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DIFFERENTIAL OPERATORS ON QUANTIZED FLAG
MANIFOLDS AT ROOTS OF UNITY, II

TOSHIYUKI TANISAKI
To FEtsuro Date on his 60th birthday

Abstract. We formulate a Beilinson—Bernstein-type derived equivalence for a
quantized enveloping algebra at a root of 1 as a conjecture. It says that there
exists a derived equivalence between the category of modules over a quantized
enveloping algebra at a root of 1 with fixed regular Harish-Chandra central
character and the category of certain twisted D-modules on the corresponding
quantized flag manifold. We show that the proof is reduced to a statement
about the (derived) global sections of the ring of differential operators on the
quantized flag manifold. We also give a reformulation of the conjecture in terms
of the (derived) induction functor.

80. Introduction

0.1.

Let G be a connected, simply connected simple algebraic group over C,
and let H be a maximal torus of G. We denote by g and h the Lie algebras
of G and H, respectively. Let Q and A be the root lattice and the weight
lattice, respectively. Let hg be the Coxeter number of G. We fix an odd
integer ¢ > h¢, which is prime to the order of A/Q and prime to 3 if g
is of type Ga, Fy, Fg, F7, Eg, and we consider the De Concini—Kac-type
quantized enveloping algebra Uy at ¢ = ¢ = exp(2my/—1/¢).

In [20], we started the investigation of the corresponding quantized flag
manifold B¢, which is a noncommutative scheme, and the category of
D-modules on it. In view of a general philosophy saying that quantized
objects at roots of 1 resemble ordinary objects in positive characteristics, it
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2 T. TANISAKI

is natural to pursue an analogue of the theory of D-modules on the ordinary
flag manifolds in positive characteristics due to Bezrukavnikov, Mirkovi¢,
and Rumynin [6]. Along this line, we have established in [20] certain Azu-
maya properties of the ring of differential operators on the quantized flag
manifold. The aim of the present article is to investigate an analogue of
another main point of [6] about the Beilinson—Bernstein-type derived equiv-
alence.

0.2.

We denote by Dp, 1 the sheaf of rings of differential operators on the quan-
tized flag manifold B;. More generally, for each t € H we have its twisted
analogue denoted by Dp, ;. It is obtained as the specialization Dp. @c(m) C
of the universally twisted sheaf Dp. with respect to the ring homomorphism
C[H] — C corresponding to t € H.

Let B be the ordinary flag manifold for G. Then we have a Frobenius
morphism Fr: B¢ — B, which is a finite morphism from a noncommutative
scheme to an ordinary scheme. Taking the direct images, we obtain sheaves
Fr.Dp,,Fr.Dp+ (t € H) of rings on B (in the ordinary sense). Denote by
Modcoh(Fr*DBOt) the category of coherent Fr.Dp, ;-modules. Let Znar(U¢)
be the Harish-Chandra center of U¢, and let C; be the corresponding 1-
dimensional Zyar(Uc)-module. Denote by Modf(Ue ®z,, (v,) Ct) the cate-
gory of finitely generated U ® Zitar (Ue) C¢-modules. Then we have a functor

(0.1)  RT(B,e): D*(Modeon(Fr.Dp, ¢)) — D’ (Mod (U 2 Zia(Ue) Ct))

between derived categories. It is natural in view of [6] to conjecture that
(0.1) gives an equivalence if ¢ is regular. By imitating the argument of [6],
we can show that this is true if we have

(02) RF(B,FI'*DBC) = UC ®ZHar(UC) (C[A]

However, we do not know how to prove (0.2) at present; hence, we can only
state it as a conjecture. We have also a stronger conjecture,

(0.3) RT (B, Fr.(Ds) 1) = U j @zy,. () CIA,

which is the analogue of (0.2) regarding the adjoint finite parts (Dg, )y, Uc,y
of Dg,, Ug, respectively. We will give a reformulation of (0.3) in terms of
the induction functor (see Conjecture 5.2 below). It turns out that (0.3) is
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equivalent to some assertions in Backelin and Kremnizer [2], [3] stated to
be true under certain conditions on ¢ (see Remark 5.4 below).

It is also an interesting problem to find a formulation which works even in
the case when the parameter ¢t € H is singular. In the case of Lie algebras in
positive characteristics, Bezrukavnikov, Mirkovi¢, and Rumynin in [5] have
succeeded in giving a more general framework, which works even for sin-
gular parameters, using partial flag manifolds (quotients of G by parabolic
subgroups). In their case, the parameter space is h*, and one can associate
for each h € h* a parabolic subgroup whose Levi subgroup is the centralizer
of h; however, in our case the centralizer of ¢t € H is not necessarily a Levi
subgroup of a parabolic subgroup, and hence the method in [5] cannot be
directly applied to our case.

0.3.

This article has the following organization. In Section 1, we recall basic
facts on quantized enveloping algebras at roots of 1 and the correspond-
ing quantized flag manifolds. In Section 2, we investigate properties of the
category of D-modules. In particular, we show that (0.2) implies (0.1) for
regular ¢ and that (0.3) implies (0.2). In Sections 3 and 4, we recall some
known results on the representations of quantized enveloping algebras and
the induction functor, respectively. Finally, in Section 5 we give a reformu-
lation of (0.3) in terms of the induction functor.

81. Quantized flag manifold

1.1. Quantized enveloping algebras

1.1.1. Let GG be a connected simply connected simple algebraic group
over the complex number field C. We fix Borel subgroups B* and B~ such
that H = BT N B~ is a maximal torus of G. Set N* = [B*, B*], and set
N~ =[B~,B~]. We denote the Lie algebras of G, BY, B~, H, N*, N~ by
g, b7, b7, h, nT, n~, respectively. Let A C h* be the root system of (g,b).
We denote by A C h* and @ C h* the weight lattice and the root lattice,
respectively. For A € A we denote by 6y the corresponding character of H.
The coordinate algebra C[H] of H is naturally identified with the group
algebra C[A] = @, Ce()) via the correspondence 0y <+ e(A) for A € A.
We take a system of positive roots AT such that b™ is the sum of weight
spaces with weights in AT U{0}. Let {c; }ies be the set of simple roots, and
let {w; }icr be the corresponding set of fundamental weights. We denote by
AT the set of dominant integral weights. We set Q1 = DPicr Z>pa;. Let W C
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GL(h*) be the Weyl group. For i € I we denote by s; € W the corresponding
simple reflection. We take a W-invariant symmetric bilinear form

(,):h*xph*—=C

such that (a, ) =2 for short roots a. For o € A we set a¥ =2a/(«, «). For
i € I we fix &; € ga;, fi € 9—a, such that [¢;, f;] = o under the identification
h=b* induced by (, ).

1.1.2. For n € Z>( we set

[Tl]t‘ = [n}t[n — 1]t te [Q]t[l]t € Z[t,t_l].

We denote by Ur the quantized enveloping algebra over F = Q(ql/ 1A/ Q')
associated to g. Namely, Ur is the associative algebra over F generated by
elements

kx (A€A), e, fi (i€1)
satisfying the relations
ko=1, k)\kIMZk)\+u ()\,,LLEA),
k‘)\eikgl = q(/\’o‘i)ei ()\ S A,i S I),
kafiky ' =q M f; (AeAiel),

ki —k '

eifj — fiei=0ij—= (i,j€l),

l—ai]‘

3 (el T el =0 (ij e Li# ),
n=0
1—a;;

l—a;;i—n n .o . .

Sy =0 (LG e Lit ),
n=0

where ¢; = ¢(@:)/2 |, = ka;yaij = 2(ay,05)/(ay,04) for 4,5 € I, and

e =er/mlt £ = 47/l
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for i € I and n € Z>,. We will use the Hopf algebra structure of Ur given by

Alky) =k ®ky (A€A),
Ale)=e;@1+k®e,  Alfi)=fiok ' +1®f; (iel),
e(ky) =1, gle))=e(f;)=0 (AeAicl),

S(ky) =ky',  S(e)=—k;lei,  S(fi)=—fiki (AeAjiel).

Define subalgebras U](F), Ufr, Up , UIFEO, UEO of Ur by
U= (kx| AeA), Uf=lelicl), Ug=(filiel),
U2’ = (ky,ei | A€AGED), U =(kn fil\EAiET).

The multiplication of Ur induces isomorphisms

(1.1) Ur2Up @R @UF 2UL @UR® Uy,
(1.2) U =0 o Ui 2 U @ UL,
(1.3) U= 02Uy 2U; UL,

of F-modules. The fact (1.1) is called the triangular decomposition of Ug.
For v € Q we set

UIEEV ={ue Ui ‘ kyuk_,, = "M (ne A}

Then we have

- @ Ulﬁiv'

7EQT

For i € I we denote by T; the automorphism of the algebra Uy given by

Ti(ky) = ks;u(p € A),

Ti<e<>:{ o (CDkg e e (e i),
’ _fzkz (]:2)7
o Sk B Y (e n, #4),

= {—kflei (=)
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(see [15]). Let wog be the longest element of W. We fix a reduced expression
Wo = Si, - Siy
of wyp, and we set
Br=Siy -+ Sip_, (i) (1=EZN).
Then we have AT ={f; |[1S k< N}. For 1 <k < N we set
g, =T - Ty_y (i), fae =Ty Tip, (fiy)-

Then {ef™---ef! | ma,...,my 20} (vesp., {fz V- f3' | ma,...,mn 2
0}) is an F-basis of Uy (resp., Ug ), called the PBW (Poincaré-Birkhoff-
Witt) basis (see [14]). We have e, =e; and f,, = f; for any i € I.

Denote by

(1.4) U XU 5 F
the Drinfeld pairing. It is characterized as the unique bilinear form satisfying

(re )(A(ﬂf)7y1®y2) (er]§07y17y2€UIF§0)7

T(z,y192) =
y) =

T(ka k) =g~ (A pen),
)=
)=

T(z122,

(k)\ fz (6“ ):0 ()\GA,iEI),
T(ei f})=0i/(¢; " —a) (i.j€T)
(see [15], [18]). It also satisfies the following.

