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Abstract. The aim of this paper is to extend for the m-quasi-Einstein metrics
some integral formulae obtained in [1] (C. Aquino, A. Barros and E. Ribeiro Jr., Some
applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. 60
(2011), 245–254) for Ricci solitons and derive similar results achieved there. Moreover,
we shall extend the m-Bakry-Emery Ricci tensor for a vector field X on a Riemannian
manifold instead of a gradient field ∇f , in order to obtain some results concerning
these manifolds that generalize their correspondents to a gradient field.

2010 Mathematics Subject Classification. Primary 53C25, 53C20, 53C21;
secondary 53C65.

1. Introduction. One of the motivation to study quasi-Einstein metrics on a
Riemannian manifold (Mn, g) is their close relation to Einstein metrics, which are
warped products, see e.g. [4]. In this subject the m-Bakry-Emery Ricci tensor appears
naturally. This tensor is given as follows:

Ricm
f = Ric + ∇2f − 1

m
df ⊗ df, (1.1)

where 0 < m ≤ ∞, while Ric and ∇2f stand for the Ricci tensor and the Hessian form,
respectively. A natural generalisation for the previous tensor is to consider a vector
field X instead of a gradient of a smooth function f , more exactly, we define Ricm

X as
follows:

Ricm
X = Ric + 1

2
LX g − 1

m
X � ⊗ X �, (1.2)

where X ∈ X(M), X � is the 1-form associated to X , while LX g stands for the Lie
derivative of the vector field X .

A metric g on a Riemannian manifold (Mn, X) will be called m-quasi-Einstein
metric, or simply a quasi-Einstein metric if the next relation

Ric + 1
2
LX g − 1

m
X � ⊗ X � = λg (1.3)
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holds for some λ ∈ �. In particular, we have

Ric(X, X) + 〈∇X X, X〉 = 1
m

|X |4 + λ|X |2. (1.4)

Moreover, taking the trace of equation (1.3), we deduce

R + divX − 1
m

|X |2 = λn. (1.5)

We point out that if m = ∞, then equation (1.3) reduces to the one associated to
a Ricci soliton, as well as when m is a positive integer and X is a gradient vector field,
it corresponds to warped product Einstein metrics, for more details see [5]. Following
the terminology of Ricci soliton, a quasi-Einstein metric g on a manifold Mn will be
called expanding, steady or shrinking, respectively, if λ < 0, λ = 0 or λ > 0.

DEFINITION 1. A quasi-Einstein metric will be called trivial if X ≡ 0.

The triviality definition is equivalent to saying that Mn is an Einstein manifold.
On the other hand, it is well known that on a compact manifold an ∞-quasi-Einstein
metric with λ ≤ 0 is trivial, see [6]. The same result was proved in [9] for quasi-Einstein
metric on compact manifold with m finite. Besides, we known that compact shrinking
Ricci solitons have positive scalar curvature, see for example [6]. An extension of this
result for shrinking quasi-Einstein metric with X a gradient vector field and 1 ≤ m < ∞
was obtained in [5].

Before announcing the results we point out that they are generalisations of the
results due to [1, 10] for Ricci solitons. Firstly, we have the following theorem.

THEOREM 1. Let (Mn, g, X), n ≥ 3, be a compact Riemannian manifold satisfying
Ricm

X = λg. Then Mn is an Einstein manifold provided:
(1)

∫
M Ric(X, X)dM ≤ 2

m

∫
M |X |2divXdM.

(2) X is a conformal vector field and
∫

M Ric(X, X)dM ≤ 0.

(3) |X | is constant and
∫

M Ric(X, X)dM ≤ 0.

In order to proceed we remember a result due to Yau [11], which is a generalisation
of Hopf’s theorem: A subharmonic function f : Mn → � defined over a complete non-
compact Riemannian manifold is constant, provided its gradient belongs to L1(Mn).
Recently, this result was extended by Camargo et al. [3] for a vector field X. With the
aid of this extension we derive the following result.

THEOREM 2. Let (Mn, g, X) be a complete, non-compact Riemannian manifold
satisfying Ricm

X = λg. If nλ ≥ R and |X | ∈ L1(Mn), then Mn is an Einstein manifold.

