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ON WEAKLY ALMOST-PERIODIC FAMILIES 
OF LINEAR OPERATORS 

BY 

ARIBINDI SATYANARAYAN RAO 

ABSTRACT. In this note first the weak almost-periodicity of the 
action of a weakly almost-periodic family of linear operators on an 
almost-periodic function is established. Then an application of this 
result is given. 

1. Let fl be the interval — oo <*< co, iF a Banach space and 9£* the dual space 
of X. A continuous function / : < / — ^ is said to be (strongly) almost-periodic if, 
for every £>0, there is, on the real line, a relatively dense set of numbers {r}e 

such that 

sup | | / ( * + T ) - / ( 0 I | < e for all r e {T}£ 

(see Amerio and Prouse [1]; the results of this paper are based on this reference). 
We say that a function f\fl-+2£ is weakly almost-periodic if (x*,f(t))=x*f(t) 
is almost-periodic for each x* e.^*. 

A function/e S£\0(.(fl\ X) for 1 <p< oo is said to be Sf* almost-periodic if, for 
every £>0, there is a positive real number /=/(e) such that any interval of the real 
line of length / contains at least one point r for which 

r ra+i -i l/v 

sup ||/(*+T)+/(0II*<& <e 

Let £(.3r, 2£) be the space of bounded linear operators of SC into itself. An 
operator-valued function ^\f-^Si{SC,SC) is said to be strongly (weakly) almost-
periodic if @(t)x, t E JÎ-+3C is strongly (weakly) almost-periodic for each J C G ! 

^ : #'->£(#•, 9T) is called a one-parameter group if ^ ( 0 ) = . / = t h e identity 
operator of9C and ^( / i+r 2 )=^(r 1 )^( / 2 ) for all tl9 t2ef. 

Our main result is as follows. 

THEOREM 1. Iff(t), t e f-*3£ is almost-periodic and if ^(f), t e /->%{&, 9T) 
is weakly almost-periodic, then the function ^(t)=^^(t)f(t) is weakly almost-
periodic. 

Proof. For an arbitrary but fixed x* GSF*, {x*@(t)}teJ is a family of bounded 

Received by the editors April 12,1972 and, in revised form, January 24,1973. 

AMS (MOS) subject classification scheme (1970). Primary: 43A60, 34C25, 34G05; 
Secondary: 47D05, 47D10. 

81 

https://doi.org/10.4153/CMB-1975-015-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1975-015-1


82 A. S. RAO [April 

linear functionals on 3C. Further, by our assumption, for each xeS£\ the scalar-
valued function x*@(t)x is almost-periodic, and so is bounded on $. Thus, by 
the uniform boundedness principle, 

(1.1) sup ||x*0(OI| = Jt < oo. 
tejr 

To see that &(t)f(t) is weakly continuous, let t'n9t' ef and t'n-+t'. Then the 
function x^^{i)f{t') is continuous, and so, by (1.1) and the continuity o f / 

\x*9{QKQ-x*9(!T)f(f)\ < \\x*$(Q\\ • 11/ (^- / (011 

+ \x*&(Qf(t')-x*&(t')f(t')\-+0 as n ->oo . 

Let 0tf denote the range of the function/. As is well known, Mf is a relatively 

compact set i n ^ . So, given e>0, there exists a finite set {/(*i),/(4)>... 9f(fn)} 

which is an e-net for 0tt. We observe that the (nE+1) functions 

** W ( ' i ) , x*mf(h),..., x*9(t)f(tn)9f(t) 

are almost-periodic, and hence admit a common relatively dense set {r}e of e-
almost-periods. Consequently, we have 

(1.2) sup \x*9(t+T)f(tJ-x*9(t)KQ\ < *, ?up 1 1 / 0 + T ) - / ( O I I < * 

for all T G {r}£ and k=l, 2, . . . , ne. 
For an arbitrary but fixed t e </", there is f(tk) in the e-net for ^ such that 

(1.3) ll/(?)-/('*)ll < e. 

Now, if T e {r}e, then by (1.1)—(1.3), we have 

\x*W+Tmt+T)-x*9®f(i)\ < \\X*9(I+T)\\ • | | / ( f+r ) - / ( f ) | | 

(i:4) +||x*^(f+T)|| • 11/(0—/(^ll + Ix*SF(f+-r)/(/Jfe)—jc1|iaF(0/^*)l + llx*^(f)|| 

X | | / (^)-/(OII ^ ~ # e + ^ £ + £ + ~ # £ = (3uT+l)e. 

So it follows that 

sup\x*@(t+T)f(t+T)-x*&(t)f(t)\<(3^f+l)s for all r G {T}£, 

which completes the proof of the theorem. 

REMARKS, (i) From (1.1), again by the uniform boundedness principle, we 
obtain 

(1.5) s u p | | 0 ( O | | < c o . 

(ii) From the proof of Theorem 1, it is obvious that Theorem 1 remains valid 
i f / (0 , t£#-*2£ is almost-periodic, (1.5) holds and @(t)x, t e f-+2£ is weakly 
almost-periodic for each x G 0tf. 

(iii) Let S?*(0 be the conjugate of the operator &(t). If &*(t), t e </->£(#*, &*) 
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is strongly almost-periodic, and if f(t), t e f->2£ is weakly almost-periodic, then 
@(t)f(t) is weakly almost-periodic. 

Proof. By our assumption, for each x* e ^ * , @*(t)x* is almost-periodic from 
fl to 3£*. So, by an argument similar to that of Theorem 1, the scalar-valued 
function 

* W ) / ( 0 1 = [x*9(ff\f(t) = [9*(t}x*]f(t) 
is almost-periodic, here making use of the relative compactness of the range of 

&*(t)x*in&*. 
2. As an application of our Theorem 1, we demonstrate the following result. 

