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A pulse phase estimation of an X-ray pulsar with the aid of vehicle orbital dynamics is pro-
posed. The original continue-time X-ray pulsar signal model is modified to be a term of
vehicle position and velocity varying with time, and a modified definition of pulse time of
arrival is given. The modified signal model is further linearized around the predicted position
and velocity of the vehicle to the second order. The initial phase and the coefficients of the
extended signal model can be estimated by maximum likelihood estimator. Some simulations
are performed to verify the method and show the method has robustness to the initial error
within initial state of the vehicle and is capable of handling the phase-estimation problem
for pulsars with low fluxes.
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1. INTRODUCTION. An autonomous navigation system for vehicles, which
employs the measurements from on board devices, is of increasing concern, as it can
reduce manual efforts and enhance survivability of vehicles encountering hostile envir-
onments. Autonomous navigation applications for low-orbit Earth vehicles have been
well accomplished by Global Navigation Satellite Systems (GNSS). However, GNSS
cannot be readily applied to high-orbit vehicles, the orbital altitudes of which are
higher than those of GNSS satellites because of the weak signal as well as the insuffi-
cient number of observable satellites. Consequently, designing an autonomous naviga-
tion system for this type of vehicle is of great interest.
X-ray pulsars are a type of neutron star that are located far from the solar system

and emit electromagnetic radiation in the X-ray band (Sheikh et al., 2006). The
high-precision spinning period and distant location make X-ray pulsars to be promis-
ing candidates for determining the position of vehicles within the solar system.
Although the idea of X-ray pulsar-based navigation was first proposed in 1981, the
concept grew rapidly (Chester and Butman, 1981; Becker et al., 2013). In 2004, the
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European Space Agency (ESA) studied the feasibility of X-ray pulsar-based
Navigation system (XNAV) (Sala et al., 2004). The United States also undertook a
series of projects focusing on XNAV (Keith, 2013). Some heuristic work on XNAV
have been published in recent years (Wang et al., 2013; Wang et al., 2014; Zheng
et al., 2015).
Although the signal of X-ray pulsars is claimed to be a pulse, a vehicle could merely

record a series of photon Times Of Arrival (TOA) when observing a pulsar, because the
signal of an X-ray pulsar is extremely weak. Also, the received signal is not a deter-
mined signal, but a stochastic one. Extracting the pulse TOA, the fundamental meas-
urement in XNAV, from the recorded photon TOA series is a key technique. The
technique can be resolved by means of epoch folding or a Maximum Likelihood
Estimator (MLE) derived from the Non-Homogeneous Poisson Process (NHPP) to
the case that the pulsar signal is assumed to be of a constant frequency (Emadzadeh
and Speyer, 2010). However, in practical aerospace applications, vehicles always
perform an orbital motion around a celestial body, resulting in the time-varying
nature of the frequency of the signal. Finally, it is likely that the above-mentioned
methods would fail. To attempt to solve this, Golshan and Sheikh (2007) proposed a
pulse phase tracking algorithm. The algorithm approximates the continuous-time fre-
quency by a piece-wise constant model by dividing the whole observation period into
several sufficiently short intervals during which the frequency is assumed to be con-
stant, estimates the initial pulse phase at each interval via a MLE, and employs a
Digital Phase-Locked Loop (DPLL) to track the varying frequency between neigh-
bour intervals. Huang et al. (2013) modified the DPLL to be a two-order Kalman
filter and improved its performance.
A necessary condition contributing to the success of pulse phase tracking algorithms

