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ON THE EQUIVALENCE OF MODES OF 
CONVERGENCE?) 

BY 

R. J. TOMKINS 

1. Introduction. Let (Q,9F9P) be a probability space. Let R denote the set of 
real numbers and X the set of all random variables defined on £l. Throughout this 
work, random variables which differ only on a set of probability zero will be con­
sidered identical. EX represents, as usual, the expectation of X9 I G J . 

An event A e IF is called an atom if P(A)>0 and for any B^A (Be IF) either 
P(B)=0 or P(B)=P(A). It is easy to show (see Loève's book [2] p. 100, for example) 
that any sample space can be written 

& = AuUAk (1) 

where the events involved are disjoint, each Ak is either an atom or empty, and A 
has the property that, given any Be IF such that B^A and any e between 0 and 
P(B)9 there exists C e IF such that P(C)—e. It is easily demonstrated that random 
variables are constant on atoms. 

Let X9 Xl9 X2,... be in 2£. The concepts of convergence of the sequence {Xn}9 
a.c. p 

n> 1, to Xalmost certainly (denoted Xn—>X)9 in probability (Xn—>X) and in the 
r 

r^-mean (Xn—>X) are well-known. Less familiar are the following two modes of 
convergence. 

DEFINITION. 

(i) Let f.^-^R. Then the sequence {Xn} is said to converge to X inf (denoted 

c 

(ii) The sequence {Xn} converges completely to X (Xn—>X) if 

2P[\Xn-X\>e]<x> 

for all e>0. 
Type (i) is used by Thomasian [3]; his results will appear in section 2. Complete 

convergence was introduced by Hsu and Robbins [1]. By the Borel-Cantelli lemma, 
complete convergence implies convergence almost certainly. Lemma 1 provides a 
partial converse to this statement. 
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a.c. 

LEMMA 1. Let X, Xn(n>l) etF. If Xn—>X then there exists an increasing 
c 

sequence {nk} of integers such that Xn —>X. 

Proof. For each m, n=l, 2 , . . . define the events Anm=[\Xn—X\>llm]. Since 
a.c. 

Xn—>^it follows that, for each ra>l, 
infP{u,4nm[ = 0. 

Let n a = l . For k>\, let nk be the least integer greater than n^ satisfying 
P{\Jn>n dnk}<,2-k. Given £>0, choose an integer N>e~1. Then 

I P[\Xn-X\ > s] < I P(Ankk) < I P{ U Ank} < 2. 
k=N k=N k=N \n>nk J 

i.e. Xn^-+X, as k^œ. Q.E.D. 

The question to which this paper addresses itself is: what kind of restrictions 
have to be placed on O in order to insure that one type of convergence occurs if and 
only if another type occurs? 

2. The main result. Clearly convergence in the rth mean and convergence in / for 
some/are equivalent in any probability space; t ake / (Z)=is \X\r. 

The next two theorems were proved by Thomasian [3]. 

THEOREM 1. The following statements are equivalent: 

(i) for somef:3ir-+R9 Xn-^-+X if and only if (iff) xJ^X for any Xn, l e i 

(ii) for any Xn, Xe%y X^X iff Xn-^>X. 

(iii) Q. is the countable (possibly finite) union of disjoint atoms (i.e. A=(f> in (1)). 

THEOREM 2. The following are equivalent: 

(i) Q. is the finite union of disjoint atoms. 

(ii) for some f.9C-^R, convergence in f and convergence in probability are equiv­

alent, and, | / ( aZ) | = |a| • \f(X)\ for all a e i ? , j £ l 

The main result of the present work, theorem 3 below, extends theorem 2 to 
cover the remaining possible equivalences of convergence. 

THEOREM 3. The following are equivalent: 

(i) O is the finite union of disjoint atoms. 

(ii) for any X, Xn &3£, Xn—>XiffXn—>Xfor some (equivalently, all) r > 0 . 

