmons
(2006) and Legay et al. (2010)).

5.1. Computation of counterfactuals and causal effects

SMC relies on sampling paths of the (counterfactual) MDP model
under some policy. We choose to sample these paths using the
Gumbel-Max trick (see (5)) as it facilitates inference for the causal
effect operator, as we will explain next. Using this formulation, we
can express the counterfactual probability of (7) as the expectation
of a function f ðGÞ of (prior) Gumbel variables G � Gumbel, as
follows:

I@t :P¼?ðϕÞðP;π; τÞ ¼ EG½fðGÞ�;with fðGÞ ¼ 1ðP0;π0; τ0ðGÞ; 1Þ 
 ϕÞ; (9)

where 1 is the indicator function, P 0 =Pτ[|τ|−t:] is the counterfac-
tual MDP, π 0 is intervention I’s policy, and τ0ðGÞ is the path of P 0
under π 0 which is uniquely determined by G.7

The corresponding formulation for the counterfactual reward
of (8) is readily obtained as:

R�k¼? ðP;π; τÞ ¼ EG½ f ðGÞ�;with f ðGÞ ¼
Xk
i¼1

Rðτ0ðGÞ½i�Þ: (10)

We proceed similarly for causal effect operators, with one
important difference. While in Definition 7, we formulated the
causal effect as the difference of two independent probabilities
(or expected rewards), we here express it as the mean of paired
differences between individual outcomes. This will allow us to
reduce a two-sample inference problem into a one-sample
problem.

Δ
I1 ;I0
@t :P¼?ðϕÞðP;π; τÞ : f ðGÞ ¼ 1ðP0;π1; τ1ðGÞ; 1Þ 
 φÞ�1ðP 0;π0; τ0ðGÞ; 1Þ 
 φÞ

(11)

Δ
I1;I0
@t :R�k¼?ðP;π; τÞ : f ðGÞ ¼

Xb
i¼a

Rðτ1ðGÞ½i�Þ �Rðτ0ðGÞ½i�Þ;

(12)

where for i= 0, 1, πi is Ii’s policy, and τiðGÞ is the path of the
counterfactual MDP P 0 under πi uniquely determined by the
Gumbel G. The advantage of the above form using paired
differences is that this yields smaller variability, and hence, a more
accurate statistical estimation, than the one based on the difference
of independent means.

5.2. Qualitative properties

Let pϕ= I@t.P= ?(ϕ)(P,π,τ) be the true (unknown) counterfactual
probability of ϕ for a given MDP P, policy π, and path τ. The
problem of checking whether pϕ is above a given threshold θ, that is
deciding property I@t.P≥ θ(ϕ), can be formulated and solved as one
of hypothesis testing, where we test the hypothesis H : pϕ≥ θ
against K : pϕ< θ using a set of observations x1, : : : , xm of the
underlying process.

Hypothesis testing may incur two kinds of errors: type-1 errors,
that is wrongly concluding thatK is true (whenH holds) and type-2
errors, that is wrongly concluding that H is true (when K holds).
We denote the probability of type-1 errors by α and that of type-2
errors by β. The pair ⟨α, β⟩ is also called the strength of the test.
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Wald’s sequential probability ratio test (SPRT) (Wald, 2004) is
an efficient scheme used in probabilistic model checking (Younes
and Simmons, 2006; Younes et al., 2006) to sample only the
number of realizations necessary to answer the above hypothesis
test with strength ⟨α, β⟩. We first explain in detail the SPRT for
I@t.P≥ θ(ϕ) properties, and then briefly cover the other kinds of
formulas.

I@t.P≥ θ(ϕ) properties. The SPRT method considers the following
relaxation of the original hypotheses: H0 : pϕ≥ θ0 VS H1 : pϕ≤ θ1,
with θ0= θþ δ and θ1= θ− δ, where δ> 0 is a user-defined
parameter. The interval (θ1,θ0) is called indifference region, as we
are willing to accept either hypothesis when pϕ∈ (θ1,θ0). This
relaxation is necessary because, when testing the original
hypotheses H and K, we cannot control simultaneously both α
and β if the true probability pϕ is exactly equal to θ, see (Younes and
Simmons, 2006; Younes et al., 2006).