Before proceeding, we make an observation: When X = ∇f is a gradient field,
equation (1.5) enables us to write

R + �f = 1
m

|∇f |2 + λn. (1.6)

Thereby, we derive

〈∇f,∇R〉 + 〈∇f,∇�f 〉 = 2
m

〈∇∇f ∇f,∇f 〉. (1.7)
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2. Preliminaries. In this section we shall present some preliminaries which will
be useful for the establishment of desired results. First we remember Lemma 2.1 due
to [10].

LEMMA 1. Given a vector field X on a Riemannian manifold (Mn, g), we have

div(LX g)(X) = 1
2
�|X |2 − |∇X |2 + Ric(X, X) + DX divX. (2.1)

In particular, if X = ∇f is a gradient field, we have for all Z ∈ X(M)

div(LX g)(Z) = 2Ric(Z, X) + 2DZdivX, (2.2)

or in (1, 1)-tensorial notation

div∇∇f = Ric(∇f ) + ∇�f. (2.3)

Remembering that the diffusion operator is given by �X = � − DX , the previous
lemma allows us to deduce the following one.

LEMMA 2. Let (Mn, g, X) be a Riemannian manifold such that Ricm
X = λg. Then we

have
(1) 1

2�|X |2 = |∇X |2 − Ric(X, X) + 2
m |X |2divX .

(2) 1
2�X |X |2 = |∇X |2 − λ|X |2 + 1

m |X |2(2divX − |X |2).
(3) If Mn is compact and ∇X = 0, then X = 0.

Proof. Since div g = 0, we deduce from the assumptions of the lemma that

divRic + 1
2

divLX g − 1
m

div(X � ⊗ X �) = 0.

Next, we use the contracted second Bianchi identity, ∇R = 2divRic, to arrive at

∇R + divLX g − 2
m

divXX � − 2
m

(∇|X |2)� = 0.

In particular, for any Z ∈ X(M) we have

〈∇R, Z〉 + div(LX g)(Z) − 2
m

X �(Z)divX − 1
m

(∇|X |2)�(Z) = 0.

Therefore, for Z = X we deduce

div(LX g)(X) = −〈∇R, X〉 + 2
m

divXX �(X) + 1
m
LX g(X, X). (2.4)

Next, we use the relation ∇R + ∇divX = 1
m∇|X |2, jointly with equations (2.1) and

(2.4) to arrive at

1
2
�|X |2 = |∇X |2 − Ric(X, X) − DX divX + 1

m
LX g(X, X) + DX divX

− 1
m

X(|X |2) + 2
m

divXX �(X).

Hence, we make use of Lemma 1 to conclude the first assertion of the lemma.
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Next, we notice that the second assertion is immediate from the first one just
applying (1.4).

Supposing ∇X = 0, we have |X | constant as well as divX = 0. Hence, the first item
of the lemma yields Ric(X, X) = 0. Now we use equation (1.4) to deduce

1
m

|X |4 + λ|X |2 = 0. (2.5)

If λ is non-negative we are done. Otherwise, let us assume X �= 0 to arrive at a
contradiction. In fact, equation (2.5) enables us to write λ = − 1

m |X |2. Thus, we obtain

Ric(X, Y ) = 1
m

X �(X)X �(Y ) − 1
m

|X |2g(X, Y ) = 0, (2.6)

for any Y. So, we conclude that Mn is Ricci flat. On the other hand, if we consider
Y a non-zero vector orthogonal to X , we get Ric(Y, Y ) = 1

m (〈X, Y〉2 − |X |2|Y |2) =
− 1

m |X |2|Y |2 < 0, giving a contradiction. Then, λ < 0, also implies X = 0, which
finishes the proof of the lemma. �

Taking X = ∇f in the previous lemma and letting �f = �∇f , we derive the
following corollary.

COROLLARY 1. Under the assumptions of Lemma 2, if in addition X = ∇f, then the
following are true.

(1) 1
2�|∇f |2 = |∇∇f |2 − Ric(∇f,∇f ) + 2

m |∇f |2�f.
(2) 1

2�f |∇f |2 = |∇∇f |2 − λ|∇f |2 + 1
m |∇f |2(2�f − |∇f |2).

