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EXISTENTIALLY CLOSED LOCALLY COFINITE GROUPS

by FELIX LEINEN
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Let X be a class of finite groups. Then a cX-group shall be a topological group which has a fundamental
system of open neighbourhoods of the identity consisting of normal subgroups with X-factor groups and
trivial intersection. In this note we study groups which are existentially closed (e.c.) with respect to the class
LcX of all direct limits of cX-groups (where X satisfies certain closure properties). We show that the so-called
locally closed normal subgroups of an e.c. LcX-group are totally ordered via inclusion. Moreover it turns out
that every V,-sentence, which is true for countable e.c. LX-groups, also holds for e.c. LcX-groups. This allows
it to transfer many known properties from e.c. LX-groups to e.c. LcX-groups.

1980 Mathematics subject classification (1985 Revision): 20E26, 20E18, 22A05.

1. Introduction

In this paper, X will always denote a class of finite groups, which is closed with
respect to subgroups, homomorphic images, and extensions. In particular, we write &,
& &N O®, §, for the classes of all finite groups, finite n-groups, finite soluble n-groups,
and finite p-groups (resp.); here = is a fixed set of primes. A great amount of information
has been obtained about existentially closed (e.c.) groups in the class L¥ of all locally X-
groups, especially in the cases when X=§ or X=1§, (see [7], [14, § 6], [21], [15], [17],
[18]). It was the original purpose of the present note to use this knowledge in studying
e.c. locally residually X-groups (LRX-groups). Here we cannot expect results as nice as in
the LX-case. The reason is that there exist 2™ finitely generated (fg) R,-groups
([5],[6]), hence also 2" countable e.c. LRX-groups (see also Example 4.5), while we
have unique countable e.c. objects in LE and in L{,. However, the close connection
between the classes LX and LRX is demonstrated by the fact, that there exist countable
e.c. LX-groups, which are e.c. in LRX (use the argument of [9, Satz 3.5]). If ¥X=§ or
X=7,, then every e.c. LX-group is e.c. in LRX (copy the proofs of [21, Satz 6] and [17,
Theorem 3.7]).

Unfortunately, the study of e.c. LRX-groups is considerably complicated by the fact,
that it seems to be very hard to find general constructions in order to produce
sufficiently interesting LRX-supergroups of given LRX-groups. Here we are only able to
use some ad hoc arguments. For example, HN N-extensions and free products of LRg-
groups stay in LR, whenever the involved isomorphic subgroups are finite (see [1],
[2]). The information obtained in this way is fairly weak.

Because of this situation, we put more emphasis on the profinite topologies living on
each RX-group. This leads to the following refinement or our considerations. We replace
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RX by the class cX of all co-X-groups in the sense of [8]. These arise as follows. Let
U e RX. Suppose that £ is a residual system in U, i.c., a set of normal subgroups in U
satisfying

(1) U/NeX for all Ne 4,
(2) for any N,, N, e Z there exists N;eZ such that Ny<N, nN,, and
3 N2#2=1.

Then U becomes a Hausdorff topological space by requiring that # be a basis of
neighbourhoods of the identity (the reader is referred to [11] or [10, §2] for the
standard facts about topological groups). The topological group U is now called a cX-
group. Thus, a cX-group is just an RX-group equipped with a certain fixed pro-X
topology. In general, different residual systems on the same RX-group lead to different
cX-groups.

If U<VecX, then U is a cX-group via the topology induced by V. For this reason, an
embedding ¢:U—V of cX-groups shall be a group homeomorphism ¢ of U onto the cX-
subgroup U¢ of V. Note that embeddings are always continuous. In order to prove that
a monomorphism ¢:U—V of cX-groups is an embedding, it suffices to find residual
systems %, and %, which give the topologies on U resp. V such that, for every Ne %,
there exists some Me%, with MnU@p<N¢, and such that for every M e, there
exists some Ne#y with No<M n U¢. Since X-groups can only carry the discrete
pro-X topology, every monomorphism ¢:U—V, where UeX and VecX, is an embed-
ding. An LcX-group G is a direct limit of cX-groups with respect to embeddings. Note
that G is in general not a topological group with respect to the direct limit topology,
since multiplication in G need not be continuous [3, Appendix 2, 1.9]. However, with
each f.g. subgroup of G there is associated a unique topology. An embedding ¢:G— H of
LcX-groups shall be a group monomorphism ¢ such that, for each f.g. subgroup U of G,
the restriction qb] U is a homeomorphism of U onto U¢. Again, monomorphisms
¢:G—H, where Ge LX and H e LcX, are embeddings. _

By the standard argument [13, Proposition 1.3], every LcX-group G is embeddable
into an e.c. LcX-group of cardinality max {N0,|G|}. As before, there exist countable e.c.
LX-groups which are e.c. in LcX. If X=§ or X=7§,, then every e.c. LX-group is e.c. in
LcX.

Clearly, the class pX of all pro-X-groups is a subclass of ¢X. Note that continuous
monomorphisms of pX-groups are already embeddings [11, Proposition 10(Z)]. On the
other hand, every cX-group U is a subgroup of its pro-X completion U [8, Lemmata
2.5/6]. Let £ be the local system of all f.g. subgroups in the LeX-group G. If X, Ye &
satisfy X <Y, then there exists an embedding a of X into ¥ such that the diagram

X id Y
id id
% g
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commutes [8, Theorem 2.1]. It follows, that G is embeddable into its LpX-completion
G=lim {X| X € #}. Consequently, every e.c. Lp¥X-group is ec. in Lc¥, and the study of
e.c. LcX-groups comprises the study of e.c. LpX-groups. Note also, that every e.c. LcX-
group is e.c. in its LpX-completion.

Our basic amalgamation technique within LcX uses suitable factor groups of free
products with amalgamation. A combination with embeddings of cX-groups into
cartesian products of X-groups then reduces the problem of solving finite systems of
equations and inequalities over an e.c. LcX-group G to solving them over certain X-
sections of f.g. subgroups of G. As a valuable corollary we note, that every V,-sentence,
which holds in every countable e.c. LX-group, is also true in every e.c. LcX-group.

From this, we can immediately carry over a lot of information from e.c. LX-groups to
e.c. LcX-groups. For example, it follows that every e.c. Lc§-group G is simple. And
isomorphisms between finite subgroups of G are always induced by conjugation in G,
while there can exist an element ge G of infinite order such that g is conjugate to g"
(neZ) if and only if n= 41 (see Section 6).

In the general case, we can carry over elementary properties like verbal completeness
and triviality of centralizers of non-trivial normal subgroups. Also, unions and
intersections of the so-called locally closed normal subgroups (see Section 3) of an e.c.
LcX-group G are totally ordered via inclusion. However, it remains open whether every
normal subgroup of G is such a union or intersection. In Section 4 we construct
examples which show, that the L§-residual of G can be a proper subgroup. The L§-
radical and the factor group modulo the L&-residual can be treated by methods used
for e.c. LX-groups (see Section 3).