LeEMMA 1.1 ([15, Section 1.2], [18, Proposition 2.1.1]). We have the fol-
lowing:

(i) T(S(@),SW) =7(x,y) for v € U,y € UZ";
(ii) forxe€ U]Fgo,y € U]F§0 we have

yr = Z 7(2(0), S(W(0))) T(%(2), ¥2)) T (1) Y1) s
(®)2,(y)2

ry= > 7(@0)¥0)7 (T2 S W) v rw);
(@)2,(y)2
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(ili) 7(zky,yk,) =q O r(z,y) for N\pe N e Ud,ye Uy ;
(V) T(Ug 5. Us_) = {0} for B,y € QF with B #~:

+ . . .
(v) for any B € QT, the restriction T|UEgXU]E_ﬁ s mondegenerate.

We define an algebra homomorphism

ad : U[F — End[g(U]F)

ad(u)(v) = > u@v(Suw)) (u,v € Up).
(u)

1.1.3. We fix an integer £ > 1 satisfying
(a) ¢ is odd;
(b) ¢ is prime to 3 if G is of type Ga, Fy, Eg, E7, Es;
(¢) £ is prime to |[A/Q];
and a primitive /th root ¢’ € C of 1. Define a subring A of F by
A= {f(ql/lA/Q|) | f(z) € Q(x), f is regular at z=('}.

We set ¢ = (¢")IA/Ql. We note that ¢ is also a primitive fth root of 1 by
condition (c).

We denote by UL, Uy the A-forms of U called the Lusztig form and the
De Concini—-Kac form, respectively. Namely, we have

Uié = <€1(m)’fi(m)ak/\ | 1€ Iam € Z207)\ € A>A—alg C UF?
Un=(ei, fi,kx|i € [, € A)p-arg C Up.

We have obviously Uy C U A% . The Hopf algebra structure of Ur induces Hopf
algebra structures over A of Uli and Uy. We set

Ukt —ubknuk,  UL=U.NUE (h=+,-,0,20,20),
U, =ULNUFL, Ui, =UsnUf, (v€Q")
Then we have triangular decompositions
Ub=Ul~ ouuleyUul™,

Upn2Uy @4 Uy @4 U,
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Moreover, we have
L+t L.+ £ n
UA B @ UA,i’y’ UA - @ UA,i’y'
veQr veQt
The Drinfeld pairing (1.4) induces
(1.5) LTA:U&EOXUA%O%A, Tﬁ:UfoxUﬁéo—n&.

LEMMA 1.2. We have ad(UL)(Un) C Uy.

Proof. Tt is sufficient to show that

(1.6) ad(ky)(Up) CUx (AEAN),
(1.7) ad(eM)(Uy) C Uy (i€ 1,n € Zsg),
(1.8) ad(fM)(Us) CUs (i € I, € Tisg).

The proof of (1.6) is easy and omitted. By the formulas

ad(z)(uv) = Z ad(z(g)) (u)ad(zq))(v) (z€ UL u,vely),
€9

M) =g e kel (i€l nz0),

i 7
r=0

n
A(fi(n)) _ Zqi—r(n—T)fi(T) 2 k;Tfi(n_T) (ieln>0)
r=0

we have only to show that
(1.9) ad(ez(n))(u) cUy (i€l,neZsy,u=kyej, fikj),
(1.10) ad(f™)(u) €Uy (i€ 1,n€Zsg,u=ky e f;)-
For A€ A, i,j € I with ¢ # j and n € Z~(, we have
n n(n—=1) n—1
n -1 q; oY _9j n
ad(e™) (k) = I (TT — 7)) el

| (2 7

ad(egn))(ei) =g D2 gmlyment

(2 3 (3 ?
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(n) 27::0(_1)rq;’(n—1+aij)el(nfr)ejel(r) (n <1_ aij),
ad(e; ') (ej) =
0 (n Z 1-— CLZ‘j),
(n) (K —1)/(gi—q; ") (n=1),
ad(e ki) = D
(e; ") (fiki) {(_1)71—1%( 1)( +2)/2(Qi _ q{l)”_%?*lk‘f (n>1),
ad(e]") (fik;) =0,

and hence (1.9) holds. (Note that [r]y,! is invertible in A for » < —a;;.) The
proof of (1.10) is similar and omitted. (]

1.1.4. Let us consider the specialization
A—=C (¢/NMe— ).

Note that ¢ is mapped to ¢ = (C')‘A/Q| € C, which is also a primitive fth
root of 1. We set

Uf’b:(cng UL7b7 UIZ:(C®A Ulb% (b:+7_707207§0)7
Uit =Cenlf,  Ufs,=Couliy, (QY).

Then UCL and U; are Hopf algebras over C, and we have triangular decom-
positions

Ub=UlT UM e UST,
Ue=2U; U2 UL
Moreover, we have
UCL’i: EB UCL,fW’ UCi: @ ch,tiv'
YEQT YEQT
By De Concini and Kac [8, Proposition 1.7], we have the following.

LEMMA 1.3.
(i) The set {eg---eg' [mi,...,mn 20} (resp., {fg N fa'[mi,...,
mpy = 0}) forms a C-basis of Ugr (resp., U; ).
(ii) The set {kx |\ € A} forms a C-basis of Ug.
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The Drinfeld pairings (1.5) induce
L . 77L20 1750 L7720 17L,50
(1.11) U= x Uz =G, U xU 7~ —C

Moreover, we have the following (see [20, Lemma 1.5]).

PROPOSITION 1.4. For any v € Q™, the restrictions of LTC and TCL to

L.+ — _ L,—
UC?’Y X U<7_’Y - C’ UCv’Y X UCv_’Y - C’

respectively, are nondegenerate.

By Lemma 1.2 we have an algebra homomorphism
ad: U — Endc(U¢).

In general, for a Lie algebra s we denote its enveloping algebra by U(s).
We denote by

(1.12) m: U8 = U(g)

Lusztig’s Frobenius homomorphism (see [14]). Namely, 7 is the C-algebra
homomorphism given by

~(m/0) #(m/0)
(m)y _ )€ (£|m) m)\ ) [ (¢|m) B

for i € I, m € Z>y, A € A. Here, égn) =e'/nl, fi(n) = fr/n! for i € I and
n € Z>y. Then 7 is a homomorphism of Hopf algebras.

We recall the description of the center Z(U¢) of the algebra Uy due to De
Concini and Kac [8, Section 3] and De Concini and Procesi [9, Section 21].
Denote by Z(Ur) the center of Ur, and define a subalgebra Zp,,(Us) of
Z(U¢) by

ZHar(UC) = Im(Z(U]F) NUy — UC)

We define a shifted action of W on the group algebra C[A] = @, Ce(N)

of A by
(1.13) woe(N) =W Me(wd)  (weW,\eA).
Let

(1.14) v: Znar(Ug) = C[A]
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be the composite of
Zitar(Ug) = U 2 U @ UL @ UF <2255 U2 = C[A],

where Ug =~ C[A] is given by kjy <> e(A). Then by [8, Lemma 3.9], ¢ is an
injective algebra homomorphism with image

C2A)Ve={feC[2A] |wo f=f (Vw e W)}.
In particular, we have an isomorphism
(1.15) Zitar(Ue) =~ C[2A]7°
of C-algebras. By [8, Section 3.1] the elements
es, 15, kon (Be At Xel)

are central in Ue. Let Zp(Uc) be the subalgebra of Us generated by them.
It is a Hopf subalgebra of U.. Define an algebraic subgroup K of BT x B~
by

K ={(gh,gh™")|heH ge Nt e N~}

By [9, Section 19.1] we have an isomorphism
(1.16) Zpe(U¢) = C[K]

of Hopf algebras (see also [10, Theorem 7.4]). We refer the reader to [20, Sec-
tion 1.5] for the explicit description of the isomorphism (1.16). By [9], Z(U¢)
is generated by Zp(U¢) and Zyar (U ). Moreover, we have an isomorphism

Z(U¢) = Znar(U¢) ® 2y, (0N 2 (U) Z0:(Ug) - (2122 4 21 @ 22)
of algebras.

1.2. Sheaves on quantized flag manifolds

1.2.1. We denote by Cr the subspace of Ui = Homp (U, F) spanned by
the matrix coefficients of finite-dimensional Up-modules of type 1 in the
sense of Lusztig, and we denote by

(1.17) <,>:C]FXUF—>]F

the canonical pairing. Then Cf is endowed with a Hopf algebra structure
dual to Up via (1.17). We have a Up-bimodule structure of Cy given by

(u1 - @ - ug,u) = (p,uguuy) (¢ € Cr,u,ur,ug € Up).
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Define a A-graded ring Ap = @+ Ar(A) by
Ap={peCr|p-fi=0(icl)},
Ar(N) ={p e Ar| ¢ -k =q"Vo (ne p)}.

Note that Ap is a left Up-submodule of Cy. For A€ AT and £ € A, we set

Are = {p € An(V) [ 9 =g}

Then we have

Ap(N) = @ Ap(Ne.
EEA-QT

We define A-forms Cy, Ap, Ax(A) (A€ A1) of Cr, Ar, Ar()), respec-
tively, by

Co={p€eCr|(p,Uf) CA}, Ap=Ap N Cy, Ap(N) = Ap(A) N Cy.

Then Cy is a Hopf algebra over A, and Ay is its A-subalgebra. Moreover, Cy
is a Uf-bimodule, and Ay is its left UL-submodule. We also set Ax(\)e =
AF()\)g NAp for A e AJr, e

We set

CCZ((:@ACA, AC:(C®A Ap, Ac()\):C@AAA()\) ()\GA+).
Then C¢ is a Hopf algebra over C. Moreover, the Up-bimodule structure of

CF induces a UCL—bimodule structure of C¢. For A€ AT and £ € A, we set
Ac(N)e=C®p As(N)¢. Then we have

AN= @B A

geA-QT

We have a natural pairing
(1.18) (,):CcxUE—=C

induced by (1.17).
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1.2.2. For a ring (resp., A-graded ring) R we denote by Mod(R) (resp.,
Moda(R)) the category of R-modules (resp., A-graded left R-modules).
Assume that we are given a homomorphism j: A — B of A-graded rings
satisfying

(1.19) I(AN) B(p) = B(u)3(A(N) (A peA).