In the SPRT, we collect observations iteratively. At the
m-th iteration, we have m observations xm ¼ ðx1; . . . ; xmÞ.
In our case, these are counterfactual outcomes, that is realizations
of the Bernoulli process (X1, : : : , Xm) where Xi � f ðGÞ ¼
1ðP0;π0; τ0ðGÞ; 1Þ 
 φÞ (see Eq. 9). Given xm, we compute the
following likelihood ratio (LR)

f ðxm j H1Þ
f ðxm j H0Þ

¼
Q

m
i¼1 PrðXi ¼ xi j pϕ ¼ θ1ÞQ
m
i¼1 PrðXi ¼ xi j pϕ ¼ θ0Þ

¼ θdm1 ð1� θ1Þm�dm
θdm0 ð1� θ0Þm�dm

;

(13)

where dm ¼
P

m
i¼1 xi is the number of observed successes. In other

words, f ðxm j HiÞ is the probability of observing the sequence xm if
pϕ= θi holds. At this point, the SPRT compares the LR with the

constants A = (1−β)/α and B = β/(1−α) and: if f ðxmjH1Þ
f ðxmjH0Þ � B, we

accept H0, with a type-2 error probability of β;
if f ðxm jH1Þ

f ðxm jH0Þ � A, we accept H1, with a type-1 error probability of

α; or,
we collect additional observations until one of the two above

conditions hold. Note that this procedure requires a larger number
of observations as the true pϕ approaches the threshold θ.
Nevertheless, a decision is always reached after a finite number of
steps (see Younes and Simmons (2006); Younes et al. (2006) for a
more detailed analysis of the SPRT’s stopping time). The above
decision scheme is valid for other kinds of properties as well, that is
it doesn’t depend on the underlying distribution of the
observations, as long as the LR is adequately defined. Hence, we
won’t repeat it for the cases below.

I@t.R ≥ θ
≤k formulas. The SPRT can be also applied to variables other

than Bernoulli, as are those entailed by reward-based properties.
The corresponding test is an application of the SPRT to T-
distributed observations (Schnuerch and Erdfelder, 2020). Let
μ be the true (unknown) average cumulative reward, that is
μ= I@t.R= ?

≤k . Here, we sample observations from the f ðGÞ of (10),
for which we have that µ ¼ E½f ðGÞ�.

We consider the hypotheses: H0 : μ≥ θ0 VS H1 : μ≤ θ1, with
θ0= θþ δ ⋅ σ and θ1= θ − δ ⋅ σ, where σ is the (unknown)
standard deviation of f ðGÞ, and δ> 0 is the indifference parameter:
the indifference region spans 2 ⋅ δ standard deviations around θ.

The definition of the LR follows the intuition that if H0 holds
and in particular, μ= θ0, then the variable Tm= (Xm−θ)/Sm follows
a non-central T distribution with non-centrality parameter δ � ffiffiffiffi

m
p

and m − 1 degrees of freedom, where Xm ¼ 1
m

P
m
i¼1 Xi is the

sample mean and Sm ¼ 1ffiffiffi
m
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�1
P

m
i¼1ðXi � XmÞ2

q
is the stan-

dard error of Xm (Schnuerch and Erdfelder, 2020). The same
reasoning holds for H1, but after adjusting the sign of Tm. Hence,

the LR is given by f ðxmjH1Þ
f ðxmjH0Þ ¼

fT ð�tm jm�1;δ�
ffiffiffi
m
p Þ

fT ðtmjm�1;δ�
ffiffiffi
m
p Þ where tm is the

observed value of Tm and fTðx j m� 1; δ � ffiffiffiffi
m
p Þ is the p.d.f. at x of

the non-central T distribution with m− 1 degrees of freedom and
parameter δ � ffiffiffiffi

m
p

.

