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We examine the relation between fix error and the azimuthal distribution of lines of position
by subsuming the distribution into a scalar form Q analogous to the nematic order parame-
ter of statistical physics. It is shown in the least-squares approach that the error behaves as
(1 − Q2)−1/2. Simulation results are presented to demonstrate the control of Q as a strategy for
fix improvement.
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1. INTRODUCTION. A primary factor influencing geolocation resolution is the partic-
ular topology of the network of points available for triangulation. The celestial navigator
keeps a wary eye on the advancing cloud bank for this reason, while the designer of surveil-
lance aircraft maximises the field of view by placing sensors along the full length of the
aircraft (Grabbe and Hamschin, 2013).

Fix algorithms work with the translational/orientational distribution of Lines Of Posi-
tion (LOPs) derived from the triangulation network (Wax, 1983). Hence in looking to
quantitatively establish connections between topology and algorithm accuracy, it is the
LOP distribution which provides the natural focus for investigation. An example of such a
connection is the derivation from the LOP distribution of an elliptical form for the equal
probability contours in the region of a fix (Daniels, 1951; Holland, 1981), the contrasting
axes of this “error ellipse” in effect reflecting the degree of azimuthal anisotropy inherent to
the triangulation network. From the perspective of algorithm development, the availability
in this sense of a parametric characterisation of azimuthal coverage clearly presents useful
scope for optimisation tuning.

Here we point out an alternative scalar characterisation of azimuthal anisotropy which
is more low-level than the error ellipse, in the sense that it is a property of the LOP dis-
tribution alone. In contrast to the error ellipse, it does not depend on the particular choice
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of fix algorithm. While to our knowledge this scalar, which we denote Q, has not pre-
viously been introduced in geolocation literature, it has a well-established counterpart in
the nematic order parameter which features in the statistical physics literature on orien-
tational order, particularly as applied to rod-like molecules (de Gennes and Prost, 1995).
The term “nematic” comes from the Greek for “thread”, and refers to ordering about a
preferential alignment axis known as the director. As we substantiate the analogy between
lines of position and rods, it is appropriate for us to retain this existing nematic/director
nomenclature.

In the following we first revisit the basic least-squares method of geolocation in order to
incorporate Q and express its relation to fix error. We then present a small simulation study
demonstrating its practical deployment. Terminology and the simulation are drawn from
the specific context of celestial navigation, but the discussion applies generally to other
types of LOP.

2. LEAST SQUARES METHOD OF GEOLOCATION. Consider n lines of position in
the (x, y) plane, each described by the form

a = x sin Z + y cos Z, (1)

where a is the altitude intercept and Z is the azimuth of the observed celestial body. The
least-squares result for the fix (DeWit, 1974), in the form in which it appears in recent
editions of the Nautical Almanac, is

xf = (AE − BD)/(AC − B2)

yf = (CD − BE)/(AC − B2) (2)

where A = 〈cos2 Z〉, B = 〈sin Z cos Z〉, C = 〈sin2 Z〉, D = 〈a cos2 Z〉, E = 〈a sin Z〉; the
angled brackets denoting distribution moments n−1 ∑

n
[. . .].

In order to introduce the new parameter Q we recast Equations (2) firstly by eliminating
the moment B, which we can achieve by rotating the coordinate system appropriately about
the origin. Let Z0 be the requisite rotation defined in the clockwise direction. In the rotated
(primed) frame of reference we have then B′ = 〈sin(Z − Z0) cos(Z − Z0)〉 = 0, which with
the help of standard trigonometrical identities is solved to yield

Z0 = (1/2) arctan [2B/(A − C)] . (3)

In the nomenclature of orientational statistical mechanics, Z0 is the nematic director;
that is, the alignment axis which exists whenever the azimuthal distribution of intercepts is
not perfectly isotropic. The degree of alignment along this axis is expressed by the nematic
moment

Q = 〈cos(2[Z − Z0])〉
=

[
(A − C)2 + 4B2]1/2

. (4)