For M € Modu(B), let Tor(M) be the subset of M consisting of m € M
such that there exists A € AT satisfying 7(A(A+p))m = {0} for any p e A*.
Then Tor(M) is a subobject of M in Moda(B) by (1.19). We denote by
Torp+ (A, B) the full subcategory of Modx(B) consisting of M € Mod (B)
such that Tor(M) = M. Note that Tor,+(A, B) is closed under taking sub-
quotients and extensions in Moda(B). Let ¥(A, B) denote the collection
of morphisms f of Mod(B) such that its kernel Ker(f) and its coker-
nel Coker(f) belong to Tory+(A, B). Then we define an abelian category
C(A,B) =Modx(B)/Tory+(A, B) as the localization

C(A,B) =%(A, B)"*Mod, (B)

of Modp (B) with respect to the multiplicative system X(A, B) (see, e.g.,
[16] for the notion of localization of categories). We denote by

(1.20) w(A,B)* : Modj(B) = C(A, B)
the canonical exact functor. It admits a right adjoint
(1.21) w(A,B).:C(A,B) — Modj (B),

which is left exact. It is known that w(A, B)* ow(A, B). = 1d. By taking the
degree 0 part of (1.21), we obtain a left exact functor

(1.22) L (a,5):C(A, B) = Mod(B(0)).

The abelian category C(A, B) has enough injectives, and we have the right
derived functors

(1.23) R'T(4p):C(A,B) —Mod(B(0)) (i€Z)

of (1.22).

We apply the above arguments to the case A= B = A¢. Then Tor(M) for
M € Mody (A¢) consists of m € M such that there exists A € AT satisfying
Ac(A)m = {0} (see [20, Lemma 3.4]). We set

(1.24) Mod(O,) = C(A¢, A¢).

https://doi.org/10.1215/00277630-2402198 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-2402198

14 T. TANISAKI

In this case, the natural functors (1.20), (1.21), (1.22) are simply denoted

as
(1.25) w* : Moda(A¢) = Mod(Og, ),
(1.26) ws : Mod(Op, ) — Moda (A¢),
(1.27) I': Mod(Op, ) — Mod(C).

REMARK 1.5. In the terminology of noncommutative algebraic geometry,
Mod(Op,) is the category of quasicoherent sheaves on the quantized flag
manifold B, which is a noncommutative projective scheme. The notations
B¢, Op, have only symbolical meaning.

1.2.3. Using Lusztig’s Frobenius homomorphism (1.12), we will relate the
quantized flag manifold B with the ordinary flag manifold B= B~\G. Tak-
ing the dual Hopf algebras in (1.12), we obtain an injective homomorphism
C[G] — C¢ of Hopf algebras. Moreover, its image is contained in the center
of C¢ (see [14]). We will regard C[G] as a central Hopf subalgebra of C; in
the following. Setting

Ay ={peC[G]| v(ng) =p(g) (ne N",g€ @)},
Ai(N) ={p e A ] ptg) =0\(t)p(g) (te H,geG)} (AeAT),

we have a A-graded algebra

A= P A,

AEAT
We have a left G-module structure of A; given by
(ze)(9) = plgz) (p€Ar,2,9€G).

In particular, A; is a U(g)-module. Moreover, for each A € AT, A;(\) is a
U(g)-submodule of A; which is an irreducible highest-weight module with
highest-weight A. Regarding C[G] as a subalgebra of C¢, we have

A1 =AcNC[G),  A(\) = Ac(EN) N CIG).

Since the A-graded algebra A; is the homogeneous coordinate algebra of
the projective variety B = B~\G, we have an identification

(128) MOd(OB) ZC(Al,Al>
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of abelian categories, where Mod(Op) denotes the category of quasicoherent
Op-modules on the ordinary flag manifold B. We set

(1.29) wpx =w(A1, A1) : Mod(Op) — Mody (A1).

For A € A, we denote by Op()\) € Mod(Opg) the invertible G-equivariant
Op-module corresponding to A. Then under identification (1.28), we have

wpM =EPT (B, M @0, 0p(\)) (M € Mod(Og)),
AEA
where I'(B,) : Mod(Op) — C is the global section functor for the algebraic
variety B. In particular, the functor I'(4, 4,): Mod(Op) — Mod(C) is iden-
tified with I'(B, ).
For a A-graded C-algebra B, we define a new A-graded C-algebra B

by

BYN) =B\ (AeA).
Let
(1.30) ()@ : Mod, (B) — Mod, (B®)

be the exact functor given by
MON) =M (AeA)

for M € Mod(B).
We have the following results (see [20, Lemma 3.9]).

LEMMA 1.6. Let B be a A-graded C-algebra. Assume that we are given a
homomorphism j: Ac — B of A-graded C-algebras. We denote by j' : Ay —
BWY the induced homomorphism of A-graded C-algebras. Assume that

I(Ac(N)B(p) = B(u)3(Ac(N) (A€ A),
7 (A1) B () = BO() (41(N) (A ueA).
Then the exact functor
()9 : Mod (B) — Moda (B)
induces an equivalence
(1.31) Fr.:C(A¢, B) = C(A;, BY)
of abelian categories. Moreover, we have

(1.32) w(A1, BY), oFr, = ()Y ow(A¢, B)..
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LEMMA 1.7. Let F be a A-graded C-algebra, and let A1 — F be a homo-
morphism of A-graded C-algebras. Assume that Im(Ay; — F') is central in F'.
Regard F' as an object of Moda (A1), and consider wzF € Mod(Op). Then
the multiplication of F' induces an Og-algebra structure of wiF', and we
have an identification

(1.33) C(Ay, F) = Mod(wjF)

of abelian categories, where Mod(wiF') denotes the category of quasicoherent
wiF-modules. Moreover, under identification (1.33) we have

Lia,py(M)=T(B,M) e Mod(F(O)) (M € Mod(wZ;F)).
We define an Op-algebra Fr.Op, by

Fr.Op, = wg(Aéf)).

We denote by Mod(Fr.Op, ) the category of quasicoherent Fr.Op -modules.
By Lemmas 1.6 and 1.7, we have the following.

LEMMA 1.8. We have an equivalence
Fr. : Mod(Op,) — Mod(Fr.Op, )
of abelian categories. Moreover, for M € Mod(OBC) we have
R'T(M) ~ R'T(B,Fr.(M)),

where T'(B,) : Mod(Og) — Mod(C) on the right-hand side is the global sec-

tion functor for B.

§2. The category of D-modules

2.1. Ring of differential operators
2.1.1. We define a subalgebra Dy of Endr(Ar) by

Dy = (Ly,14,0u,0) | @€ Ap,u € Up, A € A),

where

lo(D) =0, () =2p,  FW)=u-v,  ox()=q My
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for 1 € Ap(p). In fact, we have
Dy = <£<p;8u70)\ | p e Ap,u e Up, A € A)

by [20, Lemma 4.1].
We have a natural grading

Dr= €P Dr(M),

AEAT
Dr(\)={® € Dr | ®(Ar(n)) C Ap(A +p) (n€A)} (A€A)

of Dp. It is easily checked that

Ouly = LlugypOuy, (u€Ur, @€ Ap),
(w)
8u0')\20')\au (UE UF,AEA),

oaly =g ooy (NEA @€ Ap(p)).

Set

We have a natural F-algebra structure of Er such that Ap®1®1, 1Ur®1,
1 ® 1 ® F[A] are subalgebras of Ep naturally isomorphic to Ag, Ug, F[A],
respectively, and such that we have the relations

up = Z(U(O) “)uay  (ueUr,p € Ap),
(u)
ue(A) =e(MNu  (ueUp, A€ A),
e =g pe(N) (e A, pe Ap(p))

in Ep. Here, we identify Ap @ 1® 1, 1@ Upr® 1, 1 ® 1 ® F[A] with Ap, Uy,
F[A], respectively. Then we have a surjective algebra homomorphism

sending ¢ € Ap, u € U, e(\) € F[A] (A € A) to £y, Oy, 0, respectively. More-
over, Fr has an obvious A-grading so that (2.1) preserves the A-grading.
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2.1.2. Set

DA = <€prrtp7aua OX ‘ e AA:“ € UA7 A€ A)A—alg C D]F;
Epyn=Ay®Upy®A[A] C Ey.

They are A-graded A-subalgebras of Dy and Ep, respectively. Again, we
have

Dy = <£<p781uo')\ ’ pe Ap,ueUp, N € A>A—alg

by [20]. In particular, we have a surjective homomorphism
Ey — Dy
of A-graded algebras. Note that there is a canonical embedding
Dy — Endy (Aa).
2.1.3. We set
D¢ =C®y Dy, E:=C®pEy=A: U ®CIA].
D¢ is a A-graded C-algebra generated by elements of the form
Ly, Oy, ox (peAsucUs, NeA).
We have a surjective homomorphism
Ec— D¢
of A-graded C-algebras.

LEMMA 2.1. Let z € Zuar(U¢), and write 1(z) = > cp crkax (cx € C).

Then we have
0, = Z CAO2)-
AEA

Proof. This follows from the corresponding statement over F, which is
given in [19, Section 5.1]. U

REMARK 2.2. The natural algebra homomorphism D — Endc(A¢) is not
injective.
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2.1.4. Define an Op-algebra Fr.Dp. by

Fr,Dp, =wiD.".

We define ZDée) to be the central subalgebra of Dég) generated by the

elements of the form
ﬂp, Ou, O\ (gDEAl,UEZFr(Uc),)\EA),

and we set
2 =wpzDY.

It is a central subalgebra of Fr.Dp. . Define a subvariety V of Bx K x H by
V={(B g,k,t)eBx K x H|gr(k)g ' €t** N~ },
where k: K — G is given by k(ky,ks) = k1k2_1. We denote by
py:V—>B

the projection. Now we can state the main results of [20].

THEOREM 2.3 ([20, Theorem 5.2]). The Og-algebra Z is naturally
isomorphic to pysOy.

Define an Oy-algebra 7534 by

7534 ZPEIFI“*DBC ® Oy.

—1
py pv«Oyp

THEOREM 2.4 ([20, Theorem 6.1]). Here 1534 is an Azumaya algebra of

+
rank (21871,

Define
5V—>KXH/WH

by d(B~g,k,t) = (k,t), where K — H/W is given by k ~ [h], where h is an
element of H conjugate to the semisimple part of x(k), and H — H/W is
given by ¢~ [t¥].