(iii) for any X, Xn e3T9 Xn^>X iffXn-^Xfor some (all) r > 0 . 

(iv) for any X, Xn eST, Xn-^->X iffXn-^->Xfor some (all) r>0. 

(v) for somef:Sr-+R9 and any X, Xn e X, xJ->X iffxJ->X. 

(vi) for any X, Xn e 3T, xJ->X iffXn-^X. 

(vii) for any X, Xn e X, Xn^>X iff Xn-^X. 
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Moreover, the function f in (v) has the property thatf{X)—Q iffX=0 a.c. andf 
may, without loss of generality, be assumed to be non-negative. 

3. Proof of Theorem 3. Since Xn-+X iff Xn—X->0 for any of the five conver­
gence modes under consideration, there is no harm in assuming throughout the 
proof that X=0. 

To prove theorem 3, it will be shown that each statement in the theorem implies 
the following one and that (vii) implies (i). 

(i) implies (ii): Suppose 0 = (JfcLi ^k, where the ^ ' s are disjoint atoms. Suppose 
p 

Xn—>0. Since random variables are constant on atoms, we can find constants 
cnk, for each n>\ and k<N, such that Xn—cnk on Ak. Define cn=maxfc<iV |cnfc|# 

By theorem 1, X ^ - ^ O . Hence, given £>0 , there exists an integer Nk(k<N) such 
that \cnk\<e ifn>Nk. If M=maxk<N Nk, cn<e for n>M; i.e. cn->0 as n->co. 

Now, for any r > 0 , E \Xn\
r<cr

n->0. So Xn^-+0 for any r > 0 ; i.e. (ii) holds. 

(ii) implies (iii). Suppose (ii) holds; let r > 0 . Letting/ (X)=E \X\, it is clear from 
(ii) that statement (ii) of theorem 2 holds. This, in turn, implies that (i) holds. But 

p a.c. 

then theorem 1 applies, yielding the fact that Xn—>0 iSXn—>0. This equivalence, 
together with (ii), gives (iii). 

c r 

(iii) implies (iv). If (iii) holds and Xn—>0, then trivially Xn—>0 for all r > 0 . 
If (iii) holds for some r > 0 , let f(X)=(E \X\r)1/r. Then Xn-^-+0 iff Xn^0 so 

that it follows by theorem 1 that xJ^O iff xJ-+0. Hence Xn-^->0 iïï Xn^--+0 
and / satisfies (ii) of theorem 2, implying that (i) holds, say £1=1)^ Ak. Now 

suppose Xn—>0 for some r >0 . By (iii), Xn—>0. Using an argument given earlier 
in this proof, one can prove that given £ > 0 there exists M=Me such that \Xn\ <s 
for all n>M. Then 

oo M 

2P[\Xn\^e]=2Pl\Xn\>s]<œ. 

So Xn-^0. 

(iv) implies (v): clear if one takes f(X)=E \X\r. 

(v) implies (vi): Suppose Xn—>0 but Xn+->0. By (v), f(Xn}+->0, i.e. for some 
e>0 and subsequence of integers nn]oo, 

(2) 1/(̂ )1 >s, k>l. 

P 

Since Xn—>0, there is a subsequence of {Xn } converging to zero almost 
certainly. By lemma 1 that subsequence has a subsequence converging completely 

c 

to zero, say Xnjt—>0 asy->oo. Hence, by (i\),f(Xn )->0 as/-*oo which contra­
dicts (2). 
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That (vi) implies (vii) is obvious, (vii) implies (i) : Suppose (vii) holds and Q. is 
given by (1). lîA^(f), then choose a decreasing sequence of events A^>B1^>B2^> 
• • • such that P(i?J=min (l/«, P(A).) For each n, define the random variable, 

x = (1 on Bn 
n |0 elsewhere. 

