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MAXIMAL COPLANAR SETS OF INTERSECTION POINTS

RICHARD P . HALPERN, DAVID HOBBY AND DONALD M. SILBERGER

Let F be any set of five points in R3 so situated that no four of the points are
coplanar, and that the line xy through any two x and y of the points has a
unique intersection point xy* with the plane determined by the other three. Let
F" denote the family of all such xy*. Let 5(F) denote the set of all X C FA

which are maximal with respect to the property that X is a subset of a plane
in R3. For Jb > 2 an integer, let S(k;F) denote the family of all fc-membered
elements in S(F).

A family 2? of sets is said to be uniformly deep of depth d if and only if for
every x g \SD there are exactly d distinct A £ T> for which x £ A.

We establish the following result, and extend our ideas to general Euclidean
spaces.

THEOREM . FA contains exactly ten points, and no three of them are
coUinear. Furthermore, S(F) = 5(3; F) U 5(4; F) with \S{3;F)\ = 20 and with
|5(4; F)\ = 25. Both 5(3; F) and 5(4; F) are uniformly deep; the depth of 5(3; F)
is 6, and the depth of 5(4; F) is 10.

1. INTRODUCTION

This paper considers subsets E = {e1)e2,... ,em} of n-dimensional Euclidean
space Rn such that each n-membered G C. E determines a unique hyperplane II(G),
and every 2-membered subset {e,-,ej} of E\G determines a line e.-ê  which intersects
n(G) in exactly one point e<e°. Subjecting E to the further condition that e^e^ =
ePe^ if and only if {{e;,ej},G} = {{er,e,},.ff} we focus our attention upon the set
EA of all such intersection points e^e^, and we initiate a classification of those subsets
X of EA which under set inclusion are maximal with respect to the property that the
j-plane II(X) determined by X is a hyperplane. Let S(E) denote the family of all
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such maximal X, and for Jfe an integer let S(k; E) denote the family of all fc-membered
elements in S(E).

Implicit in the sort of classification announced above is a geometric enquiry: What
regularities does E impose upon the configuration of the hyperplanes II(Jf) for these
maximal X C EA ? But our concern in this paper is at least as combinatorial as it is
geometric, and centres more upon the families S(E) and 5(fc; E) than it centres upon
the hyperplanes II(X) which their elements X determine.

When m = n + 2 then for every 2-membered {ej,e7-} C E the set E \ {e,-,ej}
is n-membered, and so without ambiguity the expression e;ej denotes the intersection

point e ^ - " . In passing we deal with the very easy case where (m,n) = (4,2).
But our main concrete result is Theorem 1, which explores the evocative case where
(m,n) = (5,3).

A family 23 of sets is said to be uniformly deep of depth d if and only if for every
x € U23 there are exactly d distinct A G 23 for which x € A. Uniformly deep 23 are
also called "regular hypergraphs", principally when all members of 23 have the same
cardinal number.

It seems unknown for which triples (s,d,k) of integers there exists a uniformly
deep family 23 of fc-membered sets such that d = depth(23) while s = |L)23|. In [2]
this question receives some scrutiny; there, Theorem 2 gives the necessary condition
sd = k |23| for the existence of such a 23, and Theorem 13 and Corollary 14 in [2]
supply some of the sufficient conditions. However, even when the existence of such a
23 is ensured, the process of constructing it may be irksome. Furthermore, there are
practical uses to which these 23 can be put; for example, in the design of experiments.
The present paper proposes an application of geometry to the construction of uniformly
deep families.

Let F be any set of five points in R3 so situated that no four of the points are
coplanar, and that the line xy through any two x and y of the points has a unique
intersection point xy* with the plane determined by the other three. Let F*, S(F)

and S(k; F) be as defined above. Then the following conditions are satisfied.

THEOREM 1 . F* contains exactly ten points, and no three of them are collinear.

Furthermore, S(F) = 5(3; F) U 5(4; F) with |5(3;F)| = 20 and with |5(4;F)| = 25.
Both 5(3; F) and 5(4; F) are uniformly deep; the depth of 5(3; F) is 6, and the depth
of 5(4; F) is 10.

Note that, if A and B are any two uniformly deep families with UA = US and with
AnB = 9, then A U B is uniformly deep and moreover depth(.4. U B) = depth(.A) +
depth(S). Thus Theorem 1 implies immediately that S(F) is a uniformly deep 45-

membered family whose depth is 16.
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In Section 2 we lay the groundwork for proving Theorem 1, and at the same time
we develop the general problem suggested by the theorem. In Section 3 we prove the
theorem, and in Section 4 we offer concluding remarks.

2. OBESITY

Henceforth m and n are integers with m ^ n + 2 ^ 4 . A review of some elementary
linear algebra may be helpful here.

For X C Rn and Y C R" the expressions X + Y and X - Y denote the sets
{x + y \x £ Xky eY} and { x - y | x € X & y £ 7 } , respectively. Furthermore,
X + x = z + X := {z} + X when z G Rn. The expression \{X) denotes the vector
subspace generated (that is, spanned) by X.