Δ
I1;I0
@t .P≥ θ(ϕ) and Δ

I1;I0
@t .R ≥ θ

≤k formulas. Since we can express the
causal effect as the mean of a (non-Bernoulli) variable (the paired
difference in the counterfactual outcomes of I1 and I0), we can
apply the same SPRT procedure introduced above for I@t.R ≥ θ

≤k

formulas,8 provided that we use the correct definition of f ðGÞ, that
is that of (11) for ΔI1;I0

@t .P≥ θ(ϕ) and (12) for ΔI1;I0
@t .R ≥ θ

≤k.
When I1= I0, however, the above procedure fails because the

two policies attain the same outcomes, and so their pairwise
differences are constantly 0, resulting in Sm= 0 and Tm=∞, which
has a likelihood of 0. To detect this case, as done in David et al.
(2011), we run a dedicated SPRT to test that the probability of
obtaining equal outcomes is equal to 1.

Boolean combinations. To verify ¬Φ with strength ⟨α, β⟩, we
verify Φ with strength ⟨β, α⟩ and negate the result. To verify a
conjunction

V
N
i¼1 Φi with strength ⟨α, β⟩, we need to verify each

conjunct Φi with strength ⟨α/N, β⟩. See (Younes and Simmons,
2006) for more details.

5.3. Quantitative properties

For quantitative properties, we use Chernoff-Hoeffding bounds to
identify the number of realizations n necessary such that the
Monte-Carlo estimate of the probability (or reward) property
meets a priori error and confidence bounds. Given an error bound
δ> 0 and an iid sample X1, : : : , Xn such that for each i= 1, : : : , n,
E[Xi]= μ and xl≤ Xi≤ xu for some constant xl< xu,
then the Hoeffding inequality (Hoeffding, 1963) establishes
that Pðj Xn � µj � δÞ � 2 exp � 2nδ2

ðxu�xlÞ2
� �

; where
Xn ¼ ð1=nÞ

P
n
i¼1 Xi is the sample mean. Hence, given bounds

δ> 0 and 0< α< 1, one can determine a priori the number of
realizations n such that P(|Xn−μ|≥ δ)≤ α, by equating

α ¼ 2 exp � 2nδ2

ðxu�xlÞ2
� �

and obtaining n ¼ � ðxu�xlÞ2 log ðα=2Þ2δ2

l m
.

For the special case of I@t.P= ?(ϕ) properties, Xn is the sample
estimate of the probability, μ is the probability to estimate
(and hence 0< δ< 1), xl= 0 and xu= 1. For Δ

I1;I0
@t .P= ?(ϕ)

properties, we have that xl= − 1 and xu= 1 as these are the
ranges for the difference of two Bernoulli outcomes. For I@t.R= ?

≤k

formulas, each realization is a cumulative reward value, hence
xl=k ⋅Rl and xu=k⋅Ru where Ru and Rl are, respectively, the
largest and smallest values of the MDP’s reward function R.
Hence, for Δ

I1;I0
@t .R= ?

≤k formulas, we have xu=k(Ru−Rl)
and xl=k(Rl−Ru).

These a priori bounds, however, might be too conservative,
especially for reward properties where the range (xu−xl) tends to be
consistently larger than what observed empirically. An alternative
is to compute confidence intervals, that is fix the sample size n and
the confidence 1− α, thereby obtaining an estimate Xn and an
interval [Xn]α∋ Xn such that P(μ ∈= [Xn]α)= α. In this sense, the
width of [Xn]α is comparable to the δ bound in Hoeffding
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inequality. To construct confidence intervals for I@t.P= ?(ϕ)
properties, one can use the common normal-approximation
(aka Wald) interval if n is not too small or the true probability not
too close to 0 or 1,9 or use the ‘exact” (but usually conservative)
Clopper-Pearson interval. For the other properties, we can
construct one-sample mean intervals using the T distribution.

