ON LATTICE PATHS WITH SEVERAL DIAGONAL STEPS
S.G. Mohanty and B.R. Handa

(received March 26, 1968)

1. In this note we consider the enumeration of unrestricted and
restricted minimal lattice paths from (0,0) to (m,n), with the
following (u +2) moves, p being a positive integer. Let the line
segment between two lattice points on which no other lattice point lies be
called a step. A lattice path at any stage can have either (1) a vertical
step denoted by SO, or (2) a diagonal step parallel to the line

x=ty(t=1, ..., p), denoted by St’ or (3) a horizontal step, denoted

by Sp.+1 .

A special case of the enumeration problem for p =1 and m =n
has been studied by Moser and Zayachkowaski in [4], whereas Rohatgi
in [5] discussed the same for p =1, and m > n.

2. For simplicity of presentation, we first derive the results for
the case p = 1. Our considerations are based on a combinatorial approach
which is capable of immediate extension for general .

When p =1, there are three possible moves, i.e. SO, a vertical
step, or S1 , a diagonal step parallel to x =y (briefly referred to in
this section as a diagonal step), or SZ, a horizontal step. We define

the following notations to be used subsequently in this section.

For non-negative integers m,n,o,3,f{ and r,
S(m, n; r): any path from (0,0) to (m,n) having exactly r diagonal steps;
N(m, n;r): the number of paths of the type S(m,n; r);

f(o, n, B3 r): the number of paths of the type S(a+#n, n; r), o> 0, never
touching the line x = By;

g(n, B; r) : the number of paths of the type S(Bn, n; r), never touching
the line x = By except at the end points;
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f' (@, n, B; r) : the number of paths of the type S(e+fn, n; r), a3 0,
never crossing the line x = By;

Al(m, n, B; r) : the number of paths of the type S(m, n; r) never
crossing the line x =By - £.

Note that the restricted enumeration of paths in [4] and [5] is discussed

for B = 1.
X
Let the multinomial coefficient ji’ e, jk , represent
k
x(x-1)...{x- Z j. +1
. i
i=1
k
R 3 1
Tt
i=1
Clearly

(T;+n—r) 0 ¢ r £ min(m, n);
(1) N(m, n; r) = ’

0, otherwise.
THEOREM 1.
@+t (B+1)n-r
(a) o ( > 0grgn n30, a>0;
at(B+1)n-r r, n-r '
(2) f(a, n, B; r) =
0, otherwise.
(b)
_ 1 ((B+1)n-r-1) 0 r<n, nx1;
B+1)n-r-1 r, n-r '
(3) £(n, B; 1) =
0, otherwise.

Proof. (a) Subtracting from total number of paths of the type
S(a + Bn, n; r), those paths that definitely cross or touch the line x = By,
we get the recurrence relation
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(4) f(e, n, B3 r) = N(a+pBn, n;r)

n min(r, i)
- Z 2 N(Bly 1; _]) f(a’» n- i: B; r - J) .
i=1 j=max(0, r +i-n)

The boundary conditions are as follows:

(0, n, B; r) = 0, unless n=r = 0;

f(e, 0, B; 1)

n
-

for r =0 and o 3 0,

(5) = 0, otherwise;

and

f(o, n, B; r) =0, if either n or r is a negative integer.

We prove part (a) of the theorem by using induction. For n =0,
result (2) trivially follows from (5). For n =1, actual enumeration

shows that
a, 0<rgl, ax1;
fly 1, B; r) =

&0 , otherwise.

Hence (2) is true for n = 1. By induction hypothesis and using the
recurrence relation (4) we can write,

(Q+(B+1)n-1) n mi‘;(r,i) (ﬁ+'1)1—]

. - z

(6) fa, m, B3r) = r, n-r i=1 j=max(0, r +i-mn) jyi-j
ot (B +1)(n-1) - (r - j)

o
X
ot (Bp+1) (n-i) - (r-]) r-j, n-r-i+ j
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To complete the proof we have to show that

n min(r, 1) ’(B + 1) 1 _ _]
(1 = =
i=0 j=max(0, r+i-n) j, i-1]

N at+t (B +1)n-i)- (r-])

at(@P+1)(n-i)- (r-])

r-j,n-r-1i+]j
a+(B+1)n-r
r, n-r

By an interchange of the order of summation, the left-hand side
of (7), after some simplification, can be expressed as

T n-r B+1)(s+j)-]
z 2z
j=0 s=0 j, s
\\
o a+ (B +1)(n-j-s)(r-ji
at(B+1)(n-j-s)-(r-] r-j, n-r-s

which by summation formula (10) with k = 2, in [2], yields the right
hand side of (7). This completes the proof for (a).

We remark here that the expression for f(a, n, B; r) satisfies the
obvious recurrence relation

(8) f(o mn, B;r)= f(a+PB, n-1, B; 1)
+ f(a+p-1, n-1, B;r-1)+f(e-1, n, B;1),

for 0grgn, >0 and n %0, with the boundary conditions same as (5).