LEMMA 2 . Let {x ,y} C R" and let S and T be subspaces of R n . Then x + S =
y + T if and only if both S = T and x — y € S.

PROOF: First, suppose that x - y G S = T . Then x + S = y + x - y + S = y + S =
y + T. Next, suppose that x + S = y + T. Then x — y + S = y — y + T, and so
x — y = x — y + O G x — y + S = T. Therefore, y — x = —(x — y) € T since T is a
subspace. It follows that T = y — x + T = —x + x + S. Therefore, x - y G S = T . D

LEMMA 3 . Let {y,z} a C R » . Then V(X - y) = V(X - z ) , and therefore
lie set (X — y) \ {0} is linearly independent if and only if (X — z) \ {0} is linearly

independent.

PROOF: Choose p € X — y . Then p = x — y for some x e X. It follows
that p = ( x - z) - (y - z) € V(X - z ) , and hence that ^ - y C V(X - z ) . There-
fore V p T - y ) C V ( V ( J r - z ) ) = V ( X - z ) . Similarly, V(X - z) C V ( J T - y ) . So

Since (X — y) \ {0} and {X — z) \ {0} have the same number of elements, and
span the same space V(X — y), one set is linearly independent if the other is. U

COROLLARY 4 . Let {y,z} C I C R " . Then X C y + V(X - z). Moreover, if

X C p | S where p £ y + \/(X — z) and where S is a subspace then M(X — z) is a
subspace of S.

PROOF: Let x e X. It follows by Lemma 3 that x - y G - Y - y C V(X - y) =
V(JT - z ) , a n d s o x = x - y + y G y + V(JT - z). It follows that X C y + V(X - z)
as claimed.

Now suppose also that X C p + S where p G y + V(X — z) and where S is a
subspace. Then X — p C S and so V(X — p) C S. But X — p = X — y — v for some
vG V(X -z) = V ( X - y ) . Now, - v = y - y - v £ l - y - v C V ( X - y - v ) . Thus
vG V ( X - y - v ) . So X-y = X - y - v + v C v ( X - y - v ) + v = V(X - y - v). It
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follows that \{X - y) C V(V(X - y - v)) = V(X - y - v) = V(X - p ) C S , whence
V(X - z) C S, as required. Q

When S is a j-dimensional subspace of R™ and when y € Rn then the set y + S is
said to be a j-plane. An (n — l)-plane in Rn is called a hyperplane in Rn. By Corollary
4 we have for y G X C Rn that \I{X — y) is the unique subspace S of the smallest
dimension for which X C z + S when z G X. So for 0 ̂  X C Rn we can define
II(X) := z + V(X - y) , where {y,z} CX. The plane U(X) is said to be determined

by -X". When X — {xi,X2,.. -,xjb} is finite, then II(A") may instead be written as
X1X2...Xjfe.

It is easily seen by Corollary 4 that if X C Y C IL(X) then II(y) = II(X), and
hence that H(n(X)) = II(X).

Of course, an ra-plane in R™ is just R" itself.

COROLLARY 5 . Let Y C X C Rn with 0 <j + l = \Y\ and with \X\ = k + 1 ̂
n + 1 and such tAat II(X) is a fc-piane. Then n (y) is a j-plane.

PROOF: Since Y C X we can write II(X) as a translate of the fc-dimensional
subspace V(X - y) for some y eY. Note that \(X - y) \ {0}| = Jfc. Therefore the set
(X — y)\{0} is linearly independent. So (Y — y)\{0} is linearly independent since Y —
y C X — y. So II(Y") is a translate of the j-dimensional subspace V((V — y) \ {0}) =

v(r-y). D
Now we introduce our main concepts. These are motivated by Theorem 1.

DEFINITION 6: Let £ C R n . Then E is said to be fat if and only if every subset
X of E satisfies the following two conditions:

6.1 if \X\ >n then II(X) = Rn;
6.2 if |X| = n and if y and z are two distinct elements in E \ X then there

is a unique element yz* in the set yz n II(X).

When E is a fat subset of Rn the expression E* denotes the set of all yz* for
which X is an n-membered subset of E and for which y and z are distinct elements
in E \ X. Of course £ A = 0 unless |J5| > n + 2, and if \E\ > n + 2 but n = 1 then
E* — E; each of these situations is uninteresting.

THEOREM 7 . Let E be a fat subset of Rn with \E\ > n + 2 > 4. Let X be
a k-membered subset of E with 0 < k < n and let y and z be distinct elements in

E\X. Then yz n U(X) = 0. In particular £ A (~l £ = 0.

