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Introduction. The concept of a hermitian element of a Banach algebra was first introduced
by Vidav {21] who proved that, if a Banach algebra & has * enough > hermitian elements,
then & can be renormed and given an involution to make it a stellar algebra. (Following
Bourbaki [5] we shall use the expression ‘‘ stellar algebra *” in place of the term * C*-algebra .)
This theorem was improved by Berkson [2], Glickfeld [10] and Palmer {17]. The improve-
ments consist of removing hypotheses from Vidav’s original theorem and in showing that
Vidav’s new norm is in fact the original norm of the algebra. Lumer [13] gave a spatial
definition of a hermitian operator on a Banach space E and proved it to be equivalent to
Vidav’s definition when one considers the Banach algebra #(E) of continuous linear mappings
of Einto E.

In this paper the theory outlined above will be applied to define a normal element of a
Banach algebra and to prove a spectral theorem for such elements. This theorem will then be
exploited to prove analogues of well-known theorems for operators in Hilbert spaces.

We shall use the following standard notations. The symbol N will denote the set
{0,1,2,...}, R the set of real numbers, C the set of complex numbers, T! the unit circle in C,
and z the identity function of R? onto R2,

The Banach algebras considered here will be assumed to be complex and to have identity
element 1 such that | 1| =1. For an element x of a Banach algebra «, the spectrum of x,
denoted by sp (x), is the set of complex numbers A such that A—x ( =41 —Xx) is not invertible
in &. The spectral radius of x is the number

p(x) = sup {| 1|: Zesp(x)}.

Note that p(x) < || x| .

Let o be a Banach algebra, and let xe /. Since the mapping ¢ || 1 +1x | is a convex
function of R into R, one can define

t=0+ t

An element xe.of is hermitian if @(ix) = ¢(—ix) =0; x is positive if x is hermitian and has
positive spectrum. Since, for ye o, ¢(y)+¢(—y) = 0, x is hermitian if both ¢(ix) and ¢(—ix)
are negative and positive if, in addition, p(—x) £ 0. If of is a stellar algebra, x is hermitian
(in the sense above) if and only if x is self-adjoint (x = x*). The function ® of & into R
defined by the equation

@(x) = sup {p(4x): 1€C, |1]| £ 1}

is a norm on & equivalent to the original norm. The above facts are proved in [4].
We shall list here the basic facts that we shall use throughout the paper.

PROPOSITION A. The element x€ s/ is hermitian if and only if | €"* | = 1 for every teR.

D
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ProrosiTiON B [21, Hilfsatz 2 (e)). If xe«f is hermitian, sp(x) c R.

ProrosiTioN C [2, Lemma 3.1). Let H be the set of hermitian elements of of. Then
H4+-iH is closed in o .

Proof. First note that, if a, be H, then ¢(a+ib) < ¢(a)+ ¢(ib) = ¢(a) = p(a+ib—ib) <
o(a+ib)+ ¢(—ib) = ¢(a+ib); hence ¢(a+ib) = ¢(a). Consequently ®(a) < ®(a+ib).

Now let (x,) be a sequence in H+iH converging to xe /. Write x, = a,+ib,, a,, b,e H.
By the above discussion (a,) is a Cauchy sequence (for ® and therefore for the original norm).
Thus the sequence (a,) [resp. (b,)] converges to aesf [resp. besf]. But H is closed
[21, Hilfsatz 2(d)]; hence x = (a+ib)e H+iH.

ProrositioN D [21, I1). If of and & are Banach algebras, and u is a norm-decreasing
linear mapping of # into sf mapping 1 onto 1, then u carries hermitian [resp. positive] elements
of & onto hermitian lresp. positive] elements of 4.

Proof. For any ye 4B, ¢u(y)) < ¢(y). Hence, for xe % hermitian, ¢(iu(x)) < ¢(ix) =0
and @(—iu(x)) £ o(—ix) = 0; furthermore, for x positive, ¢(—u(x)) £ ¢(—x) = 0.

ProrosiTioN E [21, Hilfsatz 2(c)]. If a+ib = a’+ib’ where a, b, a’, and b’ are hermitian,
thena=a andb=1">".