Writing equation (1.3) in the tensorial language

Rij + ∇i∇jf − 1
m

(df ⊗ df )ij = λgij, (2.7)

we have the following lemma.

LEMMA 3. Let (Mn, g, ∇f ) be a Riemannian manifold such that n ≥ 3 and
Ricm

∇f = λg. Then the following formulae hold:

(1) 1
2∇iR = m−1

m Rij∇ jf + 1
m (R − (n − 1)λ)∇if .

(2) ∇kRij − ∇jRik = Rijks∇sf + 1
m (Rij∇kf − Rik∇jf ) − λ

m (gij∇kf − gik∇jf ).
(3) ∇(R + |∇f |2 − 2λf ) = 2

m {∇∇f ∇f + (|∇f |2 − �f )∇f }.

Proof. For the first assertion we address the reader to formula (3.12) in Lemma 3.2
in [5]. Now we treat item (2). From equation (2.7) we infer

∇kRij − ∇jRik = −(∇k∇j∇if − ∇j∇k∇if )

+ 1
m

(∇k∇if ∇jf + ∇k∇jf ∇if − ∇j∇if ∇kf − ∇j∇kf ∇if )

= Rijks∇sf + 1
m

(Rij∇kf − Rik∇jf ) − λ

m
(gij∇kf − gik∇jf ),

where we interchanged the covariant derivatives to get item (2).
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Finally, we prove the last item of the lemma. In fact, from item (1) and
equation (2.7) we deduce

1
2
∇(R + |∇f |2) = m − 1

m
Ric(∇f ) + 1

m
(R − (n − 1)λ)∇f + ∇∇f ∇f

= Ric(∇f ) + ∇∇f ∇f − 1
m

Ric(∇f ) + 1
m

(R − (n − 1)λ)∇f

= 1
m

|∇f |2∇f + λ∇f − 1
m

Ric(∇f ) + 1
m

(R − (n − 1)λ)∇f.

Thus, using R − nλ = 1
m |∇f |2 − �f we achieve

∇(R + |∇f |2 − 2λf ) = 2
m

{(|∇f |2 + R − nλ + λ)∇f − Ric(∇f )}

= 2
m

{
(|∇f |2 + 1

m
|∇f |2 − �f + λ)∇f − Ric(∇f )

}

= 2
m

{
(|∇f |2 − �f )∇f + 1

m
|∇f |2∇f + λ∇f − Ric(∇f )

}

= 2
m

{(|∇f |2 − �f )∇f + ∇∇f ∇f },

which concludes the proof of the lemma. �
It is convenient to notice that for m = ∞ we derive the classical Hamilton equation

[7] for a gradient Ricci soliton:

R + |∇f |2 − 2λf = C, (2.8)

where C is constant.
As a consequence of the preceding lemma we obtain the following corollary.

COROLLARY 2. Let (Mn, g, ∇f ) be a Riemannian manifold such that n ≥ 3 and
Ricm

∇f = λg. Then the following formulae hold:

(1) 1
2 〈∇R,∇f 〉 = m−1

m Ric(∇f,∇f ) + 1
m (R − (n − 1)λ)|∇f |2.

(2) 1
2 |∇R|2 = m−1

m Ric(∇f,∇R) + 1
m (R − (n − 1)λ)〈∇f,∇R〉.

Proof. We choose Z ∈ X(M) on item (1) of the quoted lemma to deduce

1
2
〈∇R, Z〉 = m − 1

m
Ric(∇f, Z) + 1

m
(R − (n − 1)λ)〈∇f, Z〉. (2.9)

Therefore, the corollary follows. �

Proceeding, we arrive at the main lemma of this section.

LEMMA 4. Let (Mn, g, ∇f ) be a Riemannian manifold satisfying Ricm
∇f = λg. Then,

1
2
�R = −Ric(∇f,∇f ) −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f + 〈∇R,∇f 〉

+ 1
m

{|∇f |2�f + div(∇∇f ∇f − ∇f �f )
}
. (2.10)
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Proof. Initially we compute the divergence of identity (3) of Lemma 3 to obtain

�R + �|∇f |2 − 2λ�f = 2
m

{〈∇(|∇f |2 − �f ),∇f 〉 + (|∇f |2 − �f )�f + div(∇∇f ∇f )
}
.