PROOF: Assume that there exists x £ yzDlI(X). Then since \X U {z}| - fc+1 ̂  n
we have by Corollary 5 together with Condition 6.1 that H{X U {z}) is a fc-plane.
But y G zx C II(XU{z}) since x 6 II(X) C II(X U {z}) and z G II(XU{z}).
Therefore II(X U {y,z}) = U(X U {z}). On the other hand \X U {y,z}| = Jfc + 2, and
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so H(X U {y,z}) is a (As -f- l)-plane. We reach a contradiction. 0

In general, with E an m-membered fat subset of Rn there is for {yz G , p q W } Q
EA no guarantee that if y z ° = p q H then ({y ,z} , G) = ( {p ,q} , E). Indeed this
implication fails in the special case where n — 2 and where therefore each point in
EA is counted at least twice; that is, xy{p>qJ = pq{x>yJ for every 4-membered subset
{ x , y , p , q} of E. We believe it best to confine our attention to those m-membered fat
E for which \EA\ is as large as possible; that is, when \E*\ = (™)(m~2) . This is our
motivation for the following

DEFINITION 8: A fat subset E of Rn is said to be obese if and only if

8.1. for n = 2 , if { x , y , z , w } and { p , q , r , s} are 4-membered subsets
of E then xy<"'w> = pq{r-8> implies either that ({x ,y} , {z,w}) =
({P,q}, {r,s}) or that ({x,y}, {z,w}) = ({r,s}, {p,q});

8.2. for n > 2, if G and H are n-membered subsets of E, if x and y are
distinct elements in E\G, and if p and q are distinct elements in E\H
then xyG = pqH implies that ({x,y}, G) = ({p,q}, H).

The expression $(m,n) denotes the family of all m-membered fat subsets of Rn,
and fl(77i, n) denotes the family of all m-membered obese subsets of Rn. Of course
Q(m,n) C $(m,n). The following instance shows that the reverse inclusion sometimes
fails.

PROPOSITION 9. $(7,3) ̂  fi(7,3).

PROOF: Let E = {a o ,a i , . . . ,a s } where a0 = ( -3 , - 3 , -3 ) , ai = ( - 1 , - 1 , -1) ,
a2 = (0, 1, 0), a3 --= (0, 2, 5), ^ = (0, 5, 9), as = (3, 7, 0), and a6 - (5, 3, 0). We
omit the lengthy sequence of routine calculations that establish the fatness of the set
E. Since aoap = (0, 0, 0) = aoa^ when G = {a2, a3, 84} and H — {a2, a5, ae}, we
have that E is not obese. D

Let a(n) denote the largest integer for which $(m,n) — il(m,n) whenever cr{n) *£•
m > n + 2 > 4. From Proposition 9 we learn that <r(3) < 7; Theorem 1 alleges that
cr(3) exists and indeed that <r(3) > 5.

LEMMA 10. Let n > 2. Let E G $(m,n). Let G and H be n-membered subsets
of E, let {x,y} be a 2-membered subset of E\G, and let {r,s} be a 2-membered
subset of E\H. Suppose that xyG = r s H . Then {x,y} = {r,s}.

PROOF: If the set {x,y,r,s} is 4-membered then the j-plane xyGxyrs is deter-
mined by the two intersecting lines xy = xyGxy and rs = rswrs = xyGrs , whence
j = 2. But by Corollary 5 together with Condition 6.1 we have that xyrs is a 3-plane
if {x,y,r,s} is 4-membered. It follows that |{x,y,r,s}| < 3. On the other hand,
if |{x,y,r,s}| = 3 then the distinct lines xy and rs intersect in {x,y,r, s} C E.
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This implies that xy G = r s H is a point in E, a violation of Theorem 7. Therefore
2 ^ |{x ,y} | < |{x ,y , r , s} | < 3, and thus we conclude that {x,y} = {r ,s} . D

THEOREM 1 1 . o - (n )^n + 3 .

PROOF: Let m £ {n + 2, n + 3} and let E € $(m,n).

CASE, n = 2. Suppose that xy{"'w) = rs^p>q^ where {x,y,z ,w} and {r ,s ,p ,q} are
4-membered subsets of E. We easily infer from Theorem 7 that either {x, y}n{r, s} = 0
or {x,y} = {r , s} . So, if {x ,y ,z ,w} = {r ,s ,p ,q} then either ({x,y}, {z,w}) =
({p,q}, {r, s}) or ({x,y}, {z,w}) = ({r, s}, {p,q}) whereupon Condition 8.1 is satis-
fied.

Assume that {x ,y ,z ,w} ^ {r , s ,p ,q} . Then since m < 5 implies that
| { x , y , z , w } n { r , s , p , q } | ^ 3, we infer that |{x,y,z,w} D {r , s ,p ,q} | = 3. Without
loss of generality we may suppose that {x,y,z} = {r,s,p} but that w ^ q.

SUBCASE. {x,y} = {r,s} and z — p . Note that pw ^ pq, whence pw n pq = {p}-
Since xy = rs , we have that xy{piW> = xy*P i q} . It follows that xy^p'q> € pw. But

xy{p.q} e p q . So xy{p'q> g p w H p q = {p}. We must infer that xy<p-q> = p e E in
violation of Theorem 7.

SUBCASE. {x,y} = {r ,p} and z = s. Then xy^"-w^ e xy = r p . But xy^">w^ =
rs<p'q} = pq*r'*}, and so xy<m>w> £ pq. So xy{"'w> G rp f~l pq = {p}. Therefore

Xy{«,w} _ p e £ m violation of Theorem 7.