THEOREM 2.5 ([20, Theorem 6.10]). For any (k,t) € K xgw H, the
restriction of ﬁBc to 6~ (k,t) is a split Azumaya algebra.
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2.2. Category of D-modules
We define an abelian category Mod(Dg,) by

MOd(DBC) = C(AC, Dc).
By Lemmas 1.6 and 1.7, we have an equivalence
(2.2) Fr. : Mod(Dg, ) — Mod(Fr.Ds,)

of abelian categories, where Mod(Fr*ng) denotes the category of quasico-
herent Fr.Dp, -modules. Moreover, for M € Mod(Dg,) we have

(2.3) R'T(4.,p.)(M) = R'T (B, Fr.(M)) € Mod(D¢(0)),

where T'(B,) on the right-hand side is the global section functor for the
ordinary flag variety B.
For t € H we define an abelian category Mod(Dg, ¢) by

Mod(Dg, 1) = Mody +(D¢)/ (Mody +(D¢) N Tory+(Ac, D)),

where Moda (D) is the full subcategory of Moda(D¢) consisting of M €
Moda(D¢) so that ox|aru) = O(t)¢CAHid for any A, u € A. Then we can
regard Mod(Dg, ¢) as a full subcategory of Mod(Dg, ) (see [19, Lemma 4.6]).
Set

Fr.Dp, ¢+ = Fr.Dp, () Ct,

where C; denotes the 1-dimensional C[A]-module given by e(\) — 6,(t) for
A € A. The equivalence (2.2) induces the equivalence

(2.4) Fr. : Mod(Dg, +) = Mod(Fr.Dg, 1),

where Mod(Fr*DBOt) denotes the category of quasicoherent Fr, Dp, ;-modules.
In particular, for M € Mod(Dg, ;) we have

R'T(4.,p.)(M) = R'T(B,Fr.M) € Mod (D¢ 4(0)),

where Dc’t(O) = DC(O)/Z)\GA DC<0)(J)\ - 9)\(t))
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2.3. Conjecture
By Lemma 2.1, the natural algebra homomorphism

Uc @c C[A] = D¢(0)

factors through
UC ®ZHar(UC) C[A} - DC(O)7

where Zpar(Uc) is identified with C[2A]"° by (1.15). Hence, we have a
natural algebra homomorphism

(2.5) UC ®ZHar(U() (C[A] — F(B,FI‘*'DBC).

For t € H we denote by C; the 1-dimensional C[A]-module given by e(\)v =
Ox(t)v (v € Cy). Then (2.5) induces an algebra homomorphism

(2.6) U¢ @z (v) Ct = T(B, FruDp, 1),

where C; is regarded as a Zya, (U¢)-module by Zya (Ur) = C[2A)"° c C[A].
Denote by hg the Coxeter number for G.

CONJECTURE 2.6. Assume that { > hq. The algebra homomorphism (2.5)
s an isomorphism, and we have

R'T(B,Fr,Dp,) =0

foriv#0.

PROPOSITION 2.7. Let £ > hg, and assume that Conjecture 2.6 is valid.
Then for t € H we have

(B, Fr.Dp. t) = U @z, (v,) Ct

and
RT(B,Fr,Dp. ) =0 (i#0).

Proof. Define f:V — H to be the composite of the embedding V — B x
K x H and the projection B x K x H — H onto the third factor. Since py is
an affine morphism, we have Rpy.Dp, = py.Dp, = Fr.Dp.. Hence, we have

U ®%,..wv.) CIN = U @ 24, w,) C[A] = RT(B,Fr, Dy, ) = RT(V, D, ).
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Here we use the fact that C[A] is a free Zyar(U¢)-module (see [17]). Denote
by O; the Op-module corresponding to the C[A]-module C;. Similarly, we
have

Fr.Dg, 1 = pv«(Ds, ®cpa) Ct) = Rpy«(Dp, @cia) Cr).-
Since f is flat, we have Lf*O; = f*O;. Hence, by Theorem 2.4 we have
Dp, @b, Lf*O, =Dy, @b, f*O;=Dp, @0, [*Or.
It follows that
Fr.Dp, + = Rpv.(Dp, ©5, Lf*Or) = Rpy.(Dg,) ©5,, O:.
Hence we have
RT(B,Fr,Dp,¢) = RT (H, Rf.(Dp, ®%, Lf*O))
= RT(H, Rf.Dp, ®6,, O;) = RT(H, Rf.Ds.) @ Ci
= RU(V,Ds,) @) Ct = Uc ®%,. 1) CIA] € Ce

= U¢ (v Cr- .

2.4. Derived Beilinson—Bernstein equivalence

We show that Conjecture 2.6 implies a variant of the Beilinson—Bernstein
equivalence for derived categories.

Recall that we have an identification

Ziar(Ue) = C[2A]"° C C[2A] € C[A].

Recall also that we identify C[A] with the coordinate algebra C[H] of H.
Set H? = H/Ker(H 3t~ t> € H), and let 7 : H — H® be the canoni-
cal homomorphism. Then we have a natural identification C[H(?)] = C[2A]
so that 7* : C([H®)] — C[H] is identified with the inclusion C[2A] C C[A].
Denote the isomorphism H 2 H®) corresponding to C[A] 3 e()\) < e(2)) €
C[2A] by t <> t'/2. Then we have 7(t) = (t?)'/2. The shifted action (1.13) of
W on C[2A] induces an action of W on H® given by

wot!? = (wtty,)ty))'? (weW,te H),
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where to, € H is given by 0, (ta,) = () for any ;1 € A (note that 2(u, p) €
Z), and Zpar(U¢) is regarded as the coordinate algebra of the quotient vari-
ety (Wo)\H?). For t € H we denote by y; : C[A] = C the corresponding
algebra homomorphism. By the above argument, we have
1/2

Xt1| Zar (U) = Xt Zuar(Ue) ()2 ew oty

We say that ¢ € H is regular if
{weW |wo (#)1/2 = ()12} = {1}.

We denote by Modeon (Fr«Dp, ) (resp., Mod (U ® Zttar (Ue) Cy)) the cate-
gory of coherent Fr.Dp, ;-modules (resp., finitely generated Us @ Zi1ar (U) Cy-
modules). We also denote by Modcon ¢ (Fr«Dp,) (resp., Mody(Uc)) the cat-
egory of coherent Fr.Dp .-modules (resp., finitely generated U-modules)
killed by some power of the maximal ideal of C[A] (resp., Zwar(U¢)) corre-
sponding to t € H.

THEOREM 2.8. Let £ > hg, and assume that Conjecture 2.6 is valid. If
t € H is reqular, then the natural functors

RT'; : D*(Modcon ¢ (Fr.Dp, 1)) — D”(Mody(U¢)),
RT; : D*(Modeon (Fr.Dp, 1)) — D’ (Mod(Ue ®z,..w¢) Ct))
give equivalences of derived categories.

The proof of this result is completely similar to that of the corresponding
fact for Lie algebras in positive characteristics given in [6, Theorem 5.3.1].
We give below only an outline of it. First note the following.

PrOPOSITION 2.9 ([7, Theorem B]). Here Us has finite homological
dimension.

The functors
RT; : D*(Modcon ¢ (Fr.Dg,)) — D’ (Mody,(U¢)),
Ry : D™ (Modcoh(Fr*DBC,t)) — D~ (Modf(Ug ® Zigar (U) (Ct))
have left adjoints
L;: D" (Mody,(U¢)) — D (Modon, (Fr.Ds,)),
Ly : D™ (Mods(Ue ® Zitar (U) Ct)) = D™ (Modeon(FriDg, 1))

Arguing exactly as in [6, Sections 3.3, 3.4] using Theorem 2.4 and Proposi-
tion 2.9, we obtain the following.
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ProprosITION 2.10.
(i) If t is regular, the adjunction morphism Id — RI'; o L; is an isomor-
phism on D*(Mod4(U¢)).
(ii) For any t, the adjunction morphism 1d — Ry o Ly is an isomorphism
on D~ (Mod (U @ Zitar (Ue) Cy)).

Arguing exactly as in [6, Section 3.5] using Theorem 2.4, Proposition 2.10,
and Lemma 2.11 below, we obtain Theorem 2.8. Details are omitted.

LEMMA 2.11 ([21, Section 2.4]). The variety V is a symplectic manifold.

2.5. Finite part

2.5.1. In |20, Section 4], we also introduced a quotient algebra D’C of F,
which is closely related to D¢. Let us recall its definition. Take bases {xp},,
{yp}p, {$£}p, {yp }p of Ug, Ue, UCL’JF, UCL’f, respectively, such that

Tg‘L (xpl ) y;fz) = Opy pas LTC ($;I;1 ) ypz) = Opypa-
We assume that
EUCB’ EUC —By x GUCB’ eUC’ By
for B, € Q™.
For p € A¢(N)e with Ae AT, &€ A, we set
()= (y) - 9)zp € Ec o,
P
V() =D _((Sz}) - ) ypks, koce(—2X) € E¢ o,
P

Y(p) =N (p) — () € Ec o

We extend ' to whole A¢ by linearity. Then D/C is defined by
D} =E¢ / 3 A (9)UCIA].
peA;
We have a sequence
EC — D/C — DC

of surjective homomorphisms of A-graded algebras. Moreover, D’C — D¢
induces an isomorphism

in Mod(Og,) (see [20, Corollary 6.6]).
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2.5.2. We set

UE[“),Q = @Fk?A - UIBQ? UF,Q = S(UIF_)U]g,OUI;_ C U[F.
A€A

Then we see easily the following.
LEMMA 2.12. The subspace Ur ¢ is an ad(Ug)-stable subalgebra of Uy.

Set
(2.8) Up,; = {u € Ug | dimad(Ug)(u) < co}.

Then U ¢ is a subalgebra of Up. Moreover, by [12] we have

(2.9) Ury= Y ad(Us)(k_21),

AEAT

and hence Uy s is a subalgebra of Ur . Note that Up¢ and Upy are not
Hopf subalgebras of Up; nevertheless, they satisfy the following.