5.4. Algorithmic complexity

The complexity of SMC is O(k⋅N⋅cϕ) where k is the number of
counterfactual operators in the formula, N is the number of
sampled paths (for each operator), and cϕ is the cost of evaluating
the operator’s path formula ϕ on each path. The latter term has
complexity O((2|τ|)d) where |τ| is the path length (bounded by the
temporal bounds inϕ) and d is the depth ofϕ, that is themaximum
number of nested until expressions (Bartocci et al., 2018). The term
N is a random variable (owing to the randomness of the sample)
and its expected value depends on the true (unknown) probability
p to evaluate and the error bounds α and β. Formulas for E[N]
can be found for specific values of p, see (Younes and Simmons,
2006), but no general analytical form exists. Nevertheless, the
SMC algorithm terminates with probability 1 (Younes and
Simmons, 2006).

6. Experimental evaluation

Weprovide two sets of results. In the first one, we consider a simple
grid-world model and a reach-avoid specification. We use this case
study to provide a detailed analysis of interventional and
counterfactual probabilities, their variability, and the accuracy of
counterfactual inference. In the second set of results, we use PCFTL
on four complex 2D grid-world environments from the MiniGrid
library (Chevalier-Boisvert et al., 2018). Although these two case
studies evaluate our approach on relatively similar GridWorld
MDPs, we can still explore a wide range of logical specifications
and properties within these environments.

6.1. Reach-avoid example

We consider a 4 × 4 grid-world example, where the agent canmove
up, down, left, or right, one square at a time. The specification ϕ is
one of reach-avoid: we want to reach some goal region while
avoiding an unsafe region, that is ϕ≡ ¬unsafe U[0,T]goal. We
choose T= 10. We consider two policies, a nominal (default)
policy π and an optimal policy πo. The optimal policy is found by

value iteration after assigning a reward 1 to the goal andmaking the
unsafe and goal states terminal. The nominal policy is defined
manually to make it intentionally less safe than πo. The
stochasticity comes from the fact that the environment, with
small probability (0.1 in our experiments), randomly takes the
agent to a different position than that determined by the policy.

For each experiment in this subsection, we perform 1000
repetitions to evaluate the variability of the estimates. For each
repetition, we generate 100 observed paths under the nominal
policy. Counterfactuals are estimated using 20 posterior Gumbel
realizations. Probability values are computed by averaging the
satisfaction value of ϕ over all paths within each repetition. We
choose the optimal policy as the interventional/counterfactual one,
by defining I= {π  πo}.

We evaluate the performance of the optimal policy in a
counterfactual setting. In particular, we compare the probability
P= ?(ϕ) under the nominal MDP against the average counterfac-
tual probability I@t.P= ?(ϕ) for some t (where the average is w.r.t.
the set of nominal paths used for P= ?(ϕ)). We apply I at the
beginning of the path (t= |τ|− 1, see Figure 5a) and after the first
step (t= |τ|− 2, see Figure 5b). Since πo (blue histograms in
Figure 5) is safer than π (orange), the distribution of counterfactual
probabilities clearly dominates that under nominal settings. See
Figure 5a. For the same reason, delaying the intervention of one
step leads to more unsafe trajectories (the blue histogram in
Figure 5b is indeed shifted to the left compared to that in
Figure 5a).

In Figure 5a, we provide results of a query corresponding to the
scenario of Figure 4c, that is involving both the counterfactual past
and the subsequent future evolution of the system. To do so, we
draw paths τ under π of length 2 (shorter than than ϕ’s time
bound) and apply I after the first time step. This results in paths
that are counterfactual in the first part (because we apply I in the
past, conditioned by τ) and post-interventional in the second part
(because to evaluate ϕ, we need paths longer than the observed τ).