The theory becomes much more satisfactory in the case when X =, (see Section 5).
Here we can use our corollary about V,-sentences directly to show, that every e.c.
LcE ,-group has a unique chief series X, that the factors of  are central and cyclic of
order p, and that the order type of Z is a dense order without endpoints. If K= G
satisfies K # (g% for all ge G, then K is e.c. in G. However, it seems to be unlikely that
such a K is in general ec. in Lc{, (as one might expect from the theory of e.c.
LE,-groups). We will show, that every subnormal subgroup of G is already normal in G.
Also, the results about embeddings of L{,-groups into e.c. L§,-groups [15, §3] and
about conjugacy of finite subgroups of e.c. L§,-groups [17, Theorem 6.1] remain true
for ec. Lc,-groups. As in the Lc¥-case, conjugacy of infinite f.g. subgroups of G is
more delicate. Although we can give a quite satisfactory necessary and sufficient
condition (which shows for example, that an element g€ G of infinite order is conjugate
to g" (neZ) if and only if n=1 (modp)), it remains open whether an isomorphism
¢:A—B between f.g. subgroups of G is induced by conjugation in G if and only if
a"'-apeN for all ae(4 n M)—N and all chief factors M/N of G.

2. Constructions within LcX

In the sequel, if UecX, then N 2,U will denote that N is an open normal subgroup
of U. The following amalgamation theorem is the foundation of this note.
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Theorem 2.1. An amalgam GuU H | U of LcX-groups over the f.g. common subgroup U
is embeddable into an LcX-group if and only if there exist local systems ¥ in G and Ly
in H consisting of f.g. subgroups which contain U such that, for every pair (X,Y)e %; x
ZLy, the topologies on X and Y are given by residual systems Ry y in X resp. Ry x in Y
such that, for every L€ Zx y (resp. L€ Ry x), there exist M € Ry y and N € Ry x satisfying

(1) MEL (resp. NELyand MnU=LnU=NnU, and

(2) the amalgam X/M U Y/N | UL/L (where UM/M and UN/N are identified with
UL/L via uM =uL=uN for all ueU) is contained in an X-group.

Proof. Suppose first that the amalgam is contained in an LcX-group W. Let %y, %,
and %y be the local systems of all f.g. subgroups in W, G resp. H containing U.
For every Ve %y, denote by %, the residual system of all L=, V. If (X, Y)e ¥; x Ly,
then let &y y=RxyyNX and Ry y=RxyyNY. Since X and Y are cX-subgroups
of (X,Y), the topologies on X and Y are given by the residual systems %y y resp.
Ry x. Now every MeZRyy (resp. NeHAy ) is induced by some KeZ xy, Put
N=KnYe%yx (resp. M=KnXeByy). Then MAU=NnU, and the amalgam
X/MUY/N | UM/M=UN/N is embedded canonically in the X-group <X, Y)/K.

Conversely, fix some (X,Y)eZ;x¥y and regard the free product with
amalgamation Fy y=X}Y. Let

Ry y={KSFyy|Fyy/KeX, KnX=,X, KnY=,Y}.

Denote epimorphic images modulo ﬂ.@;,y by bars. Then Fy yecX with the topology
given by the residual system %% ,. We will show:

An embedding of the amalgam X U Y | U into Fy yis given by z—zforallze XU Y. (2.1)

If XSVe%; and YSWe &y, then id:Fy y—Fy y induces an embedding of Fy y into
Fy w. (2.2)

Once (2.1) and (2.2) are proved, the discovered embeddings form commuting diagrams

XuYIU—ld——>Vuw|U

X, Y V.W
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and therefore, the amalgam G u H|U is embeddable into the direct limit of the cX-
groups F , with respect to the embeddings given in (2.2).

To see (2.1), suppose that 1 #xe X. Then x ¢ L for some Le %y y. By hypothesis, there
exist MeZyx y and NeRy x with MSL and MnU=LnU=N nU, and such that the
amalgam X/M U Y/N | UL/L is contained in an X-group P. Let K be the kernel of the
canonical homomorphism Fy y—P. Clearly, K= Fy ;, with X-factor group such that
KnX=M=23,X and KnY=N=,Y. Now Ke#%, and x¢K. It follows that
X[ 2%.y1=1, and so the canonical map ¢:X—X is a group isomorphism. By
definition of %% y, the map ¢ is continuous. The above argument also shows that we
can find for every Le %y y some K e Z% y with K n X £ L, whence ¢ is open.

In order to prove (2.2), it suffices to show:

KN FyyeRt, forevery Ke R} y. (2.3)
For every K e #% y there exists Ke R¥ w such that KnFyy<K. (2.4)

The assertion (2.3) is an immediate consequence of the definition of #£% , and £} y, and
of the fact that the topology on X resp. Y is induced by the topology on V resp. W. It
remains to prove (2.4).

Let Ke %% y. Since &y wn X and &y, NY are residual systems in X resp. Y which
induce the topology on X resp. Y, there exist L,e%, » and L,e%y , such that
LinX<KnX and L,nYSKnY. From hypothesis, we obtain M;e#, » and
N;eZy v such that M, <L, N,=L,,and M;nU=L;nU=N;n U, and such that the
amalgam V/M;u W/N; IUL /L; is contained in an X-group P,. Plamly, MnU=NnU
for M=M; M, and N=N, n N,. Denote epimorphic images modulo M resp. N by ~.
Then an embedding « of the amalgam VU W|U into P;=P,xP,eX is given by
vo= (le,sz) for all veV and Wa=(wN,,wN,) for all weW. Put Q=Fy /K, and
regard X U Y| U as an amalgam in P4—Q x Py via 2=(zK, za) for all ze X u Y. We will
now embed the amalgam VuP,u W, where VnP,=X and P,n W=7, into an
X-group.

To this end, let Ps;=Q WrP,ecX, and denote by =n,:P,—P; and =,:Ps—P, the
canonical projections. Because of X¥nQ=1, we obtain from [12, Lemma 1] an
embedding o: P,— P satisfying on,=n, and o|g=m,|g=¢|s. Lift o to an embedding of
the amalgam ¥ U P,| X into P via o|y=als. Regard the amalgam Psu Wo| Yo, where
Wo is an artificial copy of W. Denote the base group of Ps by €, and put
Ps=QWrP;eX. Since Yo nQ=1, a further application of [12, Lemma 1] leads to an
embedding 7:P5— P4 such that at]y 0'1[2|y n,|g=als. Extend 7 to an embedding of
the amalgam Ps;uWo|Yo into Pg via ot|p=alp. Now ot embeds the amalgam
VuP,uW into the X-group P.