LEMMA 2.13. We have
A(Umf) CUpr® U]F’f, A(UEQ) CUr® U]F,Q.
Proof. For u € Ug and XA € AT, we have

A(ad(u) (k-21)) ZA 0)k—2x(Su()))
= Z u(o)k—2x(Su(3)) ® uayk_2ax(Su))
—Zu 2)\ Su ))@&d(U(l))U{LZ\).

Hence, the first formula follows from (2.9). Since U ¢ is generated by e;,
Sf; for i € I and ko) for A € A, the second formula is a consequence of the
fact that A(e;), A(Sfi), A(kax) belong to Ur ® Ug . 0

We set

Er o =Ar @ Ur ¢ @ F[A] C Ep,
EIF,f =AFr® U]FJ X F[A] C FEy.
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By Lemma 2.13, they are subalgebras of Ep.
We set

UR o =Ui o NUs=EPAkar,  Uno=Usro NUs=SU UL U,
AEA

UAJ =UgN U]F7f,
and

Epo=EaNEpo=Aa0Us o ®AA] C Eryg,
Epn;=EsNEry=Ays®Usy®A[A] C Ery.

We also set

EQQ =C®xu EA7<> = AC & U<7<> (%9 (C[A] C EC?
Ec;=C®pEprr=Ac®@Ucr@C[A] C E¢,

and

D¢o =Im(Eco = Dc),  Deg=Tm(E¢;— D),

D¢ o =1m(E¢co — Dp),  Dgy=Im(Ef— Dp).
By

B¢ =Eeo ®ue, U
we obtain
(2.10) D¢ o =Eco / > A (p)Uc o ClA],
(PEA(

(2.11) D¢ % Dt ®uo U

2.5.3. Since Ug is a free U¢ ¢-module, we have
RT(w*D}) = R'T(w* D} o) ®u, ., Uc

for any i € Z. Since U¢ ¢, is a localization of U¢ ; with respect to the Ore
subset {k_o) | A € AT}, we have

RT(w*D} o) = R'T(w* Dy ;) @u,.; Uco
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for any ¢ € Z. It follows that
(2.12) RT(w*D}) = RT(w* D} ;) ®u, ; U
for any ¢ € Z. Note that

R'T(B,Fr,Dp,) = R'T (w* D)

by Lemma 1.8 and (2.7). Hence Conjecture 2.6 is a consequence of the
following stronger conjecture.

CONJECTURE 2.14. Assume that £ > hg. We have
F(w*D&f) =Ue s ® Zigar (Ue) C[A],

and '
R’I‘(w*Dévf) =0

fori#0.

In the rest of this article, we give a reformulation of Conjecture 2.14 in
terms of the induction functor.

§3. Representations

3.1.
For simplicity, we introduce a new notation, U]F_ = S(Uy ). Then we have
Up =(fi|i€I), where f; = fik; for i € I. Moreover, setting

(71577 ={ue Uy |kyuk_, = "My (neA)}

for v € @, we have

Ug =@ Vs, Ui, =Us by (7€Q).

yeQ+t

We also set

Un =Ua N U, Up—=UsNUp_, (v€Q),

UC:C(X)A ﬁA, Ug’,fy:C@A (?A7,,y (7€Q+).
Then we have

U, =D Ui, U =DU_,

veEQT 7EQT
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3.2.
For A € A, we define an algebra homomorphism x : U2 — F by xx (k) =
g™ (we A). For M € Mod(Uy) and X € A, we set
My={meM ’ hm = xx(h)m (h € Uﬂ?)}.

For A € A, we define My p(A), M_ r(X) € Mod(Ur) by

My (N =Us/ 3 Us(y—2@) + 3 Us(h—xa(h)),

yeUy heUg
M_g(N) =Us / 3" Us(e—e@) + > Us(h—xa(h),
€U heUg

where M () is a lowest-weight module with lowest-weight A, and M_ ()
is a highest-weight module with highest-weight A\. We have isomorphisms

Myp(N2UF @ow), M g(\)2U; (@< u)
of F-modules. Moreover, we have weight-space decompositions

Mg\ = P Myr(Wu, MgV = P M_z(\,.
HEAQF pEA—Q+

For A € AT we define Ly g(—A), L_ p(\) € Mod¢(Ug) by

Log(—\) = U]F/ > Us(y—<)

yEU];
+ 3 Un(h— xoa(0) + 3 Upel 0T,
heUp il
L_p()) = UF/ 3 Ur(z - e(a)
aceU]F7L
+ Z UF (h o X)\(h)) + Z UFfi(()\,az/)“rl).
heUp iel

While Ly p(—A) is a finite-dimensional irreducible lowest-weight module
with lowest-weight —A, here L_pr(\) is a finite-dimensional irreducible
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highest-weight module with highest-weight A\. We have weight-space decom-
positions

Lig(-N= @ Lix(-Nw L= @ Lz
HE—A+QT HEA—QT
For A € AT we have isomorphisms
Logp(—)\) = UFL’JF/ZUFL’%Z(-(’\’%V)H) (T 7),
il

LN =0~ /3 U5 O @
il
of vector spaces (see [13]).

Let M be a Up-module with weight-space decomposition M = GBMEA M,
such that dim M,, < oo for any € A. We define a Up-module M* by

M* =P M;; C M* = Homg(M,F),
HEA

where the action of U is given by
(um™*,m) = <m*, (Su)m> (u € Up,m* € M*,m e M).

Here (,): M* x M — F is the natural pairing.
We set

MEp(N) = (Mrz(=0)* (A€ A),
Ly p(FA) = (Ler(EN)* (AeAt),
Since L+ (%) is irreducible, we have
Lip(FA) = Ler(FA) (A€AT).
We define isomorphisms

(3.1) (I))\5U];__>M:-,F()‘)v \IJA3UF__>Mi]F()‘)
of vector spaces by
(®r(2),v) =7(x,v) (xeUf,vely),

(Ur(y), Su) =7(u,y) (yeUy,uelUy).
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LEMMA 3.1.
(i) The Up-module structure of M} p(X) is given by

(82)  h-®a(2) = xaiy(W)BA(z) (z€UL heU),

(3.3) v-Ox(x) =Y (20, S0)ON (1)) (x €U ,veUy),
(@)

(3.4) u'(I))\(x):(I))\(k_)\(ad(u)(k)\xk:)\))k_)\) (SUEUIET,UEUE).

(ii) The Ur-module structure of M* z(X) is given by
(35)  h-Ua(y) =x0(M)¥A(y) (yeUs_, heUy),

(3.6) u-Uy(y) = ZT(%Z/(O))\I’/\(Z/(D) (ye UJF_vu € UET),
(v)

(37) ’l)-‘l/)\(y) :\I’A(kA(ad(v)(k_Ayk_,\))k)\) (yE U_,”UEUF_).

Proof. We will prove only (i). The proof of (ii) is similar and omitted.
Note that for x € U]F ,a€Up,and v e UF , we have

(a- ®(2),7) = ((2), (Sa)v).

Let us show (3.2). For v € U]E_(;, we have

(h-®y(2),7) = (@(x), (Sh)v) = b, 5(®x (), (Sh)v)
= 57,5XA+w(h)<‘I>,\(3«")ﬁ> = Xatr (R)(®a(2), 7).

Hence, (3.2) holds. Let us next show (3.3). For v € Uy, we have

{y- x(x),7) = (Dx(x), (Sy)v) =7(2,(Sy)v) = > _ 7(2(0), SY)T(2(1),0)
()
<(I)/\ (ZT Sy 1‘(1)> >

(z)

Hence, (3.3) also holds. Let us finally show (3.4). We may assume that
u€ Uy 5 for some g € Q*. Then we can write

Au=) ujkg @uj (8,55 €Q", 0+ 0;=5u;€ M,uJeUgﬁ,)
J
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For v € f]F_, we have
(u- ®x(2),7) = (B (2), (Su)0)

= Y 7(Su),v0)T(Suq), Sve){Pax), vy (Sug)))
(u)2,(v)2

= Z (Sulz, v u]k'ﬂ/ V(2 ))<<I>)\(a;),v(1)(5k/33)>
J:(v)2

= > NI (Sug, v0) sk, v (Ba(@) vk,
3, (v)2

=) g™ (Sul, v ()) T (ujkgr, vi2))T (2, 00)k-g;)
J>(v)2

= > (IS, v T, v)) T (usks ve)
7,(v)2

_ 2 q()\,ﬂg_ﬁj)T(u‘jkﬁ;l‘(Su;)7 ’U)

= (@ (k-x(ad(u)(krzkr))k_)), 7).

Here, we have used Lemma 1.1. Note also that AU - ZWEQJFU ky ®
Uj_ , and hence we have AQU - Zv 5eQ+U kyiys ® U]F ks ® UIE—&
Thus, (3.4) is proved.

For A\ € A we denote by Ffo = Fl%o (resp., Ffo = Fl%o) the 1-dimensional
Ufo—module(resp., UFgo—module) such that hl%o = X)\(h)lfo, ulfo = 5(u)1§0
for h e UR and u € Uf (resp., hl%o = XA(h)lfo, ul/%o = 5(u)1§0 for h € US
and u € Uy ).

Note that for any A € A, k_o\Ug™ (vesp., Up k_2) is ad(U]FzO)—stable (resp.,
ad(U]Fgo)—stable). We see easily from Lemma 3.1 the following.

LEMMA 3.2. Let A€ A.

(i) The linear map
+ * =0 20
ko Uf = MIp(—=A) @F5  (koazk_yx— ®_x\(2) ®15)

. . . >0 .
is an isomorphism of Ug -modules, where k,g)\UEZF is regarded as a

Ufo—module by the adjoint action.
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(ii) The linear map
Fr— <0 * <0
UIF‘ k,QA—>F_>\®M,’]F(/\) (k,,\yk,)\n—>1_/\®\11>\(y))
is an isomorphism of U]Fgo -modules, where 01516_2)\ is regarded as a

U]Fgo—module by the adjoint action.

We have an injective Up-homomorphism
(3.8) Lip(FA) = MIp(FA) (A€AT)

induced by the natural homomorphism My p(FA) = Ly g(FA). For A€ AT
we define subspaces Uy (\), Uy () of Uy, Uy, respectively, by

Uf(\) =@ 3 (L p(=N),  Up (V) =¥ (L 5(N)).