is that a reliable result of MLE can be obtained by limited photons collected within
each divided interval. In order to precisely approximate the time-continue frequency
by a piece-wise constant one, the divided interval should be sufficiently short.
However, if the divided interval reduces to be less than a certain threshold, the resulting
MLE would diverge from the Cramér-Rao Bound (CRB) and become unreliable (Tran
et al., 2014). For some pulsars with high flux, such as the Crab pulsar, the correspond-
ing threshold could be less than 1 s, and phenomena where the divided interval is
shorter than the threshold seldom occurs. Unfortunately, those pulsars with high
flux are usually young pulsars that frequently have unpredictable glitches, i.e., the spin-
ning frequency of the pulsar abruptly changes (Lyne and Craham-Smith, 2012). With
the current status of research, these young pulsars might not be suitable for XNAV. On
the other hand, millisecond X-ray pulsars with low flux usually have spinning period
stability comparable to an atomic clock and the presence of glitches are seldom
detected (Lyne and Craham-Smith, 2012). As shown in Section 5, in an assumed situ-
ation where a typical high-orbit vehicle is observing a millisecond X-ray pulsar (such as
PSR B1821-24) the threshold is about 100 s. If the divided interval is chosen to be
100 s, the phase approximated error arising from approximating the varying frequency
to be a constant is above the corresponding the CRB, and cannot be neglected. The
approximated error could introduce an uncompensated bias into the calculation of
DPLL or of the Kalman filter and finally worsen the performance of the tracking
algorithm.
In this paper, we propose avehicle-orbital-dynamics-aided pulse-phase estimation of

X-ray pulsar for XNAV. We first modify the continuous-time X-ray pulsar signal
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model to be a term of vehicle state varying with time and redefine the expression of
pulse time of arrival, taking the vehicle motion law into account. Given the vehicle
state at later epochs can be predicted by propagating the initial one, we extend the
aforementioned signal model around the predicted state to the second order, analysing
the impact of the corresponding truncation error. A maximum likelihood estimator is
adopted to estimate the initial phase as well as the coefficients of the extended model.
Some simulations are performed to verify the method and show the method has robust-
ness to the initial error within the initial state of the vehicle and is capable of handling
the phase-estimation problem for pulsars with low fluxes.
The paper is organised as follows. Section 2 reviews the conventional X-ray pulsar

signal model as well as the expression of pulse TOA. In Section 3, we derive the X-ray
pulsar signal model with consideration of vehicle motion laws and modify the expres-
sion of pulse TOA. In Section 4, the extended signal model is derived and a MLE is
employed to estimate the initial phase. Some simulations are performed in Section 5.

2. REVIEW OF X-RAY PULSAR SIGNAL MODEL. The photon TOAs
detected by a vehicle are modelled as a Non-Homogeneous Poisson Process (NHPP)
with a periodic rate function λ(t)≥ 0. And then, the probability of k photons arriving
between the observation period t0 tfð Þ is (Emadzadeh and Speyer, 2010)

Pr k; t0 tfð Þ½ � ¼
∫
tf
t0 λðτÞdτ

� �k
exp �∫

tf
t0 λðτÞdτ

� �
k!

ð1Þ

The rate function λ(t) denotes the aggregate rate of photons from pulsar and back-
ground, and can be expressed as

λðtÞ ¼ αh fdet tð Þð Þ þ β ð2Þ
where h �ð Þ is the periodic pulsar profile, fdet tð Þ is the detected phase, and α and β are
detected rate constants of the form

α ¼ FpηA ð3Þ
β ¼ FpηA ð4Þ

where Fp and Fb are the fluxes of X-ray source and background respectively, η is the
efficiency of detector, and A is the area of detector.
For a vehicle, fdet tð Þ can be described by

fdet tð Þ ¼ f0 þ fsðt� t0Þ þ fs
c
∫
t
t0 v τð Þdτ ð5Þ

where ϕ0 is the initial phase at epoch t0, fs is the frequency of pulsar, c is the speed of
light, and v is the projected velocity of vehicle on the direction of pulsar.
Assuming the vehicle is performing a uniform linear motion towards a pulsar,

Equation (5) is simplified as

fdet tð Þ ¼ f0 þ 1þ v
c

� �
fs t� t0ð Þ ð6Þ

Based on Equations (2) and (6), ϕ0 and fo= (1 + v/c)fs can be estimated via a MLE.
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When ϕ0 and fo are obtained, the pulse TOA at epoch t0 can be represented as