THEOREM 2. Suppose & is a Banach space, @(t), t e ^-^Si{SC, SC) is a one-
parameter group with @*(t), r G / - > £ ( f * , J * ) being strongly almost-periodic, 
for l<p<oo, a continuous function f{t), teJ?-+2£ is Sfv almost-periodic, and a 
function u(t), t e cf-^3< has the representation 

(2.1) u(t) = &(t)u(0) + f 9(t-s)f(s) ds. 

Then, if 

(2.2) sup ||ii(0|| < oo, 
te^ 

u(t) is weakly almost-periodic. 

Proof. Consider the function 

*°-ifj (2.3) fh(t) = - f(t+s) ds for any h > 0. 
h Jo 

Since fis <S?P almost-periodic (and hence S^1 almost-periodic), it follows easily 
that fh(t) is almost-periodic for each fixed /z>0. It can be proved, as for scalar-
valued functions (see Besicovitch [2], pp. 80-81), that fh->f as h-*0 in the 6?1 

sense, that is, 
rt+i 

sup \\f(s)-Ms)\\ds-+0 as h-+0. 
tef Jt 

Under the assumption made on ^* , it is easy to see that ^if), t e fl->Sl($C, 2£) 
is weakly almost-periodic, and so, as shown in the proof of Theorem 1, @(t)f(t) 
is weakly continuous. Now, for an arbitrary but fixed x* effî*, we have 

(2.4) **af(0/(0 = ^*^(0[/(0~A(0]+x*^(OA(0, 
and, by (1.1), 

(2.5) sup \^9(s)U(s)-Ms)]\ ds 
tejf Jt 

rt+i 
^ ^ s u p \\f(s)-fh(s)\\ds->0 as h-+0. 

tej- Jt 
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Since, by Theorem 1, the functions x*@(i)fn(i) are almost-periodic from f 
to the (field of) scalars, it follows that x*@(t)f(t) is S^1 almost-periodic from fl 
to the scalars. 

Since @(—s), 5 6 / - > i ! ( f , f ) is weakly almost-periodic, it follows that 
x*@(—s)f(s)9 s G^-^the scalars is continuous and S?1 almost-periodic. 

If we write 

(2.6) v(t) = h-s)f(s)ds, 

then we have 

(2.7) <g{-t)u{t) = ii(0)+r(t). 

So, by (1.1) and (2.2), x*v(t)=$0x*&(-s)f(s) ds is (uniformly) bounded on / . 
Now the «9*1 almost-periodicity of x*(3(—s)f(s) and the boundedness of x*v(t) 
imply that x*v(t), ^ e ^ - ^ t h e scalars is almost-periodic. Then, by Remark (iii), 
&(t)v(t) is weakly almost-periodic from f to 2£. Since @(t)u(0) is weakly almost-
periodic from fl to ^ , the desired conclusion follows. 

Notes, (i) Towards the end of the proof of Theorem 2, we used the following 
result: If, for 1 <p< oo, a function cf)(s) is £fv almost-periodic from f to the scalars, 
and if <S>(t)=p0cf)(s) ds is bounded on (/9 then O(0 is almost-periodic from fl 
to the scalars. 

Proof. Consider a sequence {/>w(0)n=i °f infinitely differentiable positive 
functions, null for \t\>ljn with integral = 1 . The convolution between </> and pn 

is defined by 
/»oo /»oo 

(<£ * P»)(0 = </>(ts)pn(s) ds = <Ks)pn(ts) ds. 
J—CO J —CO 

It is easy to see that 
(O * pj(t) = (0 * P J ( 0 for all * e / ; 

sup ||(0 * pn)(OII < sup ||0(f)|| < GO (by our assumption). 

As shown in the proof of Theorem VII, p. 78, Amerio and Prouse [1], {<f> * pn)(t) 
is almost-periodic from f to the scalars. Hence, by Bohl-Bohr's theorem, 
(O * pn)(t) is almost-periodic from f to the scalars («=1 , 2 , . . .). 

Further, by Theorem VIII, p. 79, Amerio and Prouse [1], 0 ( 0 is uniformly 
continuous on f . By the uniform continuity of 0(f), the sequence of convolutions 
(O * pn)(t) converges uniformly to 0 ( 0 for w->oo. Consequently, 0 ( 0 is almost-
periodic. 

(ii) Theorem 2 remains valid if the function/is weakly almost-periodic instead 
of continuous and <9*p almost-periodic, with ^ * , u satisfying the conditions im­
posed on them. 

Proof. By Remark (iii), @(—s)f(s), s e $-+SE is weakly almost-periodic. 
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By (1.5), (2.2), and (2.7), v(t) is bounded on f . So, by Bohl-Bohr's theorem, 
v{t) is weakly almost-periodic. Now the result stated is obvious, 

(iii) From the proof of Theorem 2, the following result is obvious. 

THEOREM 3. If@(t), / G / - > £ ( J , J ) is weakly almost-periodic, for l < p < o o , 
(t), t e / - ^ f is continuous and £f® almost-periodic, and ^(t)=j &(s)f(s) ds is 
bounded on e/9 then SF{f) is weakly almost-periodic (2£ a Banach space). 

(iv) If s? is the infinitesimal generator of a strongly continuous one-parameter 
group Çï'.J'->£(?£, 3T)9 and iff: ^-+3? is a continuous function, then any solution 
of the inhomogeneous operator differential equation 

w'(0 = s/u(t)+f(t) on f 

has the representation (2.1) (see Dunford and Schwartz [3]). 
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