LEMMA 3.3.
(i) For \,p€ AT we have

UsN CUSA+p),  Up () CUz (A +p).

(ii) We have

Uf= > UGN, Tp = Tr (V).

AEAT AEAT

Proof. We will prove only the statements for Uf . By definition, we have
- (e )+1
Ut (\) = {z € UF | 7(x, 1) = {0}}, where Iy = 3, U fiOH,

Hence, (i) is a consequence of Iy D Iyy, for A, € A™. To show (ii) it is
sufficient to show that for any 3 € Q" there exists some A\ € A" such that
Ug 3 CUF (N). Set m =ht(B). If )\NE AT satisfies (A, ) =2 m for any i € 1,
then we have I, C @7€Q+,ht(7)>m UIF_,—'y‘ From this we obtain T(UEB,IA) =
{0}, and hence Ufﬁ C Ug (N). U

LEMMA 3.4. For A€ AT, we have
UET()\)]C_Q)\ CUrp,f, k_g)\UI;r()\) CUpf.

Proof. By Lemma 3.2, we have an isomorphism

koaUf (A) = L p(-N) @F5"  (koazk_y = @_y(2) ©15)
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of U]on—modules. We have L% (—A) = Ly p(—A), and hence L p(—A) ®F§O
is generated by ®_ (1) ® 1%0 as a U]on—module. It follows that
>
k-oaUg (A) = ad(Ug ") (k-21) C Us s

by (2.9). The proof of Uy (\)k_gx C Uy s is similar. U

3.3.

It is well known that, for A, € A such that A\ # pu, there exists h € Ui’o
such that xx(h) =1 and x,(h) =0. In particular, we have xx # x, (see,
e.g., [20, Lemma 2.3]).

For M € Mod(UF) and A € A, we set

My={meM |hm=xx(h)m (he Ui’o)}.

For A € A, we define M, (\), M_ o(\) € Mod(UL) by

MaN) =UE/ 3 Uky—cw)+ > UE(h—xa),

yeUl~ heu°
M_A(A):UW N Uk —e@)+ Y UE(h—xa(h).
zeUlt heU?

By the triangular decomposition we have isomorphisms
Mo N =UPT (@ew),  M_,\)2UP™ (@)

of A-modules. In particular, My 4(A) is a free A-module, and we have F®y4
My 4 (X) = My r(X). Moreover, we have weight-space decompositions

M= P MisWp  M_aN= P M_a(Nyu
HEA+QT LEA—QT
For A € A", we define Ly 5(—\) € Mod(UL) (resp., L o(\) € Mod(UL))
to be the Ul-submodule of Ly g(—A) (resp., L_p()\)) generated by 1 €
Ly (=) (resp., 1 € L_g())). By definition, Ly o(F) is a free A-module,
and we have F ®4 Ly o(FA) = Ly r(FA). Moreover, we have weight-space
decompositions

Lia(-N= @ Lial-Nu LoaW= @ LoaWu

BE=A+QT HEA—QT
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The canonical surjective Up-homomorphism My p(FA) — Ly r(FA) induces
a surjective U }é—homomorphism

(3.9) My a(FA) = Lea(FA) (A€ AT).

Note that (3.9) is a split epimorphism of A-modules since A is a PID (Prin-
cipal Ideal Domain), and note that M4 s (FA)u, L+ a(FA), are torsion-free
finitely generated A-modules for each p € A.

Let M be a U&—module with weight-space decomposition M = ®MEA M,
such that M, is a free A-module of finite rank for any € A. We define a
U‘é—module M* by

M* = EBHomA(M”,A) C Hompy (M, A),
BEA

where the action of Ui is given by
(um*,m) =(m*,(Su)m) (ue UL, m* e M* me M).

Here (,): M* x M — A is the natural pairing.
We set

ML) = (M a(-2)" (A€ A),
L5 o (FN) = (Lea(EN)* (AeAh).
Then M3 ,(A) for A€ A and LY , (FA) for A€ AT are free A-modules sat-
isfying
F@p ME A(N) = MEp(MN), Fop L1 o (FA) = LY p(FN).

Moreover, we can identify M} ,(A) and L3 ,(FA) with A-submodules of
M7 z(X) and L7 z(FA), respectively. Under this identification we have

(3.10) LLA(FN) =LLp(FN N MIL(FN)  (AeAh).
In particular, the U, &—homomorphism
(3.11) LY A(FA) = MIA(FA) (AeA™)

is a split monomorphism of A-modules.
By abuse of notation we write

(3.12) Dy Ul — My 4(N), Uy Uy = M- 4 (N

for the isomorphisms of A-modules induced by (3.1). By Lemma 3.1 we have
the following.
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LEMMA 3.5.
(i) The UF-module structure of M 4 (A) is given by

(3.13) h-®y(z)= X)\+»y(h)q))\($) (z € U[{w he Uzéo)’

(3.14)  v-®y(x ZTA (o), SV)@A(z(1) (z€Uf,veUy7),

(3.15)  w-Py(z)= @A(/@_A(ad(u)(k,\mk,\))k_A) (xeUf,ucUL™M).
(ii) The UE-module structure of M* 4 (A) is given by
(316) b Wa(y) =xa ()W) (yEUy _heUL"),

(317) - Uy(y ZLTA (w,90)WAly) (v €Uy, ue U™,

(3.18)  wv-Uy(y) = %(@ (ad(v)(k_xyk_»))ky) (yeUg,veUL7).

For A € AT we define A-submodules U;"()\), Uy () of U5, U, , respec-
tively, by

Ui =03 (LEa(=N),  Up () =T (L (V).
The embeddings
(3.19) U\ =US, U N =T, (AeAh)
are split monomorphisms of A-modules. By (3.10), we have
(320) U\ =Usf(N)NUS, U (\)=UsNNTU; (A€A™).

In particular, we have

(3.21) Uf(N) U+ ), AN CUL(A+p) (A peAt),
(3.22) Uf= > Urw, U= Z
AEAT cATt

(323) Uy (Nk_aaCUsys,  koxUf(N)CUs; (AEAT)

by Lemmas 3.3 and 3.4.
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3.4.
Let A € A. By abuse of notation we also denote by x) : UCL’0 — C the

C-algebra homomorphism induced by y : U‘é’o — A. Then {xx}xea is a lin-
early independent subset of the C-module Hom¢ (U, CL Y C). For M € Mod(U, CL )
and A € A, we set

My ={meM | hm=x\(h)ym (heU}")}.
For A € A we set
My ((A) =C®p My a(N), ML ((N) =C@a ML 5(N).
For A € A* we set
Lic(FA)=C®p Lia(FN), Lo(FN)=Coa LL 4 (FN).
We have canonical UCL—homomorphisms

(3.24) Min(:FA) — Li,C(:FA) ()\ S A+),
(3.25) LFN o MI(FN) (AeAd).

Note that (3.24) is surjective and that (3.25) is injective.
For any A\ € AT we have an isomorphism

(3.26) AN =LE ()

of UgL-modules (see, e.g., [11, Chapter 9], [20, Section 3.1]).
Let A € A. By abuse of notation we also denote by

Oy UF = ML (N), WU = M (N

the isomorphisms of C-modules given by

(@x(2),0) = {(2,0) (zeUF vell),

<\I/>\(y),%> = LTC(u,y) (y € Ug,u € UCL’+).

By Lemma 3.5, we have the following.
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LEMMA 3.6.

(i) The UCL-module structure of M7 -(A) is given by

(3.27) h-@x(aﬁ):XAJrv(h)(I))\(m) (e UL, he U,

(3.28) v - @)\ ZTC S’U CI))\( ()) (J}EUS—,UEUCL’_),

(3.29)  w-®y(z)= @A(k,k(ad(u)(k,\xk,\))k,,\) (weUS ueUl™).
(ii) The UCL-module structure of M* .(X) is given by

(3.30)  h-UA(y)=xaey(W)UA(y) (yeU;_,heUY),
(331)  w-UA(y) =D Fre(w,y0)Ualyn) (veU  ueUl™),
(v)
(3.32) v Wa(y) = Ux(kx(ad)(k_ayk-_x))kr) (y €U ,0eUL).

For A€ AT, we set

UF () =Caa U (N,

U7 (N)=C @ Ug (V).

Then U, gr (M) and 0{_ (A) are the C-submodules of U 2‘ and UC_ , respectively,
satisfying CI)_A(UCJF()\)) =L} (=A) and \IJ)\(UE()\)) =L* .(A). We have lin-
ear isomorphisms

(333) @_x\:UF(\)—=Lic(-N), U7

SOV LE (N (AeAt).

By (3.21), (3.22), and (3.23), we have

(3.34) U (V) CUF A+ p), JE(A) U (A +p) (A pedt),
(3.35) UF=> UM, U7=> U
AeA+ AeAT

(3.36) U (Mk-axCUcy,  kaaUS(A\)CUsy (AeA™).

By (3.35) and (3.36), we can easily see the following.
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LEMMA 3.7. For any u € U, there exists some X € AT such that uk_gy €
Uc,f-

§4. Induction functor

We set
< <
CF'=Ce/l, T={peCc|(p.U ) = {0}

Then C?O is a Hopf algebra, and we have a Hopf pairing

<,>:C<§0><U<L’§0—>(C.

We have a canonical Hopf algebra homomorphism
<0
res: C¢r — CC_ .

Following Backelin and Kremnizer [2, Section 3|, we define abelian cate-
gories M, and qu as follows.
An object of M¢ is a triplet (M, «, 8) with
(1) M a vector space over C,
(2) a:Ce®@ M — M a left Ce-module structure of M,
(3) B: M — C’?O ® M aleft C’?O—comodule structure of M

such that 3 is a morphism of C¢-modules. (Or, equivalently, o is a morphism
of C?O—comodules.) A morphism from (M,«, ) to (M',a/,(') is a linear
map ¢ : M — M’ which is a morphism of C¢-modules as well as that of
C’?O—comodules.