T0 ¼ f0

fo
ð7Þ

3. MODIFIED X-RAY X-RAY PULSAR SIGNAL MODEL.
3.1. Modified phase propagation model.
3.1.1. General form. In the Sun-centred inertial coordinate system, the configur-

ation of vehicle and pulsar is shown in Figure 1. For the sake of simplicity, only the
geometry effect is taken into account. However, the derivation can be easily extended
to a case where the general relativity effect is also taken into account.
When the pulsar is far from the Sun, the distance between the vehicle and pulsar can

be described by

d ¼ jr�Dj ≈ n � r�Dð Þ ð8Þ
where r is the position of the vehicle relative to the Sun, D is the position of the pulsar
relative to the Sun, and n is the direction vector of pulsar.
It follows from Equation (8) that the projected velocity of the vehicle along the dir-

ection of the pulsar is

v ¼ n � _r� _D
� � ð9Þ

Substituting Equation (9) into Equation (5) we have

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
∫
t
t0 n � _rðτÞ � _DðτÞ� �

dτ ð10Þ

Figure 1. Configuration of vehicle and pulsar.
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which can be rewritten as

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
∫
t
t0 n � _rðτÞdτ � fs

c
∫
t
t0 n � _DðτÞdτ ð11Þ

The solution of Equation (11) is

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
n � rðtÞ � r t0ð Þð Þ � fs

c
n � DðtÞ �Dðt0Þð Þ ð12Þ

Assuming the pulsar is performing a uniform proper motion, the change of position of
the position of pulsar can be represented as

DðtÞ �Dðt0Þ ≈ Vpðt� t0Þ ð13Þ
where Vp is the velocity of proper motion that has been calculated by astronomers
(Lyne and Craham-Smith, 2012).
Substituting Equation (13) into Equation (12) we have

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
n � rðtÞ � r t0ð Þð Þ þ G0 t; t0ð Þ ð14Þ

where G0ðt; t0Þ ¼ �ðfs=cÞn � Vp t� t0ð Þ and can also be calculated in advance.
Equation (14) is the general form of the modified phase propagation model.

Compared with Equation (6), Equation (14) puts little assumption on the motion of
the vehicle and is more practical.

3.1.2. Modified phase propagation model for a high Earth orbit vehicle. For Earth-
orbiting vehicles, r can be expressed as

r ¼ rE þ rSC=E ð15Þ
where rE is the position of Earth relative to the Sun and rSC/E is the position of the
vehicle relative to Earth.
Then Equation (14) can be rewritten as

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
n � rSC=EðtÞ � rSC=E t0ð Þ� �þ fs

c
n � rEðtÞ � rE t0ð Þð Þ

þ G0 t; t0ð Þ ð16Þ
The position of Earth can be predicted by the planetary ephemeris such as DE405 or
DE421.
We can rewrite Equation (16) as

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
n � rSC=EðtÞ � rSC=E t0ð Þ� �þ C0ðt; t0Þ ð17Þ

where C0ðt; t0Þ ¼ fs=cð Þn � rEðtÞ � rE t0ð Þð Þ þ G0ðt; t0Þ can be calculated in advance.
3.2. Modified definition of pulse TOA at t0. As shown in Equation (14) and (17),

the frequency of the received signal is time-varying, and the pulse TOA at epoch t0
should be