Using Bochner’s formula: 1
2�|∇f |2 = Ric(∇f,∇f ) + |∇2f |2 + 〈∇f,∇�f 〉, and writing

|∇2f |2 = |∇2f − (�f )
n g|2 − 1

n (�f )2, we have

1
2
�R = −Ric(∇f,∇f ) −

∣∣∣∣∇2f − �f
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f − 〈∇�f,∇f 〉

+ 2
m

〈∇∇f ∇f,∇f 〉 + 1
m

{
(|∇f |2 − �f )�f − 〈∇�f,∇f 〉 + div(∇∇f ∇f )

}
.

Next, we invoke equation (1.6) to write

〈∇�f,∇f 〉 =
〈
∇

(
nλ + 1

m
|∇f |2 − R

)
,∇f

〉
= 2

m
〈∇∇f ∇f,∇f 〉 − 〈∇R,∇f 〉.

Then, the last relation for 1
2�R turns into

1
2
�R = −Ric(∇f,∇f ) −

∣∣∣∣∇2f − �f
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f + 〈∇R,∇f 〉

+ 1
m

{
(|∇f |2 − �f )�f − 〈∇�f,∇f 〉 + div(∇∇f ∇f )

}
.

At this point we use div(∇f �f ) = (�f )2 + 〈∇�f,∇f 〉 to achieve the formula in the
statement, which finishes the proof of lemma. �

3. Proofs of the results stated in the introduction.

3.1. Proof of Theorem 1. First we integrate identity (1) of Lemma 2 to infer

1
2

∫
M

�|X |2 dM =
∫

M
|∇X |2 dM −

∫
M

Ric(X, X) dM + 2
m

∫
M

|X |2divX dM.

This yields
∫

M
|∇X |2 dM =

∫
M

Ric(X, X) dM − 2
m

∫
M

|X |2divX dM. (3.1)

Since we are assuming that the right-hand side of (3.1) is less than or equal to zero, we
obtain ∇X = 0. So, assertion (3) of Lemma 2 allows us to conclude the first item.

Proceeding, we know that there exists a smooth function ρ on M, for which

LX g = 2ρg. (3.2)

In particular, 〈∇X X, X〉 = ρ|X |2. Moreover, taking the trace of both members of
equation (3.2) we also obtain

div X = nρ. (3.3)
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On the other hand, we notice that

div(X |X |2) = |X |2divX + 2〈∇X X, X〉
= (n + 2)ρ|X |2.

Since Mn is compact, we use Stokes’ formula to obtain

∫
M

ρ|X |2 dM = 0. (3.4)

Thereby, using this result jointly with relation (3.1), we conclude that ∇X = 0, since
we are assuming

∫
M Ric(X, X) dM ≤ 0. Therefore, using assertion (3) of Lemma 2, we

conclude that Mn is an Einstein manifold.
Finally, if |X | is constant, we can apply Stokes’ formula on equation (3.1) to derive

∫
M

|∇X |2 dM =
∫

M
Ric(X, X) dM. (3.5)

From here we conclude the proof of the theorem.

REMARK 1. We notice that for n = 2, we may write equation (3.1) as follows

∫
M

|∇X |2dM = 1
2

∫
M

K|X |2dM − 2
m

∫
M

|X |2divXdM, (3.6)

where K stands for the Gaussian curvature. In particular we have:
� If |X | is a non-null constant, then M2 has genus zero or one.
� If X is a non-trivial conformal vector field and K is constant, then M2 is isometric

to �2(r).

3.2. Proof of Theorem 2. Taking into account that Ricm
X = λg, then by equation

(1.5) we arrive at

mdivX = |X |2 + m(nλ − R). (3.7)

Thus, if (nλ − R) ≥ 0, then we have mdivX ≥ 0. On the other hand, if |X | ∈ L1(M), we
may invoke Proposition 1 in [3] to derive that divX = 0. Next, we may use equation (3.7)
to conclude that X ≡ 0 as well as nλ = R. Therefore, M is an Einstein manifold and
we finish the proof of the theorem.