In both subcases the assumption fails, and thus E satisfies Condition 8.1. We
conclude that E € n(m, 2).

CASE, n > 2. Suppose that x y ° = r s H where G and H are n-membered subsets of
E, where {x,y} is a 2-membered subset of E \ G and where {r, s} is a 2-membered
subset of E \ H. Then {x,y} = {r, s} by Lemma 10, and so G and H are subsets
of the same (m — 2)-membered set E \ {x ,y} . If m = n + 2 then G = H and so
Condition 8.2 is satisfied. Therefore we may take it that m = n + 3.

Assume that G ^ H. Then C?UH = E\{x,y}, and so \G U H\ - m - 2 = n + 1
and \G D H\ = n - 1. So by Corollary 5 with Condition 6.1 we have that II(G D H) is
an (n - 2)-plane. It follows by Theorem 7 that xyG £ H(G D H).

We now claim that U(G n H) = H(G) D U{H). Surely H(G flff)C H(G) D U(H).

Since H(n(G) n H(H)) C H(n(G)) = H(G) and since similarly E{H{G) D E(H)) C
H(iT), we have that H(G) D U(H) C U(U(G)nn(H)) C H(G) D n ( ^ ) , whence
II(I I (G)nII(5)) = II(G) n U(H). That is, as common wisdom would suggest, the
intersection II(G) D H ( ^ ) of two hyperplanes is a j-plane for some j ^ n — 1.
But if II(G) n H(H) were also a hyperplane then II(G) n U(H) = H(G) whence
II(G) = n(J5T) = II(GU H) = Rn since \G U H\ = n + 1. Thus we infer that the
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j-plane II(G) D II(JI) is not a hyperplane, but that j ^ n - 2. So, since U(G D H)
is an (n - 2)-plane and since U(G 0 H) C E(G) D II(ff) we infer that II(G) 0 11(5)
is an (n - 2)-plane, and hence that II(G D # ) = H(G) D H(H) as claimed. But then
x y G = xyH 6 II(G) n U(H) = H(G D H), and we reach a contradiction. Therefore
G = H, and E satisfies Condition 8.2. We conclude that E € fi(m,n). D

By Proposition 9 with Theorem 11 we have that <r(3) = 6.

CONJECTURE 12. ff(n) = n + 3 for every n > 2, and $(m,n) ^ fi(Tn.,n) for every

m

CONJECTURE 13. Sl(m,n) is uncountable whenever m ^ n + 2 ^ 4.
For 15 e $(jn,n) the expression 5(.E) denotes the family of all subsets X of £A

such that H{X) is a hyperplane in Rn but such that H(X U {y}) = Rn for every
y e EA\X. For each integer k > n the expression <S(Jfe; £) denotes the family of all k-
membered elements in S(E). Of course S(E) is the disjoint union of the S(fc; E). Our
principal interest resides in exactly these families S(E) and S(k;E) for E 6 f2(T7i,n).

OPEN QUESTION 14. If E e n(m,n) then is S(k;E) uniformly deep for every Jfc?

OPEN QUESTION 15. To every pair m and n of integers with m ^ n + 2 > 4 i s
there a function /3(m,n; ) : k >-» ^(m,n;fc) such that |S(fc;15)| = /3(m,n;k) for every
E £ n(m,n) and for every integer k > n?

By Theorem 1 for (m,n) — (5,3) both of the questions 14 and 15 have affirmative
answers.

We consider briefly the simplest case (m, n) = (4,2). It is easy to confirm that
whenever E € *(4,2) = fi(4,2) then |J5A| = 3, and S(E) = 5(2;E) is a uniformly
deep 3-membered family of depth 2.

The most accessible cases yet to be studied are (m,n) £ {(5,2), (6,3), (6,4)}.

3. PROOF OF THEOREM 1

Henceforth F = {a, b,c,d, e} is an arbitrary fat 5-membered subset of R3. So F
is obese by Theorem 11. Therefore |fA| = Q)(5J2) = 10. Since for each 2-membered
(x> y} £ F the set F \ {x, y} is 3-membered, we can without ambiguity write xy* to
mean the unique intersection point xyF^x>y^ lying both on the line xy and also on the
plane H(F \ {x,y}). Now, by Theorem 7 we have that xy* $ F. Also immediately
by Theorem 7 we have

LEMMA 16 . For {x,y} and {z,w} any pair of 2-membered subsets of F the
following three assertions are equivalent:

(1) {x,y} = {z,w};
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(2) xy* 6 zw;
(3) xy* = zw*.

LEMMA 1 7 . Whenever {v, w, x,y,z} = {a, b ,c ,d ,e} then x € vw*yz* .