T0 ¼ f0

ft0
ð18Þ

where ft0 is defined as the instant frequency of signal at epoch t0 and can be calculated
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by

ft0 ¼
dfdet tð Þ

dt

����
t¼t0

ð19Þ

Substituting Equation (17) into Equation (19) yields the instant frequency for high
Earth orbit vehicle in the form

ft0 ¼ 1þ 1
c
n � vSC=E t0ð Þ þ vE t0ð Þ � Vp

� �� �
fs ð20Þ

And then, the pulse TOA at t0 is

T0 ¼ f0

fs
¼ 1þ 1

c
n � vSC=E t0ð Þ þ vE t0ð Þ � Vp

� �� ��1

ð21Þ

4. EXTENDED SIGNAL MODEL AND ESTIMATION METHOD. ϕ0 in
Equation (17) can be accurately estimated by employing MLE if the true position of
vehicle at an arbitrary epoch has been perfectly given.
Even if the true position of the vehicle cannot be accurately obtained, we can still

predict a rough position of the vehicle at latter epoch by propagating the initial
vehicle state contaminated with initial error.

4.1. Extended signal model. At an arbitrary epoch t, the true position of the
vehicle can be expressed as the term of predicted position and propagation error,
with the expression of

rSC=EðtÞ ¼ ~rSC=EðtÞ þ δrSC=EðtÞ ð22Þ
rSC=Eðt0Þ ¼ ~rSC=Eðt0Þ þ δrSC=Eðt0Þ ð23Þ

where ~rSC=E �ð Þ denotes the predicted position and δrSC=E �ð Þ is the corresponding
propagation error.
Substituting Equations (22) and (23) into Equation (17) yields

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
n � ~rSC=EðtÞ � ~rSC=E t0ð Þ� �þ fs

c
n

� δrSC=EðtÞ � δrSC=E t0ð Þ� �þ C0ðt; t0Þ ð24Þ
Using the orbital transition matrix, δrSC/E (t) can be expressed as a term of δrSC/E (t0)
and δvSC/E (t0), i.e., (Liu, 1992)

δrSC=E tð Þ ¼ Φrrðt; t0ÞδrSC=E t0ð Þ þΦrvðt; t0ÞδvSC=E t0ð Þ ð25Þ
where Φrr (t, t0) and Φrv (t, t0) are the partition matrices of orbital transition matrix.
It follows from Equation (25) that Equation (24) can be rewritten as

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c
nT Φrrðt,t0Þ � I 3× 3ð ÞδrSC=E t0ð Þ þ fs

c
nTΦrvðt,t0ÞδvSC=E t0ð Þ

þ fs
c
n � ~rSC=EðtÞ � ~rSC=Eðt0Þ

� �þ C0ðt; t0Þ
ð26Þ
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Substituting Equations (A9) and (A10) into Equation (26) yields

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ fs
c

X∞
k¼1

t� t0ð Þk
k!

nTAkδrSC=E t0ð Þ þ nTBkδvSC=E t0ð Þ	 


þ fs
c
n � ~rSC=EðtÞ � ~rSC=Eðt0Þ

� �þ C0ðt; t0Þ
ð27Þ

Denoting f ðkÞdy ¼ 1
kð Þ!

fs
c

nTAkδrSC=E t0ð Þ þ nTBkδvSC=E t0ð Þ	 

, Equation (27) can be

rewritten as

fdetðtÞ ¼ f0 þ fsðt� t0Þ þ
X∞
k¼1

f ðkÞdy t� t0ð Þk þ C1ðt; t0Þ ð28Þ

Where

C1ðt; t0Þ ¼ fs
c
n � ~rSC=EðtÞ � ~rSC=Eðt0Þ

� �þ C0ðt; t0Þ ð29Þ

Emadzadeh and Speyer (2011) derived the log-likelihood function for X-ray pulsar
signal to the case of constant frequency. Assuming M photons have been recorded
in the observation period of t0 tfð Þ and substituting Equation (30) into the derived
log-likelihood function in (Emadzadeh and Speyer, 2011), we have

