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Abstract

Here, we derive a Parker-wind-like solution for a stratified, plane-parallel atmosphere undergoing photoionisation. The
difference compared to the standard Parker solar wind is that the sonic point is crossed only at infinity. The simplicity of
the analytic solution makes it a convenient test problem for numerical simulations of photoevaporation in protoplanetary
discs.
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1 INTRODUCTION

Photoevaporation is a pressure-driven wind produced by high
energy stellar radiation that heats and/or ionises gas located
in the incident surface layers of protoplanetary atmospheres
(Hollenbach et al. 1994). If the thermal energy of the heated
gas exceeds the gravitational binding energy of the central
gravitating body, the gas is unbound and can escape in a slow,
often centrifugally launched, wind. These winds are similar
in nature to the familiar pressure-driven Parker winds in stars
(Parker 1958), but are made complicated by rotation, disc ge-
ometry, and/or off-axis radiation sources. For example, the
flow solution for photoionised disc winds cannot rigorously
be solved analytically because the solution depends on know-
ing a priori the exact streamline trajectories (or divergence;
see Begelman, McKee, & Shields 1983). While trivial for
spherically symmetric winds, the extension to discs can only
be approximated (e.g. Waters & Proga 2012).

The analytic solution for isothermal Parker winds has typ-
ically been used as a numerical test for hydrodynamic simu-
lations involving astrophysical winds (e.g. Keppens & Goed-
bloed 1999; Font et al. 2004). However, apart from sharing a
similar transonic wind structure, stellar winds and photoevap-
oration in discs are physically quite different (e.g. geometry,
gravity, temperature, density). If one is only interested in
photoevaporating discs, the numerical overhead of setting up
alternate conditions necessary to produce stellar winds can
be inconvenient. In such cases, it would be ideal to have an
analytic solution to a problem that uses the same numerical
setup and physical parameters as a real disc.

An analytic wind solution for photoevaporation in a disc-
like environment can be derived using a non-rotating, strat-
ified, plane-parallel atmosphere. On local scales, the verti-
cal structure of protoplanetary discs is approximately plane-
parallel so the physical parameters and numerical setup can
be made to be almost identical to that of a disc at any given
radius. The resulting wind’s simple 1-D geometry makes the
solution analytically tractable and straight forward to use as
an alternative test to the isothermal Parker wind—its utility
has motivated this study.

2 ANALYTIC FLOW SOLUTION

The relevant equations describing a steady-state, pressure-
driven, isothermal Parker wind come from setting ∂/∂t = 0
in the fluid equations:

∇ · (ρv) = 0, (1)

ρ (v · ∇v) = −∇P + ρg, (2)

P = ρRT, (3)

T = T0, (4)

where g is the gravitational force, R is the gas constant,
and ρ, v, P, and T are the gas density, velocity, pressure,
and temperature, respectively. In anticipation of applying
this test to photoevaporating circumstellar discs, we define
the gravity g to be the vertical field produced by a massive
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central object,

g = − GMz

(R2 + z2)3/2
ẑ, (5)

to ensure a disc-like density and temperature structure in the
atmosphere. Here, G is the gravitational constant, M is the
mass of the central star, and R is the cylindrical distance from
the central source to our local patch of atmosphere. Without
loss of generality, we restrict the variables to be functions of
z only. To close the set of equations, we adopt the equation
of state of an ideal gas (pV = nRT = constant, where n is
the number of moles of the gas) such that the sound speed of
the wind is constant and can be written as c2

s = P/ρ.
Integrating Equation (1) gives ρv = constant, or written

in terms of an accretion rate (Bondi 1952),

Ṁ = Aρv, (6)

where A is a problem dependent characteristic surface area.
Meanwhile, using the sound speed relationship to replace P,
Equation (2) can be rewritten as

v
dv

dz
= − c2

s

ρ

dρ

dz
− GMz

(R2 + z2)3/2
. (7)

The dependence here on ρ can be removed by taking the
derivative of Equation (6). After some manipulation, we ob-
tain

− 1

ρ

dρ

dz
= 1

v

dv

dz
, (8)

which can immediately be substituted back into Equation (