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Stochastic partial differential equations (SPDEs) arise naturally as models for
dynamical systems modelled by partial differential equations subject to random
influences. As such, a large body of literature has appeared on the study of SPDEs and
their more abstract formulation as stochastic evolution equations (SEEs) over the last
30 years (see, for example, [2, 5]). However, sometimes these random perturbations
affect a complex system not only inside the physical medium but also at its physical
boundary, resulting in ‘boundary noise’. This situation not only is interesting from a
mathematical point of view but also occurs in a variety of applications (for example,
air–sea interactions on the ocean surface, heat transfer in a solid in contact with a fluid,
chemical reactor theory, and colloid and interface chemistry); see [6].

The aim of this thesis is to develop a more general theory of stochastic partial
differential equations with boundary noise and, in particular, to study the question
of when we can obtain function-valued solutions in the case of Dirichlet boundary
conditions. Function-valued solutions are of particular importance in applications as
they are the first step in designing well-posed numerical approximations of solutions.

An example of the boundary noise problem is as follows. On an open domain
O ⊂ Rn with boundary ∂O, we can consider the parabolic SPDE given by

∂u
∂t

=Au + f (u) + g(u)Ẇ1(t) in (0, T ] × O,

Bu = σ(x)Ẇ2(t) on (0, T ] × O,

u(0, ·) = u0 in O,

(1)
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whereA is an elliptic second-order differential operator andB is a differential operator
given, for example, by Bu := u (Dirichlet) or Bu := ν · ∇u (Neumann) where ν is
the outward-point normal vector field on ∂U. Using u̇ to denote the formal time
derivative of u, the ‘white noise’ processes (Ẇ1(t))t≥0 and (Ẇ2(t))t≥0 are given in terms
of the independent cylindrical Wiener processes (Wi(t))t≥0, i = 1, 2, taking values in
the Hilbert spaces L2(O) and L2(∂O), respectively. Following [2–4], the SPDE (1) can
be reformulated as the SEE

dU(t) = (AU(t) + F(U(t))) dt + G(U(t)) dW1(t) + ΠλΣ dW2(t), (2)

with initial condition U(0) = u0. SEEs of the form (2) are considered in a Hilbert space
framework in [3–5].

In our thesis, we propose a more general theory where U(t) takes values in a
Banach space X. As such, given Banach spaces X and ∂X and separable Hilbert
spaces H and ∂H, in (2) we assume that A :D(A) ⊂ X→ X, F :D(F) ⊂ X→ X,
G :D(G)→L(H, X), Σ ∈ L(∂H, ∂X), and Πλ :D(Πλ)→ X for some λ ≥ 0. Extending
the theory to Banach spaces allows us to consider, for example, the case X = Lp(O)
with 1 ≤ p ≤∞. Then the correspondence between (1) and (2) is given by U(t)(x) =

u(t, x) for (t, x) ∈ (0, T ] × O, Au :=Au for u ∈ D(A) = W2,p(O), F(v)(x) = f (v(x)) for
x ∈ O, G(v)(x) = g(v(x)) for x ∈ O, (Σv)(x) = σ(x)v(x), and assuming that the elliptic
boundary value problem

Av = λv in O, Bv = w on ∂U, (3)

has a unique solution v ∈ Lp(O), we define Πλw := v. When Bu := u, we call Π the
Dirchlet map of w.

To date, only one-dimensional domains had been explicitly studied. The case
where O = (0, 1) and X = L2(O) was considered by Da Prato and Zabczyk [3], who
showed that if one considers the heat equation on O = (0, 1) with white noise boundary
conditions then a function-valued mild solution can be obtained in the Neumann case
but not in the Dirichlet case. Alós and Bonaccorsi [1] revisited the Dirichlet problem
for a parabolic SPDE (again, one-dimensional) using an analytic approach and showed
that function-valued solutions can be obtained on the half-space [0,∞) if considered
in the space of functions f : R+→ R such that∫ ∞

0
| f (x)|p(xp−1+γ ∧ 1) dx <∞, (4)

for some choice of 0 < γ < 1 and p ≥ 2. One should note that spaces of the form (4)
allow solutions to blow up near the boundary x = 0. Using our Banach space approach,
we reformulate this result in our abstract Banach space framework as (2) and show that
solutions in the Dirichlet case can be obtained in weighted spaces in dimensions higher
than one. Unfortunately, we also show that these solutions lose their trace relationship
(and thus, well-posedness) with the boundary data in dimension two and higher. This
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suggests looking at alternative approaches to (3) for mapping the stochastic boundary
data into the interior of the domain.

In this direction, we explicitly study the Dirichlet map of random boundary data in
dimension two and extend some classic harmonic analysis results on the unit disk D
with boundary T to the stochastic setting. This leads us to work with harmonic Hardy
spaces and to consider radial and non-tangential convergence towards the boundary, to
obtain an interesting representation theorem, and to finally reconnect our results with
weighted spaces of the form (4). We obtain the interesting characterisation that we can
obtain Gaussian random variables in the harmonic Hardy space h2(D) if and only if
the stochastic boundary data on T is not Gaussian white noise.

Returning to the problem of well-posedness for the Dirichlet map, we conclude
that harmonic Hardy spaces are too small to consider the white noise boundary data.
Therefore, what is the appropriate space? We consider this question from two angles.
First we take a larger space, specifically the Bloch space, and show that it may be
an appropriate place to consider these dynamics. We then extend Makarov’s law
of the iterated logarithm to our stochastic case which gives a rate of blow-up near
the boundary of our harmonic random field. We conclude that although the random
Bloch dynamics are very interesting, we still do not have a clear relationship with the
boundary data, only an ‘inside-out’ viewpoint. This inspires an ‘outside-in’ approach
whereby, due to a simple representation, we start with the white noise data on the
boundary and, moving inwards, we show rates of blow-up near typical and exceptional
points of the white noise process which is represented by a Brownian motion in this
case. Finally, we show how these concepts may be extended to higher dimensions to
provide a framework for understanding the local spatial dynamics of SPDEs.
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