4. Integral formulae for quasi-Einstein manifolds. In this section we shall show
some integral formulae for a compact quasi-Einstein manifold Mn, which are
generalisation of the formulae obtained for Ricci solitons in [1]. Those formulae enable
us to derive some rigidity results for such a class of manifolds.

https://doi.org/10.1017/S0017089511000565 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000565


220 A. BARROS AND E. RIBEIRO JR.

THEOREM 3. Let (Mn, g, ∇f ) be a Riemannian manifold satisfying Ricm
∇f = λg.

Then we have

1
2
�f R = −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f + 1

2
〈∇f,∇R〉 + 1

2
〈∇f,∇�f 〉

+ 1
m

div(∇∇f ∇f − �f ∇f ).

Proof. First of all we use Lemma 4 to obtain the following equation

1
2
�R − 1

2
〈∇R,∇f 〉 = −Ric(∇f,∇f ) −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f + 1

2
〈∇R,∇f 〉

+ 1
m

|∇f |2�f + 1
m

div(∇∇f ∇f − ∇f �f ). (4.1)

Now, using the definition of diffusion operator and substituting identity (1) of
Corollary 2 in the preceding equation, we obtain

1
2
�f R = −Ric(∇f,∇f ) −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f

+ m − 1
m

Ric(∇f,∇f ) + 1
m

(R − (n − 1)λ)|∇f |2 + 1
m

|∇f |2�f

+ 1
m

div(∇∇f ∇f − ∇f �f ).

From here we deduce

1
2
�f R = −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f − 1

m
Ric(∇f,∇f )

+ 1
m

(R + �f − nλ)|∇f |2 + 1
m

λ|∇f |2 + 1
m

div(∇∇f ∇f − ∇f �f ).

Next, using R + �f − nλ = 1
m |∇f |2, we infer

1
2
�f R = −

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

− (�f )2

n
+ λ�f

+ 1
m

{
−Ric(∇f,∇f ) + 1

m
|∇f |4 + λ|∇f |2 + div(∇∇f ∇f − ∇f �f )

}
.

On the other hand, using equation (1.4) with X = ∇f , we have

−Ric(∇f,∇f ) + 1
m

|∇f |4 + λ|∇f |2 = 〈∇∇f ∇f,∇f 〉 = m
2

(〈∇f,∇R〉 + 〈∇f,∇f 〉), (4.2)

where for the last equality we have used equation (1.7). Substituting this in the above
formula for �f R, we get the expression in the statement, which completes the proof of
the theorem. �

As a consequence of this theorem, we deduce the following integral formulae.
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COROLLARY 3. Let (Mn, g, ∇f ) be a compact orientable Riemannian manifold
satisfying Ricm

∇f = λg. Then we have

(1)
∫

M |∇2f − (�f )
n g|2 dM = 3

2

∫
M〈∇f,∇R〉 dM + n+2

2n

∫
M〈∇f,∇�f 〉 dM.

(2)
∫

M |∇2f − (�f )
n g|2 dM + n+2

2n

∫
M(�f )2 dM = 3

2

∫
M〈∇f,∇R〉 dM.

(3)
∫

M Ric(∇f,∇f ) dM + 3
2

∫
M〈∇f,∇R〉 dM = 3

2

∫
M(�f )2 dM.

(4) Mn is an Einstein manifold, if
∫

M〈∇ R,∇f 〉 dM ≤ 0.

(5) Suppose that f is not constant and there exists μ : Mn → � solution of the
equation n+2

2n �f + 3
2 R = μ, such that μ ⊥ �f , in the L2 inner product. Then Mn

is conformally equivalent to a unit sphere �n, but not isometric.

Proof. Since Mn is compact, we can use Theorem 3 and Stokes’ formula to infer

∫
M

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

dM =
∫

M

(
λ − �f

n

)
�f dM +

∫
M

〈∇f,∇R〉 dM

+ 1
2

∫
M

〈∇f,∇(R + �f )〉 dM.

Next, we use relation (1.6) to write
∫

M

(
λ − �f

n

)
�f dM = 1

n

∫
M

(
R − 1

m |∇f |2)�f dM.