LLF ¼
XM
i¼1

X∞
k¼1

ln λ fdet ti;f0; fs; f
ðkÞ
dy

� �� �� �
: ð30Þ

Based on Equation (30), ϕ0 can be estimated by solving a high-dimension optimisation
problem, the computation complexity of which heavily relies on the maximum of k, K.
We next analyse the method of setting K, simplifying Equation (30).
4.2. Estimation of initial phase
4.2.1. Method of fixing K. An appropriateK should be capable of minimising the

impact of truncation error arising from the Taylor extension and of balancing the com-
putation complexity of Equation (30).
Given that the solution of Equation (A5) can be taken as an accurate solution of the

transition matrix, we define the following performance index to assess the truncation
error

EK ¼
fp �

PK
k¼1

f ðkÞdy t� t0ð Þk

fp
× 100% ð31Þ

Where

fp ¼ fs
c

nT �Φrrðt; t0Þ � I 3× 3ð ÞδrSC=E t0ð Þ þ nT �Φrvðt; t0ÞδvSC=E t0ð Þ	 
 ð32Þ

and �Φrrðt; t0Þ and �Φrvðt; t0Þ are the accurate solutions of �Φrrðt; t0Þ and �Φrvðt; t0Þ.
For calculation precision, those parameters involved in the computation of

Equation (31) should be normalised in advance.
4.2.2. K for high Earth orbital vehicle. Given it is difficult to understand the index

in Equation (31) in an analytical way, we investigate it via simulations. We assume this
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scenario: a vehicle orbiting on an Earth-centred orbit observes a pulsar for 3000 s,
under the assumption that there are no shadows produced by celestial bodies.
By employing the rotation-powered X-ray pulsars selected by Microcosm Inc., we

change the orbital plane of the vehicle to test how the index varies. The positions of
adopted pulsars are listed in Table 1, and initial orbital elements of the vehicle are

Table 1. Positions of rotation-powered X-ray pulsars. (Graven et al., 2008).

Name Galactic longitude [°] Galactic latitude [°]

B1937 + 21 57·5 −0·29
B1821-24 7·80 −5·58
J0218 + 4232 139·5 −17·53
B1509-58 320·3 −1·16
B0540-69 279·7 −31·5
B0531 + 21 184·6 −5·78

Table 2. Initial orbital elements of simulated vehicle.

Orbital elements Value

Semi-major axis [km] [30000, 42000]
Eccentricity 0·0063
Inclination [°] [0, 180)
Right ascension of the ascending node [°] [0, 360)
Argument of perigee [°] 172·49
Mean perigee [°] 43·73

Figure 2. In the case of K= 1, indices varying with an increasing semi-major axis.
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listed in Table 2. In Table 2, we list the variation ranges of semi-major axis, inclination,
and right ascension of the ascending node. The initial position and velocity errors
along each inertial coordinate axis are chosen to be 100 m and 0·1 m/s respectively.
The non-spherical perturbation and three-body perturbation are taken into account,
when the orbital propagation of the vehicle is performed.
For cases of K = 1 and K = 2, Figures 2 and 3 show varying indices with different

semi-major axes. Data in Figures 2 and 3 represent the max performance indices
out of different couples of inclination and right ascension of the ascending node. As
shown in Figures 2 and 3, for the six selected pulsars, the performance index
reduces as the semi-major axis increases, and could reach a value of around 1%, if
K = 2 and semi-major axis is greater than 40000 km. Thus, for the balance of calcula-
tion precision and computation, K = 2 is a better option.
Denoting fsdy ¼ fs þ f ð1Þdy , Equations (28) and (30) become

fdetðtÞ ¼ f0 þ fsdy t� t0ð Þ þ f ð2Þdy t� t0ð Þ2þC1 t; t0ð Þ ð33Þ

And

LLF ¼
XM
i¼1

ln λ fdet ti;f0; fsdy; f
ð2Þ
dy

� �� �� �
ð34Þ

The solution of Equation (34) involves solving a 3-dimension optimisation problem
that can be effectively performed by global optimisation algorithms (Kolda et al.,
2003).