ProrosiTiON F [17, Theorem]. If o is (algebraically) spanned by its hermitian elements
(i.e. & = H+iH), the mapping x — x* is an involution on o/ under which s becomes a stellar
algebra. (If x = a+ib (a, b hermitian) then x* = a—ib.)

ProrosITION G [21]. If xe o/ is hermitian and quasi-nilpotent (sp (x) = {0}), then x = 0.

1. The spectral theorem for normal elements of a Banach algebra. In this section we
shall introduce the concept of a normal element of a Banach algebra and prove a spectral
theorem for such elements. This theorem depends on the theory of C'(R?)-scalar elements
(a concept due to Foias (see [6]) and Maeda [16]; see [20] for a complete exposition and for
further references).

We shall denote by C'(R?) the Banach algebra of continuous, complex-valued functions
defined on R? having limits at co and by % (R?) the set of continuous functions with com-
pact support. Note that C'(R?) is a stellar algebra, and that it can be identified with the
direct sum of Co(R?) and C where Cy(R?) is the stellar algebra of continuous functions on R?
vanishing at 0.

DEFINITION. An element x of a Banach algebra & is C'(R%)-scalar if there exists a
continuous representation u of C'(R?) into & mapping 1 onto 1 and such that, for every
fe'(R?) taking the value 1 on sp(x), u(f) = 1 and u(zf) = x.

ReMARK. It follows from [6, Corollary 1.6, p. 98] that, for any C'(R?)-scalar element
x€ &/, there is only one representation u as described in the definition above. 1t is called the
C'(R?)-scalar representation for x. Furthermore, for any f, g e C'(R?) which agree on sp(x),
u(f) = u(g) [6, Theorem 1.6, p. 60].
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If of and & are Banach algebras, a linear mapping of & into & is involutive if it maps
hermitian elements of 2 into hermitian elements of ..

ProrosiTioN 1.1. Let &f be a Banach algebra, # a stellar algebra, and u a continuous
representation of & into &f mapping 1 onto 1. Then u is involutive if and only if u has norm 1.

Proof. If uhas norm 1, use Proposition D to conclude that u is involutive. To prove the
converse consider the closure, &', of the image of u. Since 4 is (algebraically) spanned by its
hermitian elements, and since u is involutive, &/’ is spanned by its hermitian elements (use
Proposition C). Thus, by Proposition F, &’ is a stellar algebra. A standard result from the
theory of stellar algebras [5, Proposition 1, p. 66] now applies.

DEerNITION. Let & be a Banach algebra. An element xe o is normal if there exist
commuting elements a, be & such that

(1) a™b" is hermitian for every m, neN;
2) x=a+ib.

We shall call a the real part of x and b the imaginary part of x. (Note that, by Proposition E,
a and b are unique.)

If E is a Banach space, an operator T on E is normal if T is normal as an element of the
Banach algebra #(E).

LemMa 1.1, Let X be a compact Hausdorf{ space, &/ a Banach algebra, and xe sf. Suppose
that there exists a continuous representation v of C(X) into & which has 1 and x in its image
(in particular v(1) = 1). Then there exists a C'(R?)-scalar representation u for x such that
lul =]

Proof. Define u(f) = v(foh), where he C(X) is such that x = v(h).

THEOREM 1.1 (The spectral theorem in Banach algebras). An element xe o/ is normal if
and only if x is C'(R?)-scalar and the C'(R?)-scalar representation for x has norm 1.

Proof. First suppose that x is normal. Let a be the real part of x, b the imaginary part
of x, and let # be the smallest closed subalgebra of &/ containing the set {a, b,1}. By
Proposition F and the Gelfand Isomorphism Theorem [5, Théoréme 1, p. 67] there exists an
isometric isomorphism v of C(sp(x)) onto 4. One now uses Lemma 1.1 to obtain the desired
conclusion.

To prove the converse suppose that u is the C'(R%)-scalar representation of x (so that
[u]| =1). Letrand s be elements of C'(R?) such that

r(z2)=A(z) and s(z) = £(2)
for every zesp(x), and let
a=u(r) and b= u(s).