An object of qu is a quadruple (M, «, 3,7) with
1) M a vector space over C,
2) a:Ce®@ M — M aleft Ce-module structure of M,
3) B: M — C?O ® M aleft C’?O—comodule structure of M,
4) v: M — M ® C¢ a right C¢-comodule structure of M
subject to the conditions that (M,«, ) € M¢, that § and v commute with
each other, and that v is a homomorphism of left C¢-modules. A morphism
from (M, a, 3,7) to (M', &/, 5',7') is a linear map ¢ : M — M’ which is com-

(
(
(
(

patible with the left C¢-module structure, the left Cfo—comodule structure,
and the right C¢-comodule structure.
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For a coalgebra C we denote by Comod(C) (resp., Comod”(C)) the cate-
gory of left C-comodules (resp., right C-comodules). We define functors

B ./\/lzq — Comod(C?o),

T: Comod(C?O) — qu

EM)={MeM ‘ y(m)=m®1},
T(L)=C¢® L.
By Backelin and Kremnizer [2, Section 3.5], we have the following.

PROPOSITION 4.1. The functor = : qu — Comod(C?O) gives an equiva-

lence of categories, and its quasi-inverse is given by Y.
REMARK 4.2. For M € qu we have an isomorphism
EM)=Coc. M

of vector spaces by Proposition 4.1. Here C¢ — C is given by e.
For A € A we define X/%O € C'?O C HomC(UCLéO,(C) by
X (hu) = xa(h)e(u)  (he UL, ue ULT).
We define left exact functors
W : M — Moda (Ag),
I'ag: My — Mod(C)

wite(M) = P (wrta(M)) (N) € M,
AEA

(Wr=(M))(A) = {m € M | B(m) = x5 @m]},
T (M) = (wa(M))(0).

We denote by Mod}*(A¢) the category consisting of N € Moda(A¢)
equipped with a right C¢-comodule structure v: N — N ® C¢ such that
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Y(N(A)) C N(A) ® C¢ for any A € A and y(pn) = A(p)y(n) for any ¢ € A¢
and n € N. (Note that A(A¢(X\)) C A¢(A) ® C¢.) By definition, (4.1) and
(4.2) induce left exact functors

(4.3) Wi : ./\/lzq — Mod{(A¢),
(4.4) I M — Comod” (C¢).

We also define a left exact functor
) nd : Como =0 — Comod" (C
4.5 Ind: C d CC ¢

by Ind =T} o T.

The abelian categories M., qu, Comod"(C¢) have enough injectives,
and the forgetful functor qu — M sends injective objects to I'y-acyclic
objects (see [2, Section 3.4]). Hence, we have the following.

LEMMA 4.3. We have
For o R'T% = R'T' pq o For : M — Mod(C),
R'IndoZ=R'T},: M — Comod” (C)
for any i, where For : Comod” (C¢) — Mod(C) and For : M — M, are
¢ ¢ ¢
forgetful functors.

We define an exact functor
(4.6) res : Comod" (C¢) — Comod(C’?O)

as follows. For V' € Comod" (C¢) with right C¢-comodule structure §:V —
V ® C¢, we have res(V) =V as a C-module, and the left C?O—comodule

structure res(V) — C’?O ®res(V) of res(V) is given by
B)=Y u@pr = y(v)=) res(S o) ® vy
k k
The following fact is standard.

LEMMA 4.4. For V € Comod"(C¢), M € Comod(C?o), we have an iso-
morphism

F:Ind(M)®V — Ind(res(V) ® M)
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of right C¢-comodules given by
F((Z‘Pz(@mz) ®U> Z‘Pz ®'U(O)®mz,

where we write the right C¢-comodule structure of V' by

VBUHZU(@@U(U ceVecl.
(v)

For A € A we denote by (C%O = C1§0 the object of Comod(C’?o) corre-

sponding to the 1-dimensional right UCL’gO—module given by 1§0u = Xfo(u) 1%0

< o : .
for u e UCL =0 By definition, we have an isomorphism

Id(C=) = A.(\) (AeAY)

of right C¢-comodules.
Let N € Moda(A¢). Then C¢ ®4, N turns out to be an object of M by

a(fe(f@n)=Fff@n (f.f €C;,neN),

B(f@n) = res(fo)xr® (fay®@n) (f€CeneN(N)).
(f)

Hence, we have a functor Mods (A¢) — M sending N to C¢ ®4, N.

LEMMA 4.5. The functor Moda (A¢) = M as above induces a functor
D MOd(OBC) — Me.

Proof. Tt is sufficient to show that C¢ @4, A¢c/A¢(A+ AT) = {0} for any
A € A. Hence, we have only to show that CrA¢(\) = C¢ for any A € At.
Take ¢ € A¢(A) such that e(p) =1. We have A(A¢(N)) C A¢(A) ® C¢, and
hence we can write A(p) =), 4,0@ ® ¢} with @; € A¢(N), ¢} € Cc. Then we
have CeAc(N) 3 X,(S™ )i — 0

We set
U=wownms: M¢— Mod(@BC).

Backelin and Kremnizer [2, Section 3.3] obtained the following result using
a result of Artin and Zhang [1, Theorem 4.5].
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PROPOSITION 4.6. The functor ® : Mod(OBC) — M gives an equivalence
of categories, and its quasi-inverse is given by V. Moreover, we have an
identification

Wt © @ = w, : Mod(Op, ) — Moda (A¢)

of functors.
Hence we have the following.

LEMMA 4.7. We have
R'T = R'T p0 ®: Mod(Og,) — Mod(C)
for any 1.
We set
Mod®d(Op,) = Mod*(A¢)/Mod*(A¢) N Tory+(Ag).

Let N € Mod{*(A¢). We denote the right C¢-comodule structure of N by
7"+ N — N ® C¢. Then we have a right C¢-comodule structure v : C¢ ®a,
N = (C;®a, N)® C; of Cc ®a, N given by

V) =) meee = Y(fen)=>_ (fo ®n)® fa)er.

k k,(f)

This gives a functor Mod}(A¢) — /\/lzq. Hence, by Lemma 4.5 we have a
functor

(4.7) 4 : Mod“ (O, ) — M

induced by ®. Let M € ./\/lzq. The right C¢-comodule structure of M restricts
to that of wag M so that wa M € Mod{(A¢). Hence, we have a functor

(4.8) ped ./\/lzq — Mod*4(Op,)
induced by V. By Proposition 4.6, we have the following.

PROPOSITION 4.8. The functor ®*4: Mod®!(Op, ) — qu gives an equiv-
alence of categories, and its quasi-inverse is given by W9,

By Proposition 4.8 we see that (4.1) and (4.2) induce

(4.9) Wi = Wi, 0 @4 Mod®!(Op, ) — Mod{!(A¢),
(4.10) [ =19 0 @4 : Mod*!(Op, ) — Comod" (C;).

By Lemma 4.3, we have the following.
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LEMMA 4.9. We have
For o R'T*Y = R'T o For : Mod®4(Op, ) — Mod(C)
for any i, where For : Comod”(C;) — Mod(C) and For : Mod*4(Op,) —
Mod(Opg,) are forgetful functors.
85. Reformulation of Conjecture 2.14

5.1. Adjoint action of UCL on Dé
Define a left Up-module structure of Er by

ad(u)(P) =Y uP(Suw)) (u€Ur,P € Ey).
(u)

Then we have
ad(u)(Plpg) = Z ad(U(O))(Pl)ad(U(l))(Pg) (Pl, P2 € EIF);
(w)
ad(u)(p) =u-¢ (p€ A C Er),

ad(u)(v) =Y u@v(Sup)) (v € Ur C Br),
(u)

ad(u)(e(N)) =e(u)e(A) (A€ A,e(N) € F[A] C Ep)

for u € Up. We see from [20, Lemma 4.2] that this induces a left Up-module
structure of DI’F. Moreover, the Ugp-module structures of Ey and D{F induce
UE-module structures of Ex, D), Ea ¢, Dy o> Eap, and Dj&’f by Lemmas
1.2 and 2.12. Hence, by specialization we obtain Uf—module structures of
E¢, D¢, B¢y Di 0 E¢ p, and Dy ; also denoted by ad.

5.2.

We will regard E¢ r, D ; € Moda(A¢) as objects of Mod!(A¢) by the
right C¢-comodule structures induced from the left U CL—module structures

(u, P)+— ad(u)(P) (ue UCL,P € Ecy or D¢ ¢).

Then for B
(E08%)(w* D} ;) € Comod(CL")
we have ‘ ‘
R'T(w*D} ;) = R'Ind((E 0 ) (w* D¢ 1))
by Lemmas 4.3 and 4.9 and by (4.10).
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Define a right (U¢ ¢ ® C[A])-module V' by
V= (UC’Q ® C[A])/I,
where

T = (U7 NKer(e))Uc 6 C[A] + > (kax — e(2)))Uc 4 C[A].
AEA

By the triangular decomposition Ug ® Ug’<> QU =~ Uc,¢» we have
VU ®ClA]
as a vector space. Define a right action of UCLé0 on U ¢ @ C[A] by
(u@e(N) xv=ad(Sv)(u) ®e(\) (u€Usp, A€ N veU").

It induces a right action of U, CL =0 on v. Moreover, we see easily that this

right UCL =0_module structure gives a left C?O—comodule structure of V.

PRrROPOSITION 5.1. We have
(E0 @) (W' Dy f) =V

as a left Cgo—comodule.

The proof is given in Section 5.3.
It follows from Proposition 5.1 that Conjecture 2.14 is equivalent to the
following conjecture.

CONJECTURE 5.2. Assume that £ > hg. We have
Ind(V) = Ue.r ®ZHar(UC) (C[A],

and '
R'Ind(V)=0

fori#£0.

REMARK 5.3. We can show that

<
Uc.f = (C¢)ads V= ad(CC:O) ®C[2A] C[A],
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where (C¢)ad (resp., ada(C; 0)) is given by the right (resp., left) adjoint coac-

tion of C¢ (resp., C’?O) on itself. Hence, Conjecture 5.2 is equivalent to

SO\ A
RInd(ad(CE )) = (C()ad QAW (C[QA].
The corresponding statement for ¢ =1 is
RInd(aaC[B7]) = C[G],q @ciayw) CIH].
We can prove this by a geometric method.

REMARK 5.4.7 A proof of Conjecture 5.2, when £ is a prime greater than
the Coxeter number, is given by Backelin and Kremnizer in [3, Proposi-
tion 3.25]; however, in a more recent article they admit that there are gaps
in [3] (see [4, Version 3, Section 1.1.2]) and propose different proofs. But it is
likely that problems still remain in the new proofs given in [4], as explained
below.