Let K be the kernel of the group homomorphism Fy y— P induced from *ot. Then
KnV=M and KnW=N, whence Ke#} . Moreover, by choice of P,, we have
KnFyy<K. O
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Remark 2.2. Under the assumptions of Theorem 2.1, the amalgam GUH | U is
actually contained in an LcX-group W with the following property: For all fg. X £G and
Y £ H containing U, if M=, X and N2,Y are such that MnU=N n U and such that
the amalgam X/M O Y/N|UM/M =UN/N is contained in an X-group, then there exists
K2,{X,Y>Z<Wsuch that KnX=M and KnY=N.,

Proof. Since the amalgam is contained in an LcX-group, we may assume that %,
and %, in Theorem 2.1 are the local systems of all f.g. subgroups in G resp. H which
contain U. For (X,Y)e %; x %y, define Fy y and #% y as in the proof of Theorem 2.1.
If M=,X and N =, Y satisfy the above assumptions, then the argument in the proof of
(2.1) shows that there exists Ke Z% y with KnX=M and KnY=N. O

Amalgams of F-groups are always contained in an §-group [22, Theorem 5.2]. Thus,
if X=@, then the condition (2) in Theorem 2.1 becomes redundant. An amalgam
Av B] U of §&,-groups is contained in an §,-group, if and only if there exist chief series
in A and B which both induce the same chief series in U (see [12]). In particular,
amalgams of §,-groups over a common cyclic subgroup are always contained in an
&,-group. Moreover, every cyclic group U carries a unique pro-g, topology, and if
U=Vec, then the residual system of all M=,V induces the residual system of all
N =, U in U. Therefore, Theorem 2.1 yields that every amalgam of Lc,-groups over a
common cyclic subgroup is embeddable into an Lc,-group.

In the case when X=§,, it is readily verified that the conditions in Theorem 2.1 are
equivalent to the property that, for each pair (X, Y)e .%; x £y, the topologies on X and
Y are given by descending chains # ={M,|xew} and # ={N,|aew} of open normal
subgroups M, =X, N,=Y of index <p* such that (M =1=(|A and A NU=
A" N U. Therefore our criteria for amalgamation within Lc resp. Lc, are in line with
the criteria given in [23, Theorems 1.2 and 3.1] for the existence of the pro-§ resp.
pro-&, amalgamated product. In fact, it follows from [8, Theorem 2.1], that the pro-X
completion Ey, of the group Fy, in the proof of Theorem 2.1 is the pro-X
amalgamated product of X u f’| U. In particular, the conditions in Theorem 2.1 ensure
the existence of the pro-X amalgamated product of X u f’| U. Moreover, (2.1)/(2.2) and
[8, Theorem 2.1] lead to commuting diagrams

2u? w|0

|U VU
\ /
XuY|U——*VuW|U

/Fx.y _— FV.W\
Y EV

Ey

W

of the canonical embeddings, and so G u AU is embedded canonically in imEy,y.
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Theorem 2.1 allows us to deduce a necessary and sufficient criterion for the solvability
of finite systems of equations and inequalities in e.c. LcX-groups.

Theorem 2.3. A finite system of equations and inequalities with coefficients cy,...,c, in
the e.c. LcX-group G has a solution in G if and only if there exists a local system % in G
consisting of f.g. subgroups which contain U={c,,...,c,) such that, for every X e ¥, the
topology on X is given by a residual system Ry such that, for every M e Ry, the system
/M (with coefficients ¢\ M,...,c,M) has a solution in some X-group Wy 2 X /M.

Proof. Suppose that g,,...,g, is a solution to & in G. Let & be the local system of
all f.g. subgroups of G which contain V={U,g,,...,g,>. For X €%, denote by &, the
residual system of all M=, X such that w(c,,...,c,.g;,...,8,)¢ M for every inequality
W(CpseeesCpXq,..nXg)#1 in & Clearly, if Me%®y. then /M has the solution
aiM,....gMin Wy y=X/M.

Conversely, let 4 ={(X,M)|MeRy,Xe¥}. Regard H=[]{Wy.u|(X,M)e 4} as a
cX-group under the product topology (where each Wy ,, carries the discrete topology).
Denote by Ky , the obvious direct complement to Wy ,, in H. An embedding ¢:U—-H
is given by

up=uM)x syes forall ueU,

since Ky yynUp=(MnU)¢ for all (X,M)e.#. In the following, we suppress ¢ and
regard U as a subgroup of H. Because H contains the componentwise solution to &
and because G is e.c. in LcX, it suffices to embed the amalgam Gu H|U into an LcX-
group. To this end, we will check the conditions of Theorem 2.1.

Put Z;=2, and let %y be the local system in H of all f.g. subgroups containing U.
For (X,Y)e%sx %y, choose Ryy=Ry and Ry x={NZ,Y|NnUeRynU}. If
L=,Y, then there exists M e %y such that M UZSLNU, whence N=Ln Ky €%y x
satisfies N < L. This shows that %y y is a residual system in Y which gives the topology
onY.

If MeZyx y, then N=Kx ynYedy x satisfies MAU=NnU, and the amalgam
X/MUY/N|UM/M=UN/N can be embedded into Wy via xM—xM for all xeX
and yKy y—yx u for all yeY (where yyx , denotes the component of ye H in Wy ).
Finally, regard some Le%y x. Then MAU=LANU for some Me%y y, and N=
Kx. yN LeRy x satisfies NSL and LN U=N n U. Denote epimorphic images modulo
M resp. N by bars. It remains to embed the amalgam X u Y|U into an X-group.
Identify Y with a subgroup of P;=Wjy ,x Y/Le X via j=(yx, ,yL) for all yeY. Since
U n Y/L=1, we obtain from [12, Lemma 1] an embedding ¢:P;»P,=Y/L Wr Wy , € X
satisfying do=ue Wy ) for all ueU. Extend o to an embedding of the amalgam
XUP,|U into P, via Xo6=5€ Wy for all xeX. Then P, embeds in particular the
amalgam X v Y|U. O

https://doi.org/10.1017/50013091500005514 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005514

240 FELIX LEINEN

Lemma 2.4. Suppose that =R, U R, is a residual system in the RX-group U. Then
R, or R, is a residual system in U which gives the same topology on U as 4.

Proof. It suffices to show that one of the sets #; and %, contains for every Ne#
some M such that M <N. Assume that there exists Ne#, such that no Me%, is
contained in N. Let Z={Me®|M<N}. Clearly #<=%,, and thus %, has the desired

property. O

Using the method of construction given in [9, Satz 3.5], every X-group can be
embedded into a countable e.c. LX-group, which is e.c. in LcX. It is therefore possible to
formulate the following corollary.

Corollary 2.5. The V,-sentences, which hold in every e.c. LcX-group, are precisely the
V,-sentences, which hold in those countable e.c. LX-group, which are e.c. in LcX.