Clearly x = a+ib. For m,neN, a™b" = u(r™s") is hermitian by Proposition D.
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COROLLARY 1. An element xe s is normal if and only if x is C'(R%)-scalar and the
C '(R¥)-scalar representation for x is involutive.

COROLLARY 2. Let E be a Banach space. A necessary and sufficient condition for an
operator Te #(E) to be C'(R?)-scalar is that there exist a norm on E, equivalent to the original
norm, under which T is normal.

Proof. The sufficiency follows easily from previous results. To prove necessity suppose
that T is C'(R?)-scalar and let U be the C'(R?)-scalar representation for 7. By Theorem 1.1
we need only exhibit an equivalent norm on E such that, when E is endowed with the new
norm, | U|| =1. Such a norm is given by

x—sup U] | 7] £1).

RemARrRk. Corollary 2 above is valid in the context of Hilbert spaces [15, 22]. However,
the proof given above can not be used in this case since the new norm need not be a Hilbert
space norm.

COROLLARY 3. If xe is normal, then || x| = p(x).

Proof. Let u be the C'(R?)-scalar representation for x, and choose fe C'(R%) of norm
p(x) and such that f(z) = z for zesp(x). Then | x| = ||u(f) || £ | f| = p(»).

COROLLARY 4 [2, Theorem 2.1]. If py, ..., p, are non-zero disjoint projections (hermitian
idempotents) in a Banach algebra o/ and A, ..., A, are complex numbers, then

| 3 4pl=sup(lal:15isn).

In particular, if p is a non-trivial projection, " pl=|1-p [| =1.

Proof. For fe C'(R?) define u(f)e o by

u(f)= 3 S+ O- 3 p.

n

Then u is an involutive C ‘(R?)-scalar representation for x = Y’ 4, p;. By Proposition 1.1 and
i=1
Theorem 1.1, x is normal. By Corollary 3,
| x| = p(x) =sup{|4]:1 i< n}.

REMARK. A necessary and sufficient condition for an idempotent p e & to be a projection
is that | p+A(1—p)|| = 1 for every AeT'. To prove this fact simply use the equality

[ ] = e*(p+e 1 =p) | = [ p+e~"(1-p) |
together with Proposition A. This equivalence was first noted by Palmer [18].
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ExaMPLE. If E = C? with the norm (x, y) > | x|+|y| and P is the idempotent in L(E)
defined by
P(x,y)=¥x+y, x+y),
| P|=]I-P|=1. However

| (P+iI—P))(1,0)|| = /2.

Hence P is not hermitian.

E. Berkson has shown [3] that the above example is valid when C? is endowed with the
“ p-norm ” for any p such that 1 £ p < o0, p # 2.

For the next two results we shall need two definitions. An element x of a Banach algebra
& is power hermitian if x" is hermitian for every neN. The element x is unitary if x is normal
and invertible and if both x and x~! have norm 1. If & is a stellar algebra, then every
hermitian element is power hermitian. However, there is an example of a hermitian operator
on a Banach space which is not power hermitian [14].

ProrosiTiON 1.2 [4).  If a and b are commuting hermitian elements of a Banach algebra
&, and if x = a+ib has real spectrum, then x is hermitian (i.e. b = 0). Consequently, the element
xe o is power hermitian if and only if x is normal and has real spectrum.

Proof. The hypotheses of the proposition imply that p(e™*)p(e?) = p(e”*) = 1; hence,
by [5, Cor. to Prop. 5, p. 26] and the fact that p(e”) = p(e™*) =1, p(e®) = 1. Similarly,
p(e™® = 1. By the Spectral Mapping Theorem, b is quasi-nilpotent and therefore 0 by
Proposition G.

ProPOSITION 1.3 (see [19]). A normal element x of a Banach algebra sf is unitary if and
only if sp(x) « T,

Proof. The fact that a unitary element has a spectrum contained in T follows from the
Spectral Mapping Theorem. To prove the converse, let u be the C '(R?)-scalar representation
for x, and let fe C'(R?) be the identity on T' and have norm 1. From the fact that ff=1 on
sp(x), x~! = u(f); the result follows.