6.2. MiniGrid benchmark

MiniGrid (Chevalier-Boisvert et al., 2018) is a collection of 2D
grid-world environments with goal-oriented tasks designed for
developing reinforcement learning algorithms. Each cell in this
grid world is encoded as a three-dimensional tuple (object, color,
state). There are 8 different objects, 6 colors and 3 states: open,
close and locked. There are 7 actions that the agent can take which
are turn left, turn right, move forward, pick up, drop, toggle and

Figure 5. Counterfactual probabilities
under the optimal policy πo (blue) given
that we observe MDP paths under the
nominal policy π (orange). In (a) and (b)
paths have length 10 (same as the time
bound T in ϕ). In (c), we observe paths of
length 2< T, and so, applying πo results
in paths that are part counterfactual,
part post-interventional.
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done. We consider four of these environments: Empty, DoorKey,
GoToDoor and Fetch.

Empty is the simplest environment, where the agent simply
navigates the grid to reach some goal. This corresponds to the
specification F [1,T]goal, where we choose T= 50. In the DoorKey
environment, a key and a door exist on the grid. The agent must
first find the key, unlock the door, and reach the goal, expressed as
ϕ ≡F [1,Tk](key ∧ F [1,Td](door ∧ F [1,Tg]goal)), with Tkþ Td
þ Tg= T. This task requires the agent to learn basic navigation
skills and non-trivial sequential plans. In GoToDoor, we have four
doors with different colors, and the agent is tasked to reach the
door of some given color: ϕ≡F [1,T]door. The door is always
unlocked, making it a simpler task thanDoorKey. In Fetch, the grid
contains multiple objects with assorted colors which the agent
must pick up and bring to the goal: ϕ≡F [1,To](object∧X (carry-
ing U

[1,Tg]
goal)), with Toþ Tgþ 1= T. This task requires learning to

manipulate objects and navigate the grid.
For each environment, we train two convolutional neural

network policies using the Proximal Policy Optimization (PPO)
(Schulman et al., 2017) algorithm. For the nominal policy π, this
time we use an optimal policy, trained using 10 million time steps.
The interventional/counterfactual policy is intentionally under-
trained, using only 200 time steps.

Experimental results are presented in Table 1. We examine
probabilities under the nominal/optimal policy (3rd column) using
the formula P≥ 0.9(ϕ), counterfactual probabilities with the
undertrained policy (4th column) using I@t.P≥ 0.9(ϕ), and
determine the causal effect between the two (5th column) using
Δ@t

I,∅.P> 0(ϕ). For every environment and PCFTL formula, we
carry out two set of experiments using two different intervention
points, at the start of the trajectory (t= T− 1), and 10 steps into the
trajectory (t= T− 11).

Verification results are computed using statistical model
checking (see 5 for details on the decision procedures). Results
indicate that the system does not satisfy the property when using
an undertrained policy, while the optimal policy is always
successful. This performance gap can also be seen in the causal
effect column. We observe that the verification procedure is very
efficient (requiring at most 125 realizations), and that the number

of realizations necessary to obtain a positive answer for the
nominal policy is higher than those for a negative answer for the
interventional policy. The reason is that we set a high probability
threshold, p≥ 0.9, and so, even with a well-trained policy, we
require a fair amount of evidence to conclude that the property is
satisfied. Conversely, the interventional policy performs enough
badly to require much fewer points for concluding that the
property is violated.

7. Related work

Causality and verification. Concepts of causality have been
investigated in formal verification for years (Baier et al., 2021). Two
main classes of approaches exist, respectively based on the theory
of actual causality (Halpern, 2016; Halpern and Pearl, 2020) and on
probabilistic causation. Given an SCM M and a context u, an
actual cause is, informally, the smallest set of SCM variables that, if
forced with a different value, lead to a different (counterfactual)
outcome for some target variable Y. This notion has been adapted
in Beer et al. (2012) to find so-called root causes in LTL
counterexample traces, in Gössler and Aştefǎnoaei (2014) to
identify the components of a timed-automata network responsible
for a given failure trace, and in Leitner-Fischer and Leue (2013) to
derive fault trees from probabilistic counterexamples. We note
there also exist techniques not based on actual causality for finding
root causes of failure in temporal logic monitoring (e.g., Bartocci
et al., 2018; Zhang et al., 2023). Probabilistic causation methods
like (Baier et al., 2021; Kleinberg and Mishra, 2009; Kleinberg,
2011; Baier et al., 2022) build on the probability-raising (PR)
principle by which the probability of an effect E is higher after
observing a cause C than if the cause had not happened. More
precisely, these works consider Markov models and express E and
C as sets of states or PCTL state formulas. Our work complements
these methods as it focuses not on identifying causes given some
observations but on reasoning about the probability of a temporal
logic specification in interventional and counterfactual settings.
Methods based on actual causality similarly rely on counterfactuals
but consider only non-probabilistic models. Methods based on the
PR principle support probabilistic models but do not support
counterfactual analysis.