PROOF: Without loss of generality let v = a, w = b , x = c, y = d, and z = e;
now show that c G ab*de*. By 6.2 we have that ab* G cde and that de* 6 abc.
But also ab* £ ab C abc and de* £ de C cde. Clearly c 6 abc PI cde. So now
{ab*,de*,c} C abc D cde. By 6.1 we have that abed = R3, and by Corollary 5 we
have that abc and cde are planes. Therefore abc n cde is a line. By Theorems 7
and 11 the set {ab*,de*,c} has three distinct elements. So ab*de* is a line, and
c G ab*de*. D

Although our identification of the families S(k; F) is geometric in its conception,
it will be convenient to organise this work graph theoretically. Furthermore, our subse-
quent arguments establishing the uniform depth of the S(k;F) depend basically upon
graph theory, and moreover will require a subtle departure from some of the standard
terminology codified in [1].

By a graph we mean an ordered pair Q = (A, B), where A is a set and where B is
a family of 2-membered subsets of A; the elements in A are called vertices of Q, and
the elements in B are called edges of Q. The expression V{G) denotes the set of all
vertices of Q, and is called the vertex set of Q; the expression £(G) denotes the set of
all edges of Q, and is called the edge setol Q. Thus Q = (V(G), £{G)) whenever Q is a
graph. Finally, a graph Ji is said to be a subgraph of Q if and only if both V(W) C V(Q)
and £(7i) C £(Q). In the present paper, whenever "H a subgraph of Q then in fact

For graphs Q and 7i, a bijection / from V(£) onto V(7i) is a graph isomorphism'ii

and only if £{H) = {{/(x), /(y)} | {x,y} G £(G)} • The expression Graphs(£) denotes
the family of all graphs H for which V(H) - V(£). The expression Type(£) denotes
the subfamily of all H 6 Graphs(^) such that H is isomorphic to Q. Finally, the
expression Edgesets(S) denotes {£{71) \ U G Type(£)}.

It will be illuminating to associate with each subset of FA a corresponding graph.
Thus, recalling that each element in FA lies on exactly one line xy with {x,y} a
2-membered subset of F, we see that each fc-membered subset K = {xjy*,. . . , xj.y*.}
of F A is represented by exactly one fc-edged graph G(K) on the vertex set F; the edge
set of this graph is just £(G(K)) = {{xi ,yi} , . . . ,{xt,yjt}}. It turns out that when
k = A then whether or not T1(K) is a plane is decided by the isomorphism type of

Having classified each 4-membered subset X of FA according to the isomorphism
type of its associated graph Q(X), we will have for each 3-membered subset Y of FA

https://doi.org/10.1017/S0004972700028136 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028136


[9] Sets of intersection points 49

that Y e 5 ( 3 ; F) if and only if the 3-edged graph Q{Y) is the subgraph of no 4-edged
graph Q{X) for which X € 5 ( 4 ; F).

There are exactly 6 isomorphism types of 4-edged graphs on a 5-membered vertex
set; these are displayed for future reference in Figure 1 below where they bear the
Roman-numeral labels I to VI. There are exactly 4 isomorphism types of 3-edged graphs
on a 5-membered vertex set; these are labelled VII to X in Figure 1.

I II III IV V VI
£1 r> ri Q rt

o o <*—-—*> a p o——*> o — - ^ p

O—o O O O——O O O Cr O

o o o —*>

VII VIII IX X

Figure 1

THEOREM 1 8 . Let { x , y } , {z ,w} and {u ,v} be any three distinct 2-membered
subsets of F. Then xy*zw*uv* is a plane.

PROOF: There are four cases to consider, corresponding to graph types VII to X
in Figure 1.

CASE 1. The situation represented by graph-type X. Without loss of generality we
specify that x = z = u = a, that y = b , that w = c and that v = d.

Now assume that ab*ac*ad* is a line. Then ab*ac*ad*a is a plane. But
b 6 ab*a C ab*ac*ad*a. Similarly we see that c and d are elements in ab*ac*ad*a.
Thus, abed C ab*ac*ad*a. But abed = Rs. Therefore, ab*ac*ad*a = R3, a contra-
diction. We infer that ab*ac*ad* is not a line; instead, xy*zw*uv* = ab*ac*ad* is
a plane.

CASE 2. The situation represented by graph-type IX. Without loss of generality we
specify that x = a, that y = z = b, that w = u = c, and that v = d.

Assume that ab*bc*cd* is a line. Then ab*bc*cd*a is a plane. Arguing as in
Case 1 we have that b 6 ab*bc*cd*a and hence that c G ab*bc*cd*a whereupon also
d 6 ab*bc*cd*a. It follows that R3 = abed C ab*bc*cd*a, again a contradiction.
So we conclude that xy*zw*uv* = ab*bc*cd* is not a line, but is instead a plane.
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CASE 3. The situation represented by graph-type VIII. Without loss of generality
we specify that x = z = a, that y = b , that w = c, that u = d, and that
v = e. By Lemma 17 we have that both ab*de*c and ac*de*b are lines. As-
sume that ab*ac*de* is a line. Then Lemma 17 implies that ac* 6 ab*ac*de* =
ab*de*ac*de* = ab*de*cac*de*b = be contrary to Lemma 16. Therefore ab"ac*de*
is not a line; instead, it is a plane.