Then, Stokes’ formula gives

1
n

∫
M

(
R − 1

m
|∇f |2

)
�f dM = −1

n

∫
M

〈∇f,∇R〉 dM + 1
nm

∫
M

〈∇f,∇|∇f |2〉 dM.

On the other hand, we notice that equation (1.6) yields ∇(R + �f ) = 1
m∇(|∇f |2). By

using this datum on the previous equation, we have

∫
M

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

dM = 3
2

∫
M

〈∇f,∇R〉 dM + n + 2
2n

∫
M

〈∇f,∇�f 〉 dM, (4.3)

which ends the first assertion.
Proceeding, since

∫
M〈∇f,∇�f 〉 dM = − ∫

M(�f )2 dM, we obtain from equa-
tion (4.3) that

∫
M

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

dM = 3
2

∫
M

〈∇f,∇R〉 dM − n + 2
2n

∫
M

(�f )2 dM, (4.4)

which gives the second item.
Next, we integrate Bochner’s formula to get

∫
M

Ric(∇f,∇f ) dM +
∫

M
|∇2f |2 dM +

∫
M

〈∇f,∇�f 〉 dM = 0. (4.5)

Since
∫

M |∇2f − (�f )
n g|2 dM = ∫

M |∇2f |2 dM − 1
n

∫
M(�f )2 dM, we can use once more

Stokes’ formula to arrive at

∫
M

Ric(∇f,∇f ) dM +
∫

M

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

dM = n − 1
n

∫
M

(�f )2 dM. (4.6)
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Now, comparing equation (4.6) with the second item we arrive at

∫
M

{
Ric(∇f,∇f ) + 3

2
〈∇f,∇R〉

}
dM = 3

2

∫
M

(�f )2 dM,

as we want.
On the other hand, if

∫
M〈∇R,∇f 〉 dM ≤ 0, in particular this occurs if R is constant,

we deduce, from the second item, that

∫
M

〈∇R,∇f 〉 dM = 0 (4.7)

and

∫
M

∣∣∣∣∇2f − (�f )
n

g
∣∣∣∣
2

dM + n + 2
2n

∫
M

(�f )2 dM = 0. (4.8)

This implies that ∇2f = 1
n (�f )g and �f = 0. Hence, we can apply Hopf’s theorem to

deduce that f is constant, which implies that Mn is an Einstein manifold.
Finally, we notice that

∫
M |∇2f − (�f )

n g|2 dM = ∫
M〈∇f,∇( n+2

2n �f + 3
2 R

)〉 dM. So,
if n+2

2n �f + 3
2 R = μ, with

∫
M μ�f dM = 0, we have ∇2f = 1

n (�f )g. Since f is not
constant, this allows us to apply Theorem 2 due to Ishara and Tashiro [8] to conclude
that Mn is conformally equivalent to a unit sphere �n. Moreover, if we have an isometry
between Mn and �n, then its scalar curvature R would be constant. From assertion
(2), we conclude that

∫
M |∇2f − (�f )

n g|2 dM + n+2
2n

∫
M(�f )2 dM = 0. Then, the previous

assertion yields that f must be constant, which contradicts our assumption on f . Hence,
we complete the proof of the corollary. �

As a consequence of this corollary, we derive the next result.

COROLLARY 4. Let (Mn, g, ∇f ) be an orientable compact Riemannian manifold
satisfying Ricm

∇f = λg. Then ∇f can not be a non-trivial conformal vector field.

Proof. Let us suppose that ∇f is a non-trivial conformal vector field, i.e. L∇f g =
2ρg with ρ not constant. Therefore, we can apply Theorem II.9 from [2] to deduce that

∫
M
L∇f R dM =

∫
M

〈∇f,∇R〉 dM = 0. (4.9)

Then, the previous corollary enables us to finish the proof. �

REMARK 2. We point out that
∫

M〈∇f,∇R〉dM = 0 in dimension two for m finite

is always valid. In fact, since ∇(e− f
m ) is a conformal field and the Dirichlet integral

is a conformal invariant, the claim follows from Theorem II.9 from [2]. Therefore, if
(M2, g, ∇f ) is a compact quasi-Einstein manifold, then it is trivial by Corollary 3, see
also [5] and [9].
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