Note that the classes L and L, contain a unique countable e.c. group.

Proof. Let iy be an V,-sentence, ie., let Yy =VYX(¢,(X) Vv - v, (X)) where ¢(x) is a
primitive formula for every i. Suppose that one of the countable e.c. LX-group E, which
are e.c. in LcX, satisfies y. Regard any e.c. LcX-group G and some ¢ from G. Denote by
Z the local system of all f.g. subgroups of G containing ¢. o

Fix some Xe.Z. Let &, be the set of all M =,X such that ¢(cM) holds in some
X-group containing X/M. If M=, X, then X/M x Ee LcX, and so the group E contains
a copy of X/M. Since EF=, it follows that M lies in some %;. Hence Lemma 2.4 yields
that one of the %, is a residual system in X which induces the topology on X.

This shows that =%, u---u.%, where Z; is the set of all Xe# in which the
topology is given by a residual system Zy such that, for every M e %y, there exists an
X-group W= X/M with W= ¢ (cM). By [14, Lemma 1.A.10], one of the %, is a local
system in G. Now Theorem 2.3 applied to this local system yields that G}=¢/(c). This
shows that GF=y. O

As a second embedding technique within LcX, we will adopt the construction of [18,
§2] as far as possible.

Construction 2.6. Let :G—H be a homomorphism with kernel N. For every fg. X <G,
let Wy=XWrH (unrestricted wreath product). Fix some fg. UZG, and choose left
transversals R of UN N in U, and T of U in H. Then a group monomorphism

uG—W=|){Wy| X ZG fg}

is given by gt=f, g, where the function f:H—{g U) is defined via (t,7,)f,=r,gr;"
whenever t;€ T, r;e R satisfy t,F,=t,Fg.

Theorem 2.7. Adopt the notation of Construction 2.6. Let ¥; and £y be the local
systems of all fg. subgroups in G resp. H. Suppose that GeLcX, HelLX, and that
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NnX=2,X for all Xe ¥, Regard the base group Qy of Wy as a cX-group under the
product topology. The groups Wy y=Qx x Y, where (X,Y)e L »x %y, form a local system
in W. Each Wy y is a cX-group under the topology given by the residual system

Rx,y= {coreWX_Y(K) | K=,Qy)= {L=oQy I L= Wy v}
With these topologies, 1.G— W becomes an embedding of LcX-groups.

Proof. If (X, Y)e¥L;x Py with X, <X, and Y, <Y,, then the topology on X,

induces the topology on X,, and so the product topology on Qy, induces the product
topology on Qy,. Therefore, id: Wy, y,— Wy, y, is an embedding. This shows that W is
an LcX-group.

Now, fix some X e.%; with U<X. It remains to show that tlx:X—»Xrg Wyxisa
homeomorphism. To this end, we consider the residual system Zy={M=,X |M =<
NnX}in X. If xe N n X, then xt= f, where (t7)f,=rxr ™! for all te T, re R. Therefore,

Ly={f:H-X|(X)f SM}e%Ry z

satisfies Ly N Xt=M1 for every Me%y, and thus t|y is open. To see that t|y is
continuous, let Le &y 3. Then there exist h,,...,h,e H and M,,...,M =, X such that

Lz{f:H->X|(h)feM; for 1=Zi<v}.

Put M= {M;|1Si<v} =, X. Then MT<LAN Xz a

3. General results

Let us begin with some elementary applications of Corollary 2.5. We will denote by n
the set of all primes which divide the order of some X-group.

Theorem 3.1. The following assertions hold for every e.c. LcX-group G.

(a) G is verbally complete.

(b) If 1#N =G, then C4N)=1.

(¢) If U and V are f.g. subgroups of G, then [U,V?]=1 for some geG.

(d) Every non-trivial normal subgroup of G contains for every n-number p an element of
order u.

(e) For each n-number p, every element of G is in the normal closure of some element of
order u.

Proof. Let E be any countable e.c. LX-group. Then parts (a)<{c) hold for E by [16,
Theorem 2.1 and p. 212], and by the argument of [15, Lemma 2.2]. Note that (b) can
be encoded by the V,-sentence Vg,h3x (g#1£h—[g, h*]#1). For the proof of (d) and
(e), regard the V,-sentences
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u—1
Vgax,y[/\ XELAX=1A (g¢1—>x=[g,y])]

k=1
and

i

1
Vgﬂx,y,zl: xX*#1 A xt=1 /\g=[x,y,z]]

k=1

These hold for E by the arguments of [16, Lemmata 2.5/4.3(b) and 3.3]. Therefore,
Corollary 2.5 applies in all cases. O

Because every f.g. ¢(&F,n ®)-group H is hypoabelian, it follows from the argument of
(14, Proposition 1.B.3] that minimal normal subgroups of Lc(F, ®)-groups are
abelian. Hence Theorem 3.1(b) implies that e.c. Lc(§, » ®)-groups have no minimal
normal subgroups.

Next, let us extend the notion of a G-subgroup given in [21, p. 114] for L ,-groups.
Suppose that Z is the local system of all f.g. subgroups of an LcX-group G. Then we
say that N is a G-subgroup of Ue ¥ (N 2, U), if every Ve ¥ with U £V contains some
M=,V such that MNU=N. Put U= {N|N=2 U} 2 U. It is readily verified that
UgLVe¥ and N=;V implies N U=,U, and so we may form

G*=\J{Ut|Ueg}=G.

Note that G*<[V{N=G|NAU=Z,U for all Ue Z}. A subgroup N={){Ny|X e}
is said to be a locally closed normal subgroup in G, if every Ny is a closed normal
subgroup in X, and if Ny< Ny whenever X < Y. Every N = G is contained in the locally
closed normal subgroup N=|) {Nx|X €%}, where Ny=){K=,X|NnX<K} is the
closure of Nn X in X. Another kind of locally closed normal subgroup N can be
obtained from each N =2;Ue.% by choosing Ny=() {K§0X|K A U=X N} In the
latter case N n U =N, and we immediately have:

Lemma 3.2. Let N=2;U where U is a fg. subgroup of the LcX-group G. Then
(NSY>AU=N. : ‘

Theorem 3.3. Let N=|){Nx|Xe 2L} be a locally closed normal subgroup of the e.c.
LcX-group G. Then the following hold for every ge G—N.

(a) Every finite system of equations and inequalities with coefficients from N, which is
solvable in G, already has a solution in every verbal subgroup of {g®>. In particular,
N (g%, the locally closed normal subgroups of G are totally ordered via inclusion, and
the G-subgroups in each f.g. subgroup of G form a descending chain of length <x.

(b) If O(Ng)=n< oo, then any two elements in Ng of order n are conjugate in every
verbal subgroup of (g°>.