CASE 4. The situation represented by graph-type VII. Without loss of generality we
specify that x = v = a, that y = z = b and that w = u = c. By definition de* G abc.
However de* £ ab U be U ac by Theorem 7.

Now assume that ab*bc*ca* is a line. By Lemma 17 we have that a £ bc'de*,
that b G ac*de*, and that c G ab*de*. Therefore if de* were an element in the line
ab*bc*ca* then the points a, b , and c would be collinear, which they are not. It
follows that de* does not lie on the line ab*bc*ca*.

Without loss of generality we specify that be* is between ab* and ca* . It readily
follows that exactly one of the following two equivalent situations occurs:

(i) b is between ac* and de*, but c is not between ab* and de*.
(ii) c is between ab* and de*, but b is not between ac* and de*.

Again without loss of generality we can suppose that the situation (i) actually
obtains, and we refer the reader to Figure 2 for the argument which follows.

ab

Figure 2

Now, a € ab*b, and by Lemma 17 also a £ de*bc*. So a g ab*b D de*bc*,
placing a inside the triangle A(ab*,ac*,de*). But then c, which is similarly seen to
be the only element in ac*aflab*de*, would have to lie between ab* and de*. This
is a contradiction. So xy*zw*uv* = ab*bc*ca* is a plane.
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In each of the four cases considered above, we have that xy*zw*uv* is a plane. D

A useful rephrasing of Theorem 18 is that no three distinct elements in F* are
collinear.

Our next task is to characterise the families <S(fc; F). To this end, we shall examine
the (") = 210 distinct 4-membered subsets X of the 10-membered set FA, and then
we shall examine the (j°) = 120 distinct 3-membered subsets 7 of F A . For many of
the X it happens that II(A") is a plane while for others II(X) = R3. In those cases
where H(X) is a plane we shall see that X G 5(4; F) and hence that S(k\F) = 0
for all integers fc > 4. Henceforth X denotes a 4-membered subset of FA. The next
eleven results, Lemma 19 to Corollary 29, refer to Figure 1 above.

LEMMA 1 9 . When t ie graph G(X) is of isomorphism type I then II(X) is a
plane.

PROOF: We may suppose that X = {ab*,bc*,cd*,da*}. By Lemma 17 then
ab*cd*e and bc*da*e are lines. They are obviously subsets of R(X), and they share
a common point e. Moreover ab*cd*e ^ bc*da*e by Theorem 18. Therefore II(X) =
ab*cd*bc*da* = ab*cd*ebc*da*e is a plane. D

LEMMA 2 0 . When the graph G(X) is of isomorphism type II then H(X) is a
plane.

PROOF: We may suppose that X = {ab*,bc*,ca*,de*}. Surely ab*bc*ca* C
abc . But Theorem 18 implies that ab*bc*ca* is a plane. Furthermore de* € abc .
So J1(X) = ab*bc*ca*de* = abcde* = a b c . D

LEMMA 2 1 . When the graph G(X) is of isomorphism type III then Ti(X) = R3.

PROOF: We may suppose that X = {ab*,bc*,ca*,da*}. As in the proof of
Lemma 20 we see that ab*bc*ca* = abc. Since we have by Theorem 7 that da* ^ a,
it follows that d £ da = da* a C ab*bc*ca*da*. Thus abed C ab*bc*ac*da%
whence ab*bc*ac'da* = R3. D

LEMMA 22 . When the graph G(X) is of isomorphism type IV then U(X) = R3.

PROOF: We may suppose that X = {ab*,bc*,cd*,de*}. Obviously
{ab*,cd*,de*} C cde. It follows by Theorem 18 that ab'cd*de* = cde. But then,
as in the proof of Lemma 21, we see that b € bc*c C cdebc* = ab*cd*de*bc*. Thus
bede C ab*cd*de*bc*, whence ab'bc 'cd 'de* = R3. D

LEMMA 23 . When the graph Q(X) is of isomorphism type V then H(X) = R3.

PROOF: We may suppose that X = {ab*, bc*,cd*,ce*}. Since
{ab*,cd*,ce*} C cde we have as above that ab*cd*ce* = cde and that b € bc*c C
ab*bc*cd'ce*. The lemma follows. D
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LEMMA 2 4 . When the graph G(X) is of isomorphism type VI then H(X) = R3.

PROOF: We may suppose that X = {ab*,ac*,ad*,ae*}. Indeed, since incidence
properties and parallelism are preserved under those transformations of R3 which are
the composition of translations, shears, dilations, rotations and reflections, we may
suppose for convenience that a = (0,0,0), that b = (1,0,0), that c = (0,1,0) and that
d = (0,0,1). For each x £ {b,c,d, e} we write x* as an abbreviation for ax*. Then,
since points can also be treated as vectors, there exist real numbers /?, 7, 8, and e such
that b* = 0b = (0,0,0), such that c* = 7c = (0,7,0), such that A* = 6& = (0,0,*),
and such that e* = ee = e(ei,e2,e3). By Theorem 7 we have that {0,7,£,e}n{O,l} = 0
since the set F is fat. Moreover, the fatness of F implies that e lies in no plane whose
equation is £x + -qy + (z = A for which (0,0,0, A) ̂  (£,77, £, A) e 2 x 2 x 2 x 2 where
as usual 2 := {0,1}. Thus our constants obey the following conditions:

2 4 . 1 . {/3,f,6,e,ei, Cj + e;-, ei+e2 + e3}n{0,l} = 0 where {i,j} is a. 2-membered
subset of {1,2,3}.