(b) We observe that g(n, B; r) satisfies the relation

(9) gn, Bsr)=£(B, n-1, B;r) + £f(B-1, n-1, p;r- 1),

for 0 r<n, n3 1, which by using (2) simplifies to the required
expression (3). This completes the proof of the theorem.
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Evidently one finds

(10) £' (@, n, B; r) =f(a+1, n, B; 1)

at 1 at1+PB+1)n-1r

a+1+(B+1)n-r

r, n-r
for 0¢rgmn, a3 0.

Putting =1, and a=m - n in (2), (3) and (10), we obtain
the expressions for Q(m,n) and Q'(m,n) defined in [5], as

n m-n rn+n-r\
z ~+—— ; for m > n;
r=0 morn-r r,n-r/
(11) Q(m, n) =
n-1 1 2n-r -1
for m = n;
2n-r -1
r=0 r,n-r
0 for m< n;
and
n m+n-r+1
= m-n +1 for m > n;
m+n-r +1
(12) Q'(m,n) =4 r=0 r,n-r
0 for m < n;

which provide the solutions to (1) and (2) in [5].

An expression for AE (m, n, By r) canbe obtained by an argument

analogous to that for (4), which for general B cannot further be simplified.
When 8 =1,

(13) Aﬁ(m, n, 1; r) = N(m, n; r)

n min(i-£ -1, r)
-z = N(i-£ -4, ;j)f' (m-n+L, n-1, B; r - j),
i=g+1 j=max(0, r+i-n)

for 0 < r < min(m, n), m > n - 1, which by an interchange of the order
of summation and some elementary simplification reduces to
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VG
™

rn+n-r) n-r 23+j-£-1)
(14) r,n-r ) i, s-4-1

s={ +1

1
o

]

mo-n 40 +1 m-n+f +1+2(n-r-s)+r-j

X . .
m-n+f +1+2(n-r-8)+r-j

r-j, n-r-s

m+n-r

The second term in (14) sums up to (r 1) by the use of

n-r -4 -

(10) with k = 2 in [2].

Thus the expression for Ag (m, n, 1; r) is

m+n-r ( m +n-r )
r,n-r r, n-r-f-1 5

which can be written as

m+n-r m +n - 2r m +n - 2r l
(15) r ) n-r -n—r—l—1>ll,

By the use of corollary (4) in {3], we have the following relation

m+n-r
(16) Al(mv n, 1: r)_( r > Aﬂ(m—r,n—r, 1,0)

3. In this section we state results for general enumeration probler

where 1< pgp. Let flo, n, B; T T ) represent the number of
n

lattice paths from (0,0) to (o + fn, n), « > 0, never touching the line
x = By and having r, steps of the type Si (i=1, ..., p). Also denote

by g(n, B; Tyo seen T ) the number of lattice paths from (0, 0) to
"

(Bn, n), never touching the line x = By except at the end points and
having r, steps of the type Si (i=1, ..., p.
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THEOREM 2.

(a) f(e, n, B; T rH):
e+ (B +1)n- Zir,
@ i
a+(6+1)n—2iri r,...,r , n-2>r, s
1 K i
(17) /
for 0« Zr,sn,Ogrisn(i:L ey, 1), 1> 0, > 05
i
0, otherwise;

(b) glm Bsrpo onn, r“) =
. '(B+1)n-zir],-1
(p+1)n—21ri—1 r ,...,r , n-2r,
1 I i
(18)
for 0<Zr.< n, 0$ri$n(i=1, e, 1), m2 1
—_— i
0, otherwise;
"
where X, stands for X
1

We conclude with a generalization of the result in [4], on paths
ending at (km, kn), m, n being coprime (also see [1]).

In [1] it has been shown that the number of paths from (0, 0) to
(km, kn) without diagonal steps, which do not cross the line nx = my
are given by

Kk
F, 1 FIZ(Z

(19) ¢, = mx ——= o+ 22 .
k k1. kZI'

and of those which never touch the line nx = my except at the end
points are given by
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(20) Yy = 2 (- 1) % '
k 1 1
k1 ! kz.
1 (m + n) j>
where Fj = m mj

and 2* is the summation over all ki >0, i=1, 2, ., subject to

00

b> P k. = k.
i=1 ' 5

We remark here that the results (19) and (20) also hold for the
case with diagonal steps provided we modify the function Fj by

k(m +n) - Zir T

k(m +n)—Ziri )
Y i 1

., r ,kn-Zr,
v i

where R' consists of restrictions:

{Ongis kn, 0 ¢ Ziriskm, 0§ri§min(krn, kn)(i=1,...,u)},

and TS represents the number of steps of the type S.. Z stands for
i

= }; everywhere.
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