Figure 3. In the case of K= 2, indices varying with an increasing semi-major axis.
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4.3. Estimation of pulse TOA. Substituting Equation (32) into Equation (19)
yields ft0 in the form of

ft0 ¼ fsdy þ fs
c
n � ~vE t0ð Þ þ ~vSC=E t0ð Þ � Vp

� � ð35Þ

Based on Equation (35), the pulse TOA is

T0 ¼ f0 fsdy þ fs
c
n � ~vE t0ð Þ þ ~vSC=E t0ð Þ � Vp

� �� ��1

ð36Þ

Figure 4. PSR B1821-24 profile.

Table 3. Parameters of Simulated PSR B1821-24.

Category Item Value

Signal Period [ms] 3·05
α [ph/s] 1·93
β [ph/s] 50
Initial Phase [cycle] 0·241

Initial Position Position Epoch [MJD1] 48713·0
Distance [kpc2] 5·5
Right Ascension [hh:mm:ss] 18:24:32·0083
Declination [hh:mm:ss] −24:52:10·74

1. MJD is abbreviation for Modified Julian Day
2. 1 kpc = 1 × 1019m
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5. SIMULATIONS. Millisecond X-ray pulsar PSR B1821-24 is selected as the
observed pulsar with the profile shown in Figure 4 (Rutledge et al., 2004). For simpli-
city, the pulsar is assumed to be stationary during the observation period. The para-
meters of the simulated pulsar are listed in Table 3. The position of the simulated
pulsar is taken from Ren (2012).
In Table 3, the position of the pulsar is described in the J2000·0 Sun-centred Inertial

Coordinate System, and the term “Distance” is used to describe the distance between
the Sun and the pulsar. The Jet Propulsion Laboratory (JPL) ephemeris DE405 is
employed to predict the position and velocity of Earth at the given MJD.
In the Earth-centred inertial coordinate system, the initial orbital elements of the

investigated vehicle are listed in Table 4. The initial position and velocity error
along each coordinate axis are chosen to be 100 m and 0·1 m/s respectively. When
the orbital dynamic propagation is performed, the non-spherical perturbation and
two-body perturbation are taken into account.

5.1 Analysis of the proposed method. We use the Root Mean Square error (RMS
error) to assess the performance of the proposed method. All the results in the

Figure 5. RMS error of estimated initial phase with different observation periods.

Table 4. Initial Orbital Elements of High-orbit Satellite.

Orbital elements Value

Semi-major axis [km] 40000
Eccentricity 0·0063
Inclination [°] 63·33
Right ascension of the ascending node [°] 263·55
Argument of perigee [°] 172·49
Mean perigee [°] 43·73
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remaining paper are obtained after 1000 Monte Carlo estimations. We assume the
integer part of phase has been well determined, and focus on estimation performance
of the fractional part of phase.
Figure 5 shows the RMS error of the estimated initial phase with an increasing

observation period. The RMS error first experiences an unreliable region, becomes
consistent with the CRB when the observation period is greater than 100 s,
and finally reaches an accuracy of around 0·001 when the observation period
is 3000 s.
Figure 6 shows the RMS error of pulse TOA versus an increasing observation

period. Being similar to the result of the initial phase, the result of pulse TOA also con-
verges to the corresponding CRB when the observation period is greater than 100 s. The
performance of the proposed method improves as the observation period increases.
Figure 7 shows the computational cost of the proposed method. The computational

cost is assessed via the CPU time cost by the proposed method. The simulation
environment contains Intel I7-4710MQ@2.5 GHz and Visual studio 6·0. The CPU
time increases as the observation period increases. This is because the computational
complexity of MLE heavily depends on the number of X-ray photons. It is worth
noting that the parallel computation technique is adopted to reduce the computation
complexity.
Next, we analyse the factors that might affect the proposed method. The observa-

tion periods in the following investigations are all set to be 1000 s.
Figures 8 and 9 display the RMS error of the initial phase in the presence of different

initial position and vehicle velocity errors. Although the performance of the proposed
method would degrade if the initial position and velocity error increased, the
corresponding RMS error arising from the increasing initial state error is less than

Figure 6. RMS error of pulse TOA with different observation periods.
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1 × 10−4 cycles, even initial position and velocity errors grow to 1000 m and 5 m/s
respectively. It means the proposed method is not overly sensitive to the initial state
error of the vehicle.