The arctan degeneracy of Equation (3) is removed by requiring that Q be positive, rang-
ing from 0 (isotropic) to 1 (maximally anisotropic, i.e., all intercepts aligned parallel to the
director).
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Noting A′ = (1 + Q)/2 and C′ = (1 − Q)/2, we have now for the fix coordinates in the
director frame of reference

x′
f = 2E′/(1 − Q)

y ′
f = 2D′/(1 + Q). (5)

The choice of (x, y) origin is arbitrary thus far; it may for example be an initial guess
at the true position. However, consider the figurative case where the origin corresponds
exactly to the true position. This is instructive because Equations (5) are then equivalently
the fix error for a sample drawn from the distribution of intercepts f (a) about the true
position. With the assumption that this distribution is normal, f (a) = N (0, σ 2

a ), the root
mean square integration of Equations (5) determines effective resolution length scales for
the fix, i.e., the axes of the error ellipse, respectively perpendicular (⊥) and parallel (‖) to
the director

�⊥ = σa

√
2/n

1 − Q

�‖ = σa

√
2/n

1 + Q
, (6)

subject to the usual large-n proviso of the central limit theorem.
With increasing anisotropy Q, the fix evidently tends to improve along the director,

while deteriorating along the perpendicular. Overall, the fix resolution deteriorates as

� =
√

�2
⊥ + �2

‖ = σa

√
4/n

1 − Q2 . (7)

3. SIMULATION. Table 1 presents celestial navigational simulation results illustrating
how this formulation can be usefully put to work. The general trend is of course that the
error decreases with the number of celestial bodies contributing to the fix. This applies if
the n are chosen at random. However, a statistically significant improvement is achieved
if some method of Q-control is introduced. In our simulation, the method is to randomly
generate 30 sets of n, selecting that set for which n is lowest.

It is worthwhile noting that we might follow much the same strategy using the error
ellipse eccentricity ε in place of Q, by virtue of the mapping

ε2 = 1 − �2
⊥/�2

‖ = 2Q/(1 + Q). (8)

It must be stressed however that this correspondence is specific to the present choice of
fix algorithm. For other choices (see e.g. Gustafsson and Gunnarsson (2005) for a review)
it is often the case that the error ellipse requires a numerical solution, obscuring analytical
insight into its relation to the LOP distribution. As a general measure of azimuthal cov-
erage, Q holds the upper hand in that it is always the same function of the LOP azimuth
distribution defined by Equation (4).
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Table 1. Simulated dependence of celestial fix error on number of sights, for a sextant
accuracy of 10 arc minutes (i.e. standard deviation of the stochastically generated altitude
measurement error). Consistently with Equation (7) the fix improves if the sighted bodies
are collectively subject to selection for isotropic azimuthal coverage (low Q). Each entry
is averaged over 1,000 runs to ensure the improvement is statistically significant (p-values
calculated from Student’s t-distribution with unequal variances).

error in NM (Q)

n controlled Q random p-value

2 12·3(0·01) 43·1(0·63) 8·0e-5
3 10·3(0·12) 17·9(0·52) 5·3e-4
4 9·4(0·07) 11·5(0·45) 1·5e-2
5 8·0(0·08) 9·0(0·40) 6·1e-6
6 7·3(0·07) 8·0(0·37) 1·1e-4
7 6·7(0·06) 7·2(0·34) 1·2e-3
8 6·2(0·06) 6·6(0·31) 4·5e-3

4. SUMMARY. We have shown how the nematic order parameter Q of statistical
physics emerges as an ancillary statistic for geolocation fix determination. While our pre-
sentation focus here has been on the simplest two-dimensional least-squares algorithm, and
by way of practical example, on celestial sight reduction, we anticipate that since Q is not
tied to the choice of algorithm per se, the general idea might usefully be extended to the
wider ecosystem of sensor/emitter technologies and their associated algorithms.
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