Proof. (a) Let & be a finite system of equations and inequalities with coefficients
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¢4,...,¢, €N, unknowns x,,...,x,, and a solution g,,...,g,6 G. Fix any reduced word
v(&,,...,€)#1. Adjoin to & the equations

3
x;=v(&;,...,¢,) and éijz H [gaYijk’zijk] (12iZs,15j5y)
k=1

with coefficients g. In the case when O(Ng)=n<oo, let h,,h,e Ng with n=0(h;), and
adjoin the additional equations

h’l"+l=h2’ xs+l=v(¢s+1.la""§s+l.t)9 and
3
$se1,j= H (& Vs+ 1,0 2541, J(1S J=0)
k=1

with coefficients g, h,, h,. Denote the resulting system by 7.

Since N is locally closed, there exists a fg. V<G with g,,...,g,g€V and
¢1,-.-,¢,€Nv (and with hy,h,e Nyg in the case when n< o). Let L;={Xe Z|V<X}.
Because Ny is closed in X € %, there exists Ly =, X with Ny< Ly and g¢ Ly (and with
{h>NnLy=1 in the case when n<oo). Regard in X the residual system 2%, of all
M32,X satisfying MLy and w(cy,...,c,,81,...,8)¢M for every inequality
W(CyyeresCpXyy...5 %) #1 in & Fix some M eZy. Since every e.c. IX-group is verbally
complete, we can find an X-group Fy ,,=X/M such that, for every xe X, there exist
elements f, ;€ Fx p with xM=v({f, 1, fr.21s- s [fe.20- 1> fr,2.]). Identify X/M with its
image in Ly/M Wr X/Ly<Wy y=Fx » Wr X/Ly under some Krasner-Kaloujnine
embedding.

Let my=0(Lyg), and choose a left transversal T of {(Lyg> in X/Ly. Then every
f:X/Lx—Fy y can be decomposed in Wy ,, into a product f=f, f,f;, where

supp /=T,
suppf,<|J{T (Lxg)|ie{l,...,my—1}is odd},
supp f3={J{T (Lxg")|ie{l,...,my—1}is even}.

With this decomposition, the arguments of [16, Theorem 4.7 and Lemmata 4.2/4.3]
actually show that the system /M with coefficients Mc,,...,Mc,, Mg (and Mh,, Mh,)
has a solution in Wy ,. Therefore, Theorem 2.3 yields that & has a solution in G,
whence & (and the equation hi=h,) have a solution in the verbal subgroup of {g%>
generated by v(¢,,...,¢&)).

Finally, if he N, then an application of the above to the system % consisting only of
the equation h=x with coefficient h shows that he (g%>. Hence N <{g°>. O

Note, that Theorem 3.3 does in fact hold for unions and intersections of locally closed
normal subgroups.
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Question. Is every normal subgroup of an e.c. LcX-group the union or intersection of a
chain of locally closed normal subgroups?

If N2 GeLcX is such that Nn U is closed in U for every f.g. UG, then each
U/U N N is a cX-group via the quotient topology. Note however, that this is in general
not enough to ensure that G/N e LcX since, for ULV, the canonical monomorphism
U/(UNN)->V/V N) need not be an embedding [11, p. 23]

By combining Theorem 2.1 with [15, Theorem 2.1], we can apply the technique of
[16, §2] in order to extend [16, Theorems 2.3-2.6] to the normal L&-subgroups of an
e.c. LcX-group G. In particular, the normal L§-subgroups of G form a chain. We will
now turn to the LE-quotients of G. Note that by Theorem 3.3, for every f.g. subgroup U
of an e.c. LcX-group G, we have G*nU=U¥ or G*nU=,;U.

Theorem 3.4. Let G be e.c. in LcX.

(@) If N2G, then NXG* or G¥XN.

(b) If G*<N=G, then NnU=Z=4U for every fg. UZG. In particular, G/N € LX.

(¢) If G/G* has a minimal normal subgroup, then (b) also applies to N =G*.

(d) G*=N{N2G|NnU=2,U for all fg. USG}. In particular, G* contains the
LX-residual of G.

(e) If for every infinite fg. U=<G the chain of G-subgroups in U has length w, then G*
is the LF-residual of G.

Proof. (a) Suppose that N is not in G*. Fix some ge N — G*. Since G* is a locally
closed normal subgroup in G, Theorem 3.3 yields G* < {(g%> < N.

(b) Since G*<N, we may assume that G*nU<N n U. Choose M =;U maximal
with respect to NN UEM. Choose ge(NnU)—M. Then Theorem 3.3 yields M <
Eg>NUZNANU, whence NnU=,U. Since this also holds for every f.g. V<G
containing U, we even obtain Nn U=, U.

(c) Let N/G* be a minimal normal subgroup in G/G*. Fix some ge N —G*. Regard
any f.g. U <G containing g. From (b) we have N U =2, U. Choose M =; U maximal
with respect to G*NnUSM<NANU. Now {M®>nU=M by Lemma 3.2. Because
N/G* is minimal normal in G/G*, we conclude from (a) that (M%)»<G*. But then
G*nU=MZ=2,U.

(d) We have already noted that G*<S=({N=2G|NnU Z,U for all fg. ULG}.
Assume that G* <S. Then (b) implies that S/G* is a minimal normal subgroup in G/G*.
But now (c) leads to S £G*, a contradiction.

(e) Let N= G with G/N e L. Then, for every infinite f.g. U < G, we have |[U:U N N| < co.
By our assumption, U N is therefore not contained in the intersection of all
G-subgroups of U. Choose M =2,U maximal with respect to Un NE&M. As in (b),
Un N2, U. The latter also holds for finite U. It thus follows from (d) that G*<N. 0O

Theorem 3.4 enables us to apply Construction 2.6 to all normal subgroups of an e.c.
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LcX-group G which contain G* (see Theorem 2.7). We can therefore extend most of the
results from [15] and [18] about normal subgroups and chief factors of e.c. LX-groups
to normal subgroups and chief factors of G above G*. Here is a list of theorems which
can be transposed literally: [15, Theorems 2.3, 2.5 and 2.6], [18, Theorems 3.1-4.3].
Also, [15, §3] and the corresponding results about embeddings of countable super-
soluble n-groups into e.c. L(E,n ®)-groups carry over (cf. [18, end]). As a slight
extension of [15, Theorem 2.5] we note that, if N = G contains an element h of infinite
order, then so does each coset of N in G (apply Theorem 3.1(c) with U=(x) and
V =<h); then hx is the desired element in the coset Nx). Finally, [16, Theorem 5.1]
about locally inner automorphisms of countable e.c. LX-groups holds as well for
countable e.c. LcX-groups.