Two relevant papers have been published in the last year at the
intersection between causality and temporal logic (TL). In Coenen
et al. (2022), the authors extend actual causality to the case where
causes and effects are given as TL properties. Their work is
different from ours in that they do not consider probabilistic
systems, plus they use TL to specify causes and effects, but the logic
itself cannot express counterfactual queries. The work closest to
ours is (Finkbeiner and Siber, 2023), which introduces a new (non-
probabilistic) counterfactual TL with would and might modalities,
borrowed from Lewis’ theory of counterfactuals (Lewis, 2013).
However, their method is model-agnostic, that is counterfactuals
are obtained by manipulating the observed trace, regardless of the
model that generated it. Our counterfactual traces are instead
obtained by intervening on the data-generating model.

Probabilistic hyperproperties. Probabilistic hyper-properties
(PHPs) for MDPs have been recently introduced in (Dimitrova
et al., 2020; Ábrahám et al., 2020) to support quantification over
MDP schedulers (i.e., policies). One can see that PHPs for MDPs
are strictly more expressive than the fragment of PCFTL without
counterfactuals (i.e., where interventions can be applied only at
t= 0). For instance, the PCFTL causal-effect formulaΔI1;I0

@t .P⋈ p(ϕ)

Table 1. PCFTL verification of the MiniGrid benchmark, with 6 x 6 grids. For
each environment, we apply the intervention at the start of the path (t = T − 1)
and 10 steps after the start (t = T− 11). T = 50 is the length of the path. The SMC
parameters (see Section 5) are δ = 0.02, and α = 0.05 and β = 0.2 for P and I@t.P
properties, and α = 0.01 and β = 0.2 for DI;;

@t .P. ⊤ and ⊥ indicate whether the
SMC procedure returns true or false for the given PCFTL formulae, and in
parentheses are the number of realizations required by SMC to reach this
verdict

Environment t P ≥ 0.9(ϕ) I@t.P ≥ 0.9(ϕ) DI;;
@t .P> 0(ϕ)

DoorKey6x6 T− 1 ⊤(125) ⊥(25) ⊥(50)

DoorKey6x6 T− 11 ⊤(125) ⊥(25) ⊥(50)

Empty6x6 T− 1 ⊤(75) ⊥(25) ⊥(50)

Empty6x6 T− 11 ⊤(75) ⊥(25) ⊥(75)

Fetch6x6 T− 1 ⊤(75) ⊥(25) ⊥(75)

Fetch6x6 T− 11 ⊤(75) ⊥(50) ⊥(75)

GoToDoor6x6 T− 1 ⊤(125) ⊥(25) ⊥(50)

GoToDoor6x6 T− 11 ⊤(125) ⊥(25) ⊥(100)
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can be expressed as the PHP ∃σ1∃σ0.P(ϕσ1)− P(ϕσ0)⋈ p (using the
syntax of (Dimitrova et al., 2020)) where the domains of schedulers
σ0 and σ1 are singletons (and chosen to be consistent with I0 and I1,
respectively). However, PHPs do not support counterfactuals,
which is the main strength of our method.