We define E := ex + e2 + e3 and D := (1 + ex - E){\ + e2 - E)(l + e3 - E). Note
that Conditions 24.1 imply that E ^ 0 ± D.

It suffices to prove that b*c*d*e* = Rs. This condition is equivalent to the linear
independence of the set {b* — e*, c* — e*, d* — e*}. We will first express e, /?, 7 and
6 in terms of ei, e2 , and e3. Note that e* € bed, and that the equation of the plane
bed is x + y + z = 1. It follows that e(ei + c2 + es) = 1, whence e — l/E.

Next, we obtain a vector p normal to the plane ced by applying the ordinary cross
product thus: p = ( e - c ) x ( e - d ) = (e1,e2-l,e3)x(ei,e2,e3-l) = (l-e2-e3,e1,e1).
Therefore, since (0,0,0) = b* 6 ced, we have that the vector b* — e is perpendicular
to p , and hence that (b* — e).p = 0. By routine substitution and calculation we then
infer that /? — e\/{\ — e2 — e3) = ei/(l + ei — E). Similarly one can solve for 7 and 6
in terms of the e<, and thus get that

0 = ei/(l + cj - E),

7 = e,/(l + e2- E),

6 = e,/(l + e3 - E).

So we have that

b* - e* = (/3 - eej, -ee2, -ee3)

- a/E, -e2/E, -es/E)

ei-E)- 1), -e2, -e5).

Likewise,

c* - e* = (l/E)(-ei,e2(E/(l + c2 - E) - l),-e.) and

d* - e* = (l/E)(-ei, -e2, es(E/(l + e3 - E) - 1)).
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Now, the set {b* — e*, c* — e*, d* — e*} is linearly independent if and only if the matrix
M defined by

M:=E

is nonsingular. Of course then

M =

c~ - e*
d*-e*

- e 2

+ e2 - E) -
- e 2

- e s

Now we multiply the three columns of M by — 1/ei, — l/e2 , and — l/e3 respectively,
to obtain a matrix N that is singular if and only if M is singular. Here,

N : =
-E)

e3-E)\

It is "straightforward" to verify that det (N) = 3E2(l - E)/D. Since Conditions 24.1
imply also that 1 — E ^ 0, we have that N is nonsingular. It finally follows that
ab'ac*ad*ae* = R3. D

The following is a summary of Lemmas 19 to 24.

THEOREM 2 5 . If the graph G(X) is of isomorphism type I or II then H(X) is a.
plane, but if G(X) is of isomorphism type III or IV or V or VI then U(X) = R3 .

COROLLARY 26 . Let X be any 4-membered subset of F*. Then X e 5(4; .F)
if and only if the graph G(X) is of isomorphism type I or II.

PROOF: It is immediate from Theorem 25 that X £ S(F) when 6(X) is not of
type I or of type II. So, if X G 5(4; F) then G(X) is either of type I or of type II.

Note that every 5-edged graph of 5 vertices has a subgraph of at least one of the
types: III, IV, V, VI. Therefore if Z is a 5-membered subset of FA then H(Z) = R3. So,
if TL(X) is a plane then X £ 5(4; F). Thus, by Theorem 25 we have that X e 5(4; F)
if G(X) is either of type I or of type II. D

By the proof of Corollary 26, we also have

COROLLARY 27 . 5(fc; F) = 0 for every integer k > 4.

COROLLARY 2 8 . Let Y be any Z-membered subset of F*. Then Y G 5(3; F)
if and only if the graph G(Y) is of isomorphism type X.

PROOF: If the 3-edged graph G(Y) is of type VII or of type VIII then G{Y) is
a subgraph of a graph of type II. And if G(Y) is of type IX then G[Y) is a subgraph
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of a graph of type I. In each of these cases, therefore, Theorem 25 implies that Y is a
proper subset of some X C FA for which II(X) is a plane. That is, Y £ S(F). So
Y iS(3-,F).

It is easy to see that if Q[Y) is of type X then Q{Y) is a subgraph neither of a
type-I graph nor of a type-II graph. It follows by Theorem 25 that II(X) = R3 for
every 4-membered superset X C FA of Y. Furthermore II(y) is a plane by Theorem
18, whence Ye 5(3;F). D

COROLLARY 2 9 . |5(3;F)| = 20 and |5(4;F)| = 25.

PROOF: On the vertex set F there are exactly 20 distinct graphs of type X.

Therefore Corollary 28 implies that |5(3;.F)| = 20.