4. G-subgroups

Up to now, we have not established the existence of proper G-subgroups in infinite
f.g. subgroups of an LcX-group G. In fact, they need not exist, since we will show in
Theorem 6.1 that e.c. Lci-groups are simple. However, the situation is not always so
bad.

Theorem 4.1 Suppose that all simple X-groups are contained in a variety ¥ such that
every free ¥ -group of finite rank has only finitely many subgroups of finite index. Then
every infinite fg. subgroup U of an LcX-group G contains a descending chain of G-
subgroups of length .

Proof. Suppose that M =;U. Let A4 be the set of all N2, M containing ¥ (M).
Then 4 is finite by hypothesis. Assume that 4" contains no G-subgroup of U. Then we
can find a f.g. X <G such that U< X, and such that Ln U¢ .4 for all L=, X. On the
other hand, there exists K =y X with KnU=M, and we can choose L=, X maximal
with respect to L<K. As a chief factor of X/Le X, the factor K/L lies in ¥". But now
LnUe, a contradiction. This shows that the desired chain can be constructed
inductively. O

Theorem 4.1 applies for example in the case when X=§, N ® for a finite set n of
primes. More generally, Theorem 4.1 holds whenever the exponents of the simple X-
groups are uniformly bounded (use Zelmanov’s solution of the restricted Burnside
problem [24], [25)).

Because chief factors of §,-groups are cyclic of order p, Theorem 4.1 has the
following Corollary.

Corollary 4.2. Every fg. subgroup U of an Lc§,-group G contains G-subgroups of
every index p* < |U|(ae w).

This of course generalizes the fact, that every chief series of an L§,-group induces a
chief series on each of its finite subgroups. Conversely, we know from [15, Corollary
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3.3], that every series of an §,-group U is induced by the unique chief series of some
countable e.c. L§,-group G=U. We will also extend this result to the Lc ,-case.

Construction 4.3. Let (n,),.., be a sequence with n,<w. Suppose that U, is an infinite
fg. c&,-group, and that {Uoﬁ| B<w} is a descending chain of open normal subgroups of
index pf in U,. Then there exists an ascending chain {U,|a<w} of fg. c¢&,-groups, and
for every o a descending chain {Ua,,| B<w} of open normal subgroups of index p? in U,
such that

(1) G=J{U,|a<w} is an e.c. LcF ,-group,

(2) {Ugp|B<w} is the unique chain of G-subgroups in U,

(3) for every B=n,, there exists ' <w such that U,y=U,NnU, 4, 4, and

4) if n,<w, and if m, is minimal with respect to U, ,=U,NnU,y, ,, then U, , =
UnU,yy g foral f2zm,

In the course of the construction it suffices to choose n, ., after determining U, and the
chain {U ;| B<w}.

Proof. (a) Using Cantor’s diagonal enumeration of wxw we can find a bijection
x:@w x w—w such that a <(e, f)y for all a, f<w (see also [9, Satz 3.5]). The construction
is now performed inductively in such a way that,

for all «’ £, f < w, there exists N =, U, such that U, ;=N n U,. 4.1)

In the step a—a+1, let &,,, y<w, be an enumeration of all finite systems of equations
and inequalities with coefficients from U,. Fix i, j <w with a=(i, j)x. Then «2i, and ;;
does already exist by induction. If &; is solvable in a f.g. ¢,-group V 2 U, such that,

for all o’ = a, f <w, there exists N=, V such that U,y =NnU,, 4.2)

then put V,=V,; otherwise, let V,=U,. It is now easy to find a descending chain
{V.s| B<w} of open normal subgroups of index p? in ¥, such that {UylBsn,} s
{U,~ Va,,|ﬂ<w}. If n,=w, then we put U, =V, and U,,, =V, for all f<w. In this
case, (4.1) and (3) are satisfied, while (4) is empty. Otherwise, we identify V, with the first
factor of U,.,=V,xV,, regard U,,, as a c§,-group via the product topology, and
define

U —_ ‘/ﬂﬂXVa lf ﬂ§la’
AV L x Vg, if B2,

where I, is minimal with respect to U, ,, =U,nV, ;.. Then (3), (4) and (4.1) hold, and the
induction is completed.

(b) Fix some a,f<w and geU,—U,p, he U,y We will show now that the system &
consisting only of the equation
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h=T] [gx;y;] where v=0(U,g)
j=1

J

has a solution in G. Clearly, ¥=¢,, for some y<w. Let u=(a,y)x. Because of the
construction given in (a) it suffices to show that & has a solution in some f.g. c¢{¥,-group
V2 U, satisfying (4.2).

Because of (4.1) there exists L=,U, such that LnU,=U,. Therefore, %,=
M=, U,,|M <L} is a residual system in U, which gives the topology on U,. Since
every e.c. Lc,-group is verbally complete, there exists a f.g. c,-group P2<h) such
that h is a commutator in P. Applying Theorem 2.1 and Remark 2.2. to the amalgam
Uy uP[(h), we obtain a f.g. c§,group F2 U, such that h is a commutator in F, and
such that

every N =, U,; is induced in U,; by some open normal subgroup of F. (4.3)

Let o:U,~»U,WrU,/U,z<W=FWrU,/U, be a Krasner-Kaloujnine embedding.
Denote the base group of W by Q. For K=, F, let K= {feQ|Imng}. Note that, for
Med,, we have

KnU,=(MnUy)o ifandonlyif Kn Uyg=MnU,. 4.4)

In particular, if %W={K'|K§‘OOF with KnUyz=MnU,; for some Me%,}, then
Rw " U,0=(R,nU,)o. Put R=(") Ry, and regard H=W/R as a c§,-group under the
topology given by the residual system %,;=%2y/R. Then the composition of ¢ andthe
canonical epimorphism W—H embeds U, into the c§,-group H. In the following, we
identify U, with its image in H under this embedding. Now the proof of [16, Lemma
4.3(b)] actually shows that & has a solution in H. Our aim is to obtain the desired
group V from an application of Theorem 2.1 to the amalgam U, u H | U,

To this end, regard some K=,F and Me%, with KnU,;=M n U,. Because of
(4.3) and (4.4), we can find for any chief series of open normal subgroups in U,, which
refines 1SM<L<U,, a chief series of open normal subgroups in H, which refines
1<K/R<Q/RZH, such that both series induce the same on U,. It thus follows from
[12] that the amalgam U,/M U H/N|U,M/M=U,N/N, where N =K/R, is contained in
an §,-group. This shows that we may apply Theorem 2.1 and Remark 2.2 to find a f.g.
¢&,-group V containing the amalgam U, U H | U,, and satisfying

whenever M =2, U, and N =, H are such that M N U,=N n U, and such that amalgam
U,J/MUH/N | U,M/M=U,N/N is contained in an §,-group, then there exists K=, V
with KNnU,=M and Kn H=N. 4.5)

It remains to prove that V satisfies (4.2).