Causality in reinforcement learning. There is a growing interest
in applying causal inference in RL, for instance, to evaluate
counterfactual policies from observational data (Oberst and
Sontag, 2019), provide counterfactual explanations (Tsirtsis, De,
and Rodriguez, 2021) (i.e., the minimum number of policy actions
to change in order to attain a better outcome), produce
counterfactual data to enhance training of RL policies (Forney
et al., 2017; Buesing et al., 2018), or estimate causal effects in
presence of confounding factors (Lu, Schölkopf, and Hernández-
Lobato, 2018). These works are very relevant yet they consider
different problems from ours. That said, PCFTL builds on (Oberst
and Sontag, 2019) which introduces Gumbel-Max SCMs and their
counterfactual stability. More recently, other methods have shown
that the Gumbel-Max SCM is not the only causal model that
satisfies the counterfactual stability property, and instead bound
over all models that satisfy counterfactual stability (Haugh and
Singal, 2023), or search for a particular model that optimises some
given criteria (Lorberbom et al., 2021). In this paper, we limit our
attention to only Gumbel-Max SCMs since other methods are
either computationally inefficient or require extra assumptions.

8. Conclusion

We have presented the probabilistic temporal logic PCFTL, the
first of its kind to enable causal reasoning about interventions,
counterfactuals, and causal effects in Markov Decision Processes.
From a syntactic viewpoint, this is achieved by introducing an
operator that subsumes interventions, counterfactuals, and the
traditional probabilistic operator. The semantics of PCFTL makes
use of counterfactual MDPs constructed from Gumbel-Max
structural causal models, which provide a representation of
discrete-state MDPs amenable to counterfactual reasoning. We
performed a set of experiments on a benchmark of grid-world
models, demonstrating the usefulness of the approach (being
applicable to deep reinforcement learning policies as well) and the
accuracy of counterfactual inference. We envision several future
directions for this work, including investigating numerical or
symbolic (as opposed to statistical) model-checking algorithms,
and extending our approach to a broader range of systems, such as
uncertain, partially observable, and continuous-time and continu-
ous-state MDPs. Achieving this will require developing robust
counterfactual inference methods tailored to these different
complex systems but will ultimately enable PCFTL to be applied
more broadly across a diverse set of cyber-physical and data-driven
systems.

Data availability. The code for running the experiments is publicly available
on Zenodo at https://doi.org/10.5281/zenodo.10619287.
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Notes

1 As we will explain in Section 2.3, there could be multiple such what-if paths,
and so the counterfactual probability of ϕ could take other values than 1 or 0.
2 PM[X x](Y) is often written as P(Y∣do(X= x)) in Pearl’s do notation.
3 Note that PM(Y∣X= x) is, in general, different from the desired PM[X x](Y)
because conditioning on X= x alone doesn’t prevent unwanted spurious
associations.
4 In contrast, the approach based on the inverse CDF trick, where f(St,At,Ut) is
the Ut-quantile of PPStþ 1 ∣ St, At) and Ut�Unif(0,1), does not enjoy
counterfactual stability and is highly sensitive to permutations of the state
ordering (note that imposing some ordering is required by the quantile
function).
5 In particular, to determine the satisfaction of path formula (P, π, τ, t)⊨Φ, we
evaluate state formula Φ over the path prefix τ[1 : t] (to allow for potentially
nested counterfactual operators), while in PCTL⋆, Φ would be evaluated over
state τ[t].
6 For anMDPwith state spaceS and transition probabilitiesP, the definition of
the augmented MDP is trivial: it will have state space⋃1≤ i≤ TSi and transition
probabilities P(s 01 : : : s 0T ∣ s1 : : : sT, a)= P(s 0T ∣ sT,a) if

V
T
t¼2 s0t�1 ¼ st and 0

otherwise.
7 This decomposition is analogous to how we obtain the distribution PM of an
SCM M as a function of the distribution PðUÞ of its exogenous variables U.
8 For the special case of ΔI1 ;I0

@t .P> 0(ϕ), an alternative sequential test could be
used, see (David et al., 2011).
9 For the normal approximation to be valid, we require n ⋅ pϕ≥ 10 and
n ⋅ (1−pϕ)≥ 10.
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