Figure 7. CPU time cost by proposed method with different observation periods.

Figure 8. RMS error of initial phase with different initial position errors.
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Figure 10 shows the RMS error initial phase versus semi-major axis. The RMS error
decreases as the semi-major axis of the vehicle increases, and the decrease would slow
down when the semi-major axis is greater than 34000 km. This means the performance

Figure 9. RMS error of initial phase with different initial velocity errors.

Figure 10. RMS error of estimated initial phase with different semi-major axis.

427PULSE PHASE ESTIMATION OF X-RAY PULSARNO. 2

https://doi.org/10.1017/S0373463315000727 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000727


of the proposed methodwould be little affected by the semi-major axis of a vehicle that
is greater than 34000 km.

5.2. Analysis on the phase tracking algorithm. Besides the design of DPLL for
tracking the time-varying frequency, the performance of the phase tracking algorithm

Figure 11. Result of MLE versus divided interval.

Figure 12. Approximation error versus time.
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depends on the result of MLE at each divided interval. Figure 11 shows the result of
MLE under the assumption that the simulated pulsar signal has a constant frequency.
The result of MLE first experiences an unreliable region lasting for 100 s and becomes
consistent with CRB after then. This means the divided interval for MLE should be at
least 100 s, if a reliable MLE result is needed.
Figure 12 depicts the phase-approximated errors arising from a constant frequency

assumption when the divided interval lasts for 100 s. For reference, the corresponding
CRB is 1·359 × 10−3. Thus, the phase approximation error is greater than CRB and
cannot be ignored, making the solution of MLE biased. Given that the result of
MLE is the input of DPLL which lacks the capability to handle the impact of input
bias, the final performance of DPLL would worsen.

6. CONCLUSION. This paper introduces a pulse-phase estimation method for X-
ray pulsar adopted in XNAV. A practical X-ray pulsar signal model, which puts little
assumption on the motion of the vehicle, is derived and is simplified with the aid of
vehicle orbital dynamics. The method is capable of handling the impact of continu-
ous-time frequency without assuming the frequency is piece-wise constant.
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APPENDIX

A1. FUNDAMENTALS OF TRANSITION MATRIX IN VEHICLE ORBITAL
DYNAMICS. In a central-body-centred inertial coordinate system, such as the
Earth-centred inertial coordinate system and Sun-centred inertial coordinate system,
the orbital dynamics model of the vehicle is

_r
_v

� �
¼ f ðr; v; aÞ; ðA1Þ

where r, v, a are the position, velocity and acceleration of the vehicle.
Linearizing the above nonlinear system around the predicted position and velocity, ~r

and ~v, yields

δ_r
δ _v

� �
¼ F

δr
δv

� �
; ðA2Þ

where δrð�Þ and δvð�Þ denote the error within the predicted position and velocity and F
is the Jacobian matrix.
We have a corresponding discrete linearization system,

δrðtÞ
δvðtÞ

� �
¼ Φðt; t0Þ δrðt0Þ

δvðt0Þ
� �

; ðA3Þ

where Φ(t, t0) is the transition matrix that can be expressed as a form of partition
matrix,

Φðt; t0Þ ¼ Φrrðt; t0Þ Φrvðt; t0Þ
Φvrðt; t0Þ Φvvðt; t0Þ

� �
; ðA4Þ

and Φrr(t,t0), Φrv(t,t0), Φvr(t,t0) and Φvv(t,t0) are all 3 × 3 matrices.
An accurate solution of Φ(t, t0) can be obtained by solving the following differential

equation (Liu, 1992)

_Φðt; t0Þ ¼ FΦðt; t0Þ ðA5Þ
with an initial condition of

Φðt0; t0Þ ¼ I6× 6; ðA6Þ
where I6×6 is a 6 × 6 united matrix.
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Another way to obtain Φ(t, t0) is to employ Taylor extensions, i.e.,

Φðt; t0Þ ¼ I6× 6 þ
X∞
m¼1

1
m!