The next proposition, which we shall state here without proof, is analogous to Theorem 1

of [19].

ProposITION 1.4. If x is a normal, invertible element of a Banach algebra o/, then there
exist a positive, power hermitian element yc < and a unitary element ze o/ such that x = yz.
Furthermore, if a is the real part of z and b is the imaginary part of z, then y, a, and b commute
and y*a™b" is hermitian for every k, m, neN.

If xesf is B(R?)-scalar, the assumption of invertibility can be omitted from the
hypotheses of Proposition 1.4. (For the definition of B*(R?) see §2.)

2. Scalar operators. In this section we shall examine the preceding results in the context
of the scalar operators of Dunford [7,8]. We shall begin by reviewing some notation and
known theorems, most of which are taken from [11}.

We shall let B*(R?) denote the set of bounded Borel-measurable functions from R? into
C. With the usual addition, multiplication, involution and norm, B*(R?) is a stellar algebra,
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and C'(R?) is a stellar subalgebra of B*(R?). For any subset 4 of R?, ¢, will denote the
characteristic function of 4; A is a Borel set if and only if ¢ ,€ B°(R?). If 4 is a Borel subset
of R? and if U is a function whose domain is B*(R?), we shall use the symbol U, in place of
U(p,). Note that, if U is a representation of B*(R?) into a ring &, U, is idempotent.

Let E be a Banach space. A continuous representation U of B®(R?) into Z(E) is
standard if, for any bounded sequence (f,) in B*(R?) converging pointwise to 0, the sequence
(U(f,)) converges strongly to 0 in #(E). An operator Te L(E) is scalar if there exists a
standard representation U of B®(R?) into Z(E) mapping 1 onto 7 and such that, for every
bounded Borel subset 4 of R%, U(ze,) = U, T. (These operators were called scalar-type by
Dunford [8].)

If Te #(E) is scalar, there is only one standard representation that has the properties
listed above. It is called the spectral representation for T. Furthermore, U(zf) = U(f)T for
every fe B®(R?) with compact support.

The following theorem, which is proved in [12], summarizes the relationship between

scalar and C'(R?)-scalar operators in weakly complete Banach spaces. A proof, based on
the theory of spectral measures as developed in [11], can be given.

THEOREM 2.1. On a weakly complete Banach space E, an operator Te ¥(E) is scalar if
and only if it is C'(R?)-scalar. Furthermore, if U is the spectral representation for T, then the
restriction of U to C'(R?) is the C '(R?)-scalar representation for T.

CoRrOLLARY 1. If Te ¥(E) is scalar and if U is the spectral representation for T, then the
Sfollowing assertions are equivalent:

(1) T is normal.

(2) U has norm 1.

(3) U(Y) is hermitian for every real fe B°(R?).
(4) U, is hermitian for every Borel subset of R2.

CoOROLLARY 2 [1, Theorem 4.2; 9). Let E be a weakly complete Banach space. An
operator Te ¥(E) is scalar if and only if there is a norm on E, equivalent to the original norm,
under which T is normal.

The following corollary follows easily from Theorem 2.1 and Corollary 1.

CoRrOLLARY 3 (The spectral theorem in Hilbert spaces). If T is a normal operator on a
Hilbert space H, then T is scalar. Furthermore, if U is the spectral representation for T, then
U, is hermitian for every Borel subset A of R2.

ExampLE. Let E= C(K) where K is an infinite compact subset of R%. For every
geC(R?) define U(g)e L(E) by U(g)x = gx (xeE), and let T = U(z). Then the restriction
of Uto C'(R?) is a C'(R?)-scalar representation for 7. (As a matter of fact U has a norm 1
and therefore T is normal.)

On the other hand, let (¢,) be a discrete convergent sequence in K. Let (Q,) be a sequence
of open subsets of R? such that the sequence of closures is disjoint and such that t,eQ, for
every neN. For each neN, let £, be a unit vector in E with support contained in Q,. Then
(f,) is a bounded sequence in B*(R?) converging pointwise to 0, but the sequence (U(f,)1)
does not converge in E. Consequently, T is not scalar.
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