On the vertex set F there are exactly 15 distinct graphs of type I, and there are
exactly 10 graphs of type II. Thus Theorem 25 implies that |5(4; F)\ = 15 + 10. D

Once it has been established that 5(3; F) and 5(4; F) are uniformly deep, the
proof of Theorem 1 will be finished: Theorem 11 and Corollary 29, in conjunction with
Proposition 8 and Theorem 2 both of [2], will imply that the depth of 5(3; .F) equals
3\S(3;F)\/\FA\ = 60/10 - 6, and similarly that the depth of 5(4; F) equals 10, as
required in Theorem 1.

Our final task is to prove that 5(3; .F) and 5(4; F) are uniformly deep.

For X a set the expression Sym(X) denotes the symmetric group on X; the
elements in Sym(X) are the permutations of X. A subgroup G of Sym(X) is called
transitive if and only if for every (x, y) 6 X x X there exists g € G such that y = g(x).
A subgroup H of Sym(X) is said to preserve a given family T of subsets of X if and
only if T = {h[Y] \Y € Thh € H} where h[Y] := {h(y) \ y £ Y}. We omit proving
here the following paraphrase of Theorem 6 in [2].

LEMMA 30 . For X a Unite set, and for k ^ \X\ a positive integer, let J- be

a family of k-membered subsets of X. If Sym(X) has a transitive subgroup which

preserves T then T is uniformly deep.

For X a w-membered set the expression [fc;X] will denote the family of all fc-
membered subsets of X. For each g £ Sym(X) we define k9' [k\X] —> [A:;A"] by
k9(Y) = g[Y] for all Y £ [k;X], and let *Sym(X) denote {kg | g 6 Sym(X)}.
Note that j. Sym(.X') is a transitive subgroup of Sym([fc; X]). Furthermore, 2 Sym(A')
preserves the family Edgesets(^) when Q — (X,£(Q)) is a graph. The following result is
of independent interest since it provides a purely graph-theoretic method for producing
uniformly deep families. It is an immediate consequence of Lemma 30 in conjunction
with Theorem 2 of [2].

THEOREM 3 1 . Let Q be any graph on a v-membered vertex set X where v is

a positive integer. Then the family Edgesets(G) is uniformly deep and its depth is
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d=\£(g)\\Edgesets(g)\/(l).

The proof of Theorem 1 is now complete.
Again let X be a finite, w-membered, set. An isomorphism from a graph

G - (X,£(g)) onto g itself is called an automorphism of (/. The set Aut(^) of all
automorphisms of g is a subgroup of Sym(X). We remark that |Edgesets(£/)| =
|Type(£)| = |Sym(X)|/|Aut(0)| = «!/|Aut(0)|, and hence by Theorem 31 that
d = 2 \£(g)\ (v - 2)!/ |Aut(<?)| where d is the depth of the family Edgesets(£).

There is a straightforward generalisation of Theorem 31 to fc-hypergraphs. By a
fc-hypergraph we mean an ordered pair "H = (X,K(Ti)) where X is a vertex set V(H)
but where JC(7i) is a family of fc-membered subsets of X; that is, the elements in JC(W)
are the "fc-edges" of H.

4. SLIMMING DOWN

One might prefer Open Question 15 to be answered eventually in the affirmative.
That is, one might hope that each pair (m,n) of integers with m ^ n+2 ̂  4 determines
a unique sequence sn, sn+i, sn+2 ,••• of nonnegative integers such that \S(n + j ; E)\ =
sn+j for every nonnegative integer j and for every E G fi(m,n). One would then hope
to characterise this sequence numerically.

However, even if the answer to Open Question 15 turned out to be "No!", one
would still have a situation worthy of study. For, given a particular pair (m, n) there
are obviously at most finitely many distinct such sequences sn, sn+i, So the family
of such sequences induces a natural and interesting finite partition of the (probably
uncountable) family Q(m,n). What would the geometric meaning of this partition be?

We close with the curiosity that for (m,n) = (6,4) the most plausible analogue of
Theorem 18 is false.

THEOREM 32 . Let E = {a,b,c,d,e,f} e $(6,4). Then ab'cd'ef* is a line.

PROOF: By Theorem 11 we have that E is obese, and hence that xy* = zw* if
and only if {x,y} = {z,w} when {x,y,z,w} C E. Now note that {ab*,cd*,ef*} C
abed n abef fl cdef. It follows that the j-plane ab*cd*ef* is a subset of abed D
abef D cdef. Of course 1 < j < 2. Since c ^ abef, and since abef and abed are
3-planes by Condition 6.1, we have that abed n abef is an i-plane for some i ^ 2.
Since cd* ^ ab by Theorem 7, we have that cd*ab is a 2-plane. Therefore cd*ab =
abed D abef since {a, b,cd*} C abed fl abef. But a ^ cdef while a 6 cd*ab. So
abed D abef D cdef = cd*ab fl cdef is a 1-plane; that is, ab*cd*ef* is a subset of a
line. Therefore j = 1. D
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