To this end, fix a<k<a. From (4.1) there exists a descending chain {M 4|l<w} of
open normal subgroups in U, which induces {U,;|A<w} in U,, and hence also
{U,s | P <n,} in U,. Therefore, (4.3) and (4.4) yield a descending chain of open normal
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subgroups in H which induces {U,,|B'<n,} in U, Now (4.5) gives K; =2,V with
K;nU,=M,. Suppose now that x<a. By the above argument, there exists a
descending chain {K;|1<n,} of open normal subgroups in ¥ which induces {U,;|1<
n.} in U,. If A>n,, then (3) and (4) yield U,;<U,;, and using (4.1) we can extend
{K;nU,|A<n,} to a descending chain {M;|1<w} of open normal subgroups in U,
which induces {U,;|i<w} in U,, and which satisfies M,e%®, for all A>n,. Again,
(4.3)(4.5) apply.

(c) Clearly, (4.1) ensures that every U, f<w, is a G-subgroup of U,. Conversely, if
N=;U,, then N has finite index in U,. Therefore, N is not contained in () {U,z|f<w}.
Choose f minimal with respect to N¢U, 5, ,. If ge N—U, 4.,, then (b) and Lemma
3.2 yield that U, g4, <{g°> nU,S(N®>nU,=N<U,. It follows that N=U,. This
shows that (2) holds.

(d) Finally, let us prove (1). Suppose, that & is a finite system of equations and
inequalities with coefficients g,,...,g,6G and a solution hy,...,h, in some
Lc ,-supergroup H of G. Choose a<w such that g,,...,g,eU,. Then & =%, for some
y<w. Let pu=(a,y)x, and regard V =(U,,h,,...,h,>. By the construction given in (a), &
will have a solution in U,,,; <G if, for all k<y, A<, there exists N =, V such that
U,,=NnU,. But this is true, since the U,; are the only G- and hence also the only
H-subgroups of U, (Corollary 4.2). O

Corollary 4.4. Let U be an infinite fg. cF,-group. If {N,|a<w} is a descending chain
of open normal subgroups of index p* in U, then U is contained in a countable e.c.
Lc§,-group G such that the N, are precisely the G-subgroups in U.

Construction 4.3 enables us to build various examples of countable e.c. Lcg,-groups.

Example 4.5. Each of the following properties is shared by 2%° (pairwise non-
isomorphic) non-periodic countable e.c. Lc§,-groups G: G*=G, 1#£G/G*eL§,, G/G*¢
Lg,.

Proof. Regard the free group U, of rank two as a c§,-group under the topology
given by the residual system of all N= U, of p-power index. Since the commutator
factor group of every subgroup of finite index in U, is free abelian of rank =2 [20,
Proposition 1.3.9], there exist 2¥° descending chains of subgroups {Ugs|B<w} of index
p? in Uy with () {Ugs|B<w}=1. An application of Construction 3.4 to these chains
clearly yields 2% countable ec. Lc§,-groups G, which are not isomorphic as
Lc,-groups, since they contain U, in too many non-compatible ways. Choose n,=0
(resp. n,=w) for all a to establish G*=G (resp. G/G*¢ LF,). Moreover, if 0<n,<w,
then n,,,=m, for all a leads to 1#G/G*€L{,, since U, ,,-,G*/G* is a minimal
normal subgroup in G/G* in this case. O

5. E.c. Lc,-groups

In the case when X=%, we can make more progress by considering further
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applications of Corollary 2.5 to e.c. Lci§,-groups. To this end we will have to regard
specific V,-sentences. For any reduced word w(¢,,...,¢&,)#1, we define the term t,(g, X)
as follows.

p—1

p—1
tw(g,i)=w< n [g’xl,bxl,p+i]’---a I:[() [g’ xv,iaxv,p+i])' (51)

i=0

Then the V,-sentence ¢,, is given by

p—1 p—1
¢, =Vg hix [k\__/o h=g"t.(g,%) v k\_/o g=h-t(h, x)]. (52)

Lemma 5.1. Every e.c. Lci¥,-grouup satisfies the above V,-sentences @,

Proof. Note that [x,;, x;;]1=[(b, 1), x;, x,;] actually holds for all je{l,...,m} in the
proof of [16, Lemma 4.3(b)]. Therefore, a detailed analysis of the proof of [16, Theorem
4.7] shows that the unique countable e.c. LE,-group satisfies each ¢,,. Now Corollary
2.5 applies. O

Lemma 5.1 provides the key for the proof of the following theorem.

Theorem 5.2. Every e.c. Lc§,-group G has a unique chief series . The chief factors of
G are central and cyclic of order p, and the order type of £ is a dense order without
endpoints.

Proof. Regard any K, L= G. Suppose that there exists ge K—L. From g¢ L we have
g¢(h®) for every heL. Therefore it follows from Lemma 5.1 that he{g®) for every
he L, whence L<K. This shows that the normal subgroups of G are totally ordered via
inclusion. Equivalently, G has a unique chief series.

Regard a chief factor M/N in G. If ge M — N then, from Lemma 3.2, £ must induce
the unique chain of G-subgroups in {g), when g?e N. Therefore, exp(M/N)=p. Regard
the reduced word w(¢)=¢P and some g,he M —N. Then Lemma 5.1 yields that geh*N
or heg*N for some ke {l,...,p—1}. This shows that M/N is cyclic of order p. Since G is
verbally complete, G has no finite epimorphic image, and so M/N must be central.

Lemma 5.1 applied to the word w(¢,,&,)=[¢&,,&,] yields that M’'=N for every chief
factor M/N in G. Since G is also perfect and has trivial centre (Theorem 3.1), we may
deduce as in the proof of [19, Theorem B(d)] that T has the desired order type. |

Theorem 5.2 implies that every Lc,-group has a chief series with central and cyclic
factors of order p. Note also, that the existence of a unique chief series with dense order
type and elementary-abelian factors could also be shown for e.c. Lc(§, n 6)-groups,
where 7 is a finite set of primes, if there would exist a pendant to Lemma 5.1, i.e, if it
could be shown, for example, that there exists some fixed m<w such that, for every
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chief factor M/N of a countable ec. (&, ®)-group, and for all g,he M —N, the
element Nhe G/N is a product of at most m conjugates of powers of Ng in G/N (cf. [16,
Theorem 4.9 and p. 214]).

Theorem 5.3. Let K= G, where G is ec. in Lc§,, and suppose that K #{g%) for all
g€G. Then the following hold.

(a) K is e.c. in G. In particular, every normal subgroup of K is already normal in G,
and conjugation with elements from G induces locally inner automorphisms on K.

(b) If KeLg,, then K is e.c. in LE,.

Proof. Let & be a finite system of equations and inequalities with coefficients ¢ and
unknowns X.