a.c. 
It is easily shown that Xn—>0. But, if 1/M<PA, then 

oo oo 

2 P[\X„\ > 1] = 2 n-1 = oo, 
n=M n=M 

Q 

so Xn—»*0 is false, contradicting (vii). Thus A=</>. Suppose atoms Al9 A2, . . . 
exist such that £2=US=i A- F ° r e a c h ^ > 1 le t Nfc=first integer greater than 
l/P(Ak). For each n>\ define the random variable Yn as follows: if co e ^ put 
Yn(oo)=2Nk~n. (Note that, given any element œ of £), a unique index /: (^:>1) 
exists such that co e Ak.) Clearly YJ^>0. So, by (vii), 7n-^->0. But 

00 00 00 

2,P[\YJ > l] = 2 !P{[Yn > l] n 4J 

00 00 

= IZP{[2N*^2n]nAk} 

oo Nk oo oo 

= 2 2 i W = 2 Nkp(Ak) > 21 = oo, 
c 

contradicting Fw—>0. Hence O can only be a finite union of atoms. 
It remains to prove the last statement of the theorem. Suppose (v) holds for 

some/; then (v) also is valid for | / | . 
Define Xn=0 for all n. Xn-^->0 s o / ( J Q = / ( 0 ) = 0 . I f / ( 7 ) = 0 for some Ye ST 

where P[Y^O]>0, then/(7w)->0 if Yn= Y for each n. But then Yn-^-+0 which is 

clearly false. 

REMARK. If (v) of theorem 3 holds for some/, then obviously (ii) of theorem 2 
holds—but not necessarily for the same function/ 

For example, if Jr={^>, O} then all random variables are constants. L e t / ( Z ) = 
X2. (v) of theorem 3 holds for this/ , but /does not satisfy (ii) of theorem 2. 

4. On norms and metrics. It is well-known that convergence in the metric 
E \X- Y\ 

d(X, Y)=-—————• is equivalent to convergence in probability in any probability 
\+E \X— Y\ 

space. 
Thomasian [3] proved that a metric exists for X such that convergence in the 

metric and convergence almost certainly are equivalent if and only if fi is a count­
able union of disjoint atoms. His result is extended by the following theorem. 
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THEOREM 4. The following are equivalent: 
(i) O is the finite union of disjoint atoms, 

(ii) a metric d exists for 2E such that Xn—>X iffd(Xn, X)-^0 as «->oo. 

Proof, (i) implies (ii): If (i) holds then, by theorem 3(iii), Xn-^-+XiSE\Xn-X\-+0. 
(ii) holds with d(X, Y)=E \X- Y\. 

(ii) implies (i): Suppose rfis a metric for 2C; define f(X)=d(X, 0). Then Xn—>X 

iff Xn-X-^->0 iffd(Xn-X, 0)->0 iff Xn-^>X. Thus theorem 3(iv) holds, which is 
equivalent to (i). 

Thomasian further exhibited that a norm on X exists such that convergence in 
the norm and convergence in probability always occur together iff £1 is the finite 
union of disjoint atoms. Theorem 5 shows that Thomasian's result remains valid 
when the phrase "in probability" is replaced by either "almost certainly" or 
"completely". 

THEOREM 5. The following are equivalent: 
(i) Q, is a finite union of disjoint atoms. 

(ii) a norm exists for SC such that convergence in the norm is equivalent to con­
vergence completely. 

(iii) a norm exists for SC such that convergence in the norm is equivalent to con­
vergence almost certainly. 

Proof. If (i) holds, let f(X)=E \X\. This is clearly a norm for X. (ii) and (iii) 
follow by theorem 3. If (iii) holds, then (i) of theorem 1 holds. Hence, using theorem 
l(ii), convergence in the norm and convergence in probability are equivalent. 

But, as previously remarked, Thomasian proved that equivalence of convergence 
in the norm and convergence in probability occurs iff (i) holds. If (ii) holds then 
(iv) of theorem 3 is satisfied, so (i) holds. 
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