ΦðmÞðt0; t0Þðt� t0Þm; ðA7Þ

in which Φ(m) (t0, t0) is the mth derivative of Φ(t0, t0).
Although the detailed expressions of Equation (A7) are complicated, they can be

summarised as a general form of

Φðt; t0Þ ¼
I3× 3 þ

P∞
m¼1

1
m!

Amðt� t0Þm
P∞
m¼1

1
m!

Bmðt� t0Þm

P∞
m¼1

1
m!

Cmðt� t0Þm I3× 3 þ
P∞
m¼1

1
m!

Dmðt� t0Þm

2
664

3
775 ðA8Þ

in which Am, Bm, Cm, and Dm are 3 × 3 constant matrices and are the mth coefficient
matrix of partition matrix in Φ(t, t0).
Thus, we have

Φrrðt; t0Þ ¼ I 3× 3 þ
X∞
m¼1

1
m!

Amðt� t0Þm; ðA9Þ

Φrvðt; t0Þ ¼
X∞
m¼1

1
m!

Bmðt� t0Þm: ðA10Þ

A2. CRB OF THE PROPOSED METHOD. From Equation (33), we consider the
following pulsar rate function,

λðtÞ ¼ αh f0 þ fsdy t� t0ð Þ þ f ð2Þdy t� t0ð Þ2þC1 t; t0ð Þ
� �

þ β: ðA11Þ

The CRB for the estimation of unknown parameters, ϕ0, fsdy, f
ð2Þ
dy , is presented in the

following lemma.
Lemma 1. Let

θ≜ f0 fsdy f ð2Þdy

h iT
ðA12Þ

be the unknown parameter vector. The CRB for estimation of θ in Equation (A12) is
given by

CRBðθÞ ¼ IM�1=2ðθÞ ðA13Þ
Where

IMðθÞ ¼
Ifo

Ifo, fsdy I
fo, f

ð2Þ
dy

Ifo, fsdy I fsdy I fsdy , f ð2Þdy

I
fo, f

ð2Þ
dy

I fsdy, f ð2Þdy
I f ð2Þdy

2
664

3
775 ðA14Þ
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in which

Ifo
¼∫

Tobs

0
αh0 fdet tð Þð Þ½ �2
h fdet tð Þð Þ dt; I fsdy ¼∫

Tobs

0
t2 αh0 fdet tð Þð Þ½ �2

h fdet tð Þð Þ dt;

I f ð2Þdy
¼∫

Tobs

0
t4 αh0 fdet tð Þð Þ½ �2

h fdet tð Þð Þ dt; Ifo, fsdy ¼∫
Tobs

0
t αh0 fdet tð Þð Þ½ �2

h fdet tð Þð Þ dt;

I
fof

ð2Þ
dy

¼∫
Tobs

0
t2 αh0 fdet tð Þð Þ½ �2

h fdet tð Þð Þ dt; I fsdy, f ð2Þsdy
¼∫

Tobs

0
t αh0 fdet tð Þð Þ½ �2

h fdet tð Þð Þ dt:

Lemma 1 is merely an improvement of Theorem 4·2 in (Emadzadeh and Speyer, 2011),
so the proof is omitted.
The CRB for pulse TOA can be further derived, if θ in Equation (A13) is redefined

as

θ≜ T0 fsdy f ð2Þdy

h iT
ðA15Þ

And Equation (A12) is rewritten as

λðtÞ ¼ αh ft0T0 þ fsdy t� t0ð Þ þ f ð2Þdy t� t0ð Þ2þC1 t; t0ð Þ
� �

þ β: ðA16Þ
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