(a) Denote by ¢(c,x) the conjunction of all equations and inequalities from &.
Consider the V,-sentence

Ve, 45,3, [g;el A BED A Nemtule 7 - 0GR A Aby=t.(z, z',-)}
i J

where w(&y, &,)=[£,,¢,]. This sentence expresses that, whenever & has coefficients ¢ in
[g,G,G] and a solution d in G, then there exists a solution h to & in (g% It is
satisfied in the countable e.c. L§ ,-group [16, Theorem 4.8]. Thus Corollary 2.5, Lemma
5.1 and Theorem 5.2 yield that the groups N in the chief factors M/N of G are e.c. in G.
It now follows from the arguments of [16, Theorem 4.8], that K satisfies (a).

(b) Suppose that & has coefficients in K and a solution in the L§,-group H2K.
Then U=(¢) is finite. Since K is e.c. in G, and since G is e.c. in Lc§,, it suffices to
embed the amalgam G U H|U into an Lc§,-group. To this end, we check the conditions
of Theorem 2.1. By (a), K has a unique chief series. So [21, Hilfssatz 1] yields the
existence of a finite group V2 U in K such that every chief series in V induces the K-
chief series in U. Let %; and % be the local systems in G resp. H of all f.g. subgroups
containing V. For (X,Y)e %o x Ly, put By y={M=2,X|M~V=1} and &y x={1}.
Then [12] ensures that, for all MeZy y, the amalgam X/Mu Yl UM/M=U is
contained in an §,-group, since X/M2VM/M=V and Y=V enforce that all chief
series in X/M and Y induce the K-chief series in UM/M = U. O

It remains open, whether Theorem 5.3(b) can be extended to arbitrary K. Note that, if
K is the unique countable e.c. L -group E,, then G is contained canonically in the
group LokInn(E,) of all locally inner automorphisms of E, by Theorem 3.1(b).

Theorem 54. Let G be ec. in Lc§,. Then every subnormal subgroup of G is already
normal in G.

Proof. Assume that there exists a subnormal subgroup S of defect 2 in G. Because of

Theorem 5.3, there exists a chief factor M/N in G such that S<1 M < G, and such that S
is not in N. Regard the V,-sentence
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Ve, h 7377 [h=rw(g, %)= h=t,(g.9) A Ayi=tuls z',-)],

where v(&)=¢ and w(¢,,&;)=[&,,¢,]. A detailed analysis of the proof of {16, Theorem
4.11(f)] shows that this sentence is satisfied by the countable e.c. L§,-group. Hence it
also holds in G by Corollary 2.5. Because of Lemma 5.1 and Theorem 5.2 we conclude
that N<[g,N,N]<S<M for any geS— N. But this enforces S=N, a contradiction. O

We can also extend [15, §3] and [16, Theorems 4.1/2] literally to results about
embeddings of countable L ,-groups into e.c. Lc§,-groups and to results about partial
complements to normal subgroups #{g%> in ec. Lc§,-groups G (here, Go/N resp.
Go/K must be in L$,). To this end we just transform the systems of equations and
inequalities used in the proofs of these theorems into suitable V,-sentences. Example 4.5
shows that the full generalization of the above embedding results (without restriction to
L& ,-groups) does not hold. As far as conjugacy of f.g. subgroups in e.c. Lci,-groups is
concerned, we have the following result.

Theorem 5.5. Let G be an e.c. Lc,-group.

(a) An isomorphism ¢:A— B between f.g. subgroups of G is induced by conjugation in G,
if and only if there exists a local system £ in G of fg. subgroups which contain {A,B)
such that, in every X € ¥, there is a chief series {N,},c., of open normal subgroups such
thata '-apeN,,, forallac(AnN,)—N_,,.

(b) An element ge G of infinite order is conjugate in G to g" (neZ), if and only if n=1
(mod p).

Proof. Combine Theorem 2.3 with [15, Corollary 3.3(b)] and [17, Theorem 6.1]. O

It remains open whether every automorphism of G, which stabilizes the unique chief
series in G, is a locally inner automorphism (cf. [17, Theorem 6.1]).

6. E.c. Lc-groups

The techniques developed in Section 2 yield the following informations about e.c.
Lc§-groups.

Theorem 6.1. The following assertions hold for every e.c. Lcg-group G.

(a) Every isomorphism between finite subgroups of G is induced by conjugation in G.

(b) If GUH|U is an amalgam of G with a countable LF-group H over a finite
subgroup U, then id:U—G can be extended to an embedding H—G.

(¢) For all g,he G—1 there exist x,y€ G such that h=g"g". In particular, G is simple.

(d) On every f.g. abelian subgroup of G, inversion is induced by conjugation in G. In
particular, every element in G is conjugate to its inverse.
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(e) Let wy,...,w, be words in unknowns x,,...,x, and elements of G. Denote by d,; the
exponent sum of x; in w; If det(d;;)#0, then the system of equations w;=1 for
1<iZn has a solution in G.

Proof. The assertions (a), (c), (d), (¢) can be encoded as V,-sentences and hold in
every e.c. L§-group by [14, Theorem 6.1] and [4, Theorem 2]. Moreover, (b) follows
from an iterated application of the corresponding statement for finite H, which in turn
can be expressed as an V,-sentence that holds in the unique countable e.c. LE-group
(14, Theorem 6.1]. O

Of course, one is tempted to ask in how far the assertion (a) of Theorem 6.1 extends
to isomorphisms between infinite f.g. subgroups of an e.c. Lc§-group G. We will show
now that it is hardly possible to make much progress in this direction.

Theorem 6.2. Let G be an e.c. Lc§-group.

(a) An isomorphism ¢:A— B between f.g. subgroups of G is induced by conjugation in G,
if and only if there exists a local system & of f.g. subgroups of G which contain (A,B)
such that, for every X € %, the topology on X is given by a residual system Ry, such that
¢ induces an isomorphism AN/N—BN/N for every N € #y.

(b) An element ge G of infinite order is conjugate in G to g" (neZ), if and only if
O(g"N)=0(gN) for every N=,<g>. In particular, no element of infinite order in G is
conjugate to all of its non-trivial powers.

Proof. (a) follows from Theorem 2.3 and [7, Lemﬁla 1].
(b) If 0(g"N)=0(gN) for every N =2,U={g), then (a) implies that g is conjugate to
g". Conversely, suppose that 0(g"N)#0(gN) for some N =,U. Then 0(g"M) #0(gM) for

every M =2, U with M <N. But every residual system in U contains some M =, U such
that M < N, whence (a) implies that g is not conjugate to g". : O

Let C={c) be the infinite cyclic group with the topology given by the residual system
of all N= C of finite index. Then Theorem 6.2(b) shows that, in every e.c. Lc§-group
G =, the element ¢ is conjugate to ¢" (neZ) if and only if n=+1.
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