The proof in [4, Versions 1 and 2] is wrong because all positive roots are
assumed there to be dominant (see [4, Version 2, proof of Theorem 2.1]).

Another proof given in [4, Version 3| also has problems. In Step (b) of
[4, Version 3, proof of Theorem 2.2.1], the authors compare certain weight
multiplicities a,, and by ,. But since those multiplicities are infinite, the
argument there should be modified using multiplicities as U,-modules. Let
us assume for simplicity that ¢ is generic and try to modify the original
argument by replacing agq, ., bg ., b’q7 , with their counterparts as multiplicities
of Ug-modules. This even fails since a1, (resp., b&,#) is the dimension of
the O-weight space of the irreducible module (resp., Verma module) with
highest-weight . We also point out that the reason that U(;\ is an integral
domain is not given in Step (a).

Note that the arguments in [4, Version 3, proof of Theorem 2.2.1] are
partially similar to those in the earlier manuscripts (see [2, Proposition 4.8],
[3, Proposition 3.25]). The main difference is that [4, Version 3] relies on a
Bg-stable filtration with 1-dimensional subquotients instead of the Joseph—
Letzter filtration used in [2] and [3]. For us, the original argument in [2] and
[3] for generic ¢ using the Joseph—Letzter filtration is not comprehensible
either. In the notation of [2, proof of Proposition 4.8], the validity of the
formula m;(1) =n,;(1) is not clear to us since the Joseph-Letzter filtration
does not induce at ¢ =1 the ordinary filtration for enveloping algebras and
differential operators in general.

tThis remark is added at the editor’s request.
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5.3.
We will give a proof of Proposition 5.1 in the rest of this article. By
Remark 4.2, we have

(Eo @eq)(w*Dgﬁf) 2C®a, D/Qf
as a vector space, where A; — C is given by . Note that
C ®A. Eco=2Uro® C[A].
We first show the following.

LEMMA 5.5. We have
C ®A, D2,<> =V

Proof. By (2.10) we obtain

Coa, Dby = (Ueo 0 CIA]) / Y- (10 9(9)) (U0 ® CIA)),
pEA:

where 1 ® () is the image of Q'(p) in C®a, E¢ ¢ = U¢ ¢ ® C[A]. Note
that e(A¢c(N)e) = {0} for Ae AT, £ € A with A #¢&, and that (A (A\)y) =C
for X € AT. Hence, for p € A¢(N\)e with A€ At, { € A we have

0 (A#E),

te (o) = {e«o) (A=0).

Let us also compute 1 ® Q5 (¢). Let

U,y UE()\) — AC()‘)

be the composite of the linear isomorphism Wy : U:(A) = L (A) (see
(3.33)) and an isomorphism f: L* .(A) = A¢(A) of UCL—modules. We have
@A(ﬁg()\)_(/\_g)) = A¢(N)e for any &€ € A. Hence, we may assume that € =
€o ¥y on UC_()\) Let ¢ € A¢(N)¢, and take v € UC_()\)_()\_Q satisfying
Uy (v) = ¢. Then we have
D (Swp) ¢ @uphs, =3 £((Say) - Ua(v) @k,

P

p

=Y O f((Sap)ks, - Ua(v)) @ ypks,
P
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_ ZC (Be:t) f (b (S:c )k, v(0)) UA(v(1))) @ ypks,

= Z ¢ PO (S ks, v(0) Ua(vay) @ ypks,

p,(v)
and hence
1®Q(p) = ZE((S%‘I[;) . gp)ypkgpkgge(—Q)\)

P

= Z Cf(ﬁp’g)LTC((lel;)kgp, ’U(O))z’f(v(l))ypkgpkgge(—Q)\)

p,(v)

=Y O r ((Sxh)ks,, v)ypks, kace(—2X)
P

= Z Cf(ﬁp’g)LTc(k_Bpr'ﬁ, Silv)ypkgpkgge(—%\)
P

- Z ¢~ Ly (2L S )y, kg koce(—20)
= Z Ci(Aig’)\)LTc(x;/, Sil’l))ypk)\_gkgge(—Q)\)

= (OAEN(STL) ey _chaee(—2)).
(Note that (S™!v)ky_¢ € UC_O‘)—()‘—@') It follows that

oo RTINS Ry _ehace(—2)) (A #£€),
tefle) = {s«o)(l ~ ane(—2)) (A=0).

Hence, we have

YooY (199(9)(Uco ®ClA))

AEAT, LPGAC (>‘))\*"/

yeQt
= Y U Ny (Ueo @CIA) + > (1= kane(—2X)) (U © CIA])
AeAt, AEAT
yeQ*T\{0}
= (U nKer(e)) (Uc.o @ CIA]) + ) (kax — €(2X)) (Ue o ® C[A])
AEA
by (3.35). I
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LEMMA 5.6. We have
Coa, D/C,f =V.

Proof. We need to show that the canonical homomorphism C® 4, D’C F
C®a, D/C,<> is bijective. The surjectivity is a consequence of (3.35) and
(3.36). Let us give a proof of the injectivity. Set

K =AU sCIAIN Y A (9)Uc o CIA] C Ac ® Ug s © CIA].
LPEA(

Then it is sufficient to show that the natural map
C®a, ((Ac®Uc s ® C[A))/K) = (Uco @ CIA]) /T

is injective. Let F': Ar ® U¢ ¢ ® C[A] = U¢ ¢, ® C[A] be the natural map.
Then it is sufficient to show that

(5.1) N (Uey @ CIA]) C F(K).
Indeed, assume that (5.1) holds. Denote by
p:AC®U§7f®(C[A] —>(C®AC ((A<®U<7f®C[A])//C),
7:Uco ® C[A] = (U, @ CA]) /T

the natural maps. We have to show that Ker(m o F') C Ker(p). Take z €
Ker(m o F'). Then F(x) € ZN (U ¢ ® C[A]). Hence, by (5.1) there exists
some v € K such that F'(x) = F(v). Then p(z) =p(x —v) + p(v) = p(x — v).
Hence, we may assume that F'(z) = 0 from the beginning. Note that p factors
through

p/ : Ac®U<7f ®C[A] _>(C®AC (AC X U(yf ®C[A]) (: Uc,f ®(C[A])

By F(x) =0 we have p'(z) =0, and hence p(x) =0, as desired.
It remains to show (5.1). Let A € AT, and let ¢ € A¢(A)x. Then we have

V()= (yp - p)rp € AU, () = phare(—2X).
p

Let us show that

(5:2) () =D (yp - P)zp € AUF (M)
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This is equivalent to

> W 0) @D A(zp) € Ac @ LY (= N).
p

This follows from

W94 Ao
S (@ (), uf TN o = 3T (DT
p p

7

Ao
L N

for u € UCL’f,i € I. Thus, (5.2) is verified. Hence, we have
Q' (p)k_axr € K.

It follows that

(5.3) F(K) D (k—ax — e(=2X))Uc sCIA] (A€ A™).

Now let uw € ZN (U¢,y ® C[A]). If we can show that k_o,u € F(K) for some
i€ AT, then we obtain

u=e(2u)(e(—2p) — k_gy)u+ e(2p)k_ouu € F(K)

by (5.3). Hence, it is sufficient to show that for any u € Z there exists some
p € AT such that k_g,u € F(K). We may assume that there exists v € Q
such that k_o,u = C(“’”)uk_gu for any pu € A. Therefore, we have only to
show that for any u € Z there exists some g € AT such that uk_s, € F(K).
By Lemma 5.5 we can take ¢; € A¢, x; € Us o ® C[A] (i=1,...,N) such
that

N
u=1® ZQ’(@Z)%
i=1

By Lemma 3.7 we can take p € AT such that Q' (p;)zk_o, € Ac @U@ C[A]
for any 7. Then we have

N
uk o =Y F (Y (i)xik_.) € F(K).
=1
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By Lemma 5.6 we obtain an isomorphism
(Zo (I)eq)(w*D’gf) >y

of vector spaces. We need to show that it is in fact an isomorphism of left
C’?O—comodules. This is a consequence of the corresponding fact for E¢ ;.
Note that we have

C ®AC ng = UQf & (C[A],

and hence we have an isomorphism
(5.4) (B0 @) (W E¢ ) = U, ;@ C[A]
of vector spaces. Hence, we have only to show the following.

LEMMA 5.7. Under identification (5.4), the left C?O—comodule structure
of U,y ® C[A] is associated to the right UCLéO—module structure given by

(u®e(N) -v=ad(Sv)(v)®e(\) (ueUcf,AeAveE Uféo).

Proof. Note that the left C’?O—comodule structure of U¢ r ® C[A] is given
by
U,y @ CIA] 2 E(C¢ @ (Ue,y ® C[A])),

where Cr @ (U¢,y ® C[A]) is regarded as a left C’?O—comodule by the tensor
product of C¢ (with left C’?O-comodule structure (res®@1) o A: C¢ — cho ®

C¢) and U¢ y @ C[A] with trivial left C?O—comodule structure. Hence, it is

sufficient to show that for a right C¢-comodule M the right UCL =0_module
structure of
<
M = Z(C¢ ® M) € Comod(C:")

is given by
m-v=(Sv)-m (mEM,vGUCLéO).

Denote by MY the trivial right C¢-comodule which coincides with M
as a vector space. We denote by M > m < m € M"Y the canonical lin-
ear isomorphism. We have Cr ® M triv ¢ Comod" (C¢) as the tensor product
of C¢ € Comod”(C¢) and M™V € Comod”(C;). We can also define a left

C?O—comodule structure of C¢ ® M triv as the tensor product of the left
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C?O—Comodules C¢ and M triv - where the left C?O—comodule structure of

MYV is given by the right UCL ="_module structure

m-v=(Sv)-m (mGM,vGUCLéO).
Then we have a linear isomorphism

Cg®M9<p®mr—>Zg0m(1) ®mo) €Cr @ M™
(m)

preserving the right C¢-comodule structures and the left C’?O—comodule
structures. It follows that

=(C¢ ® M) 2 E(Ce ® M) = M € Comod(CE"). 0
The proof of Proposition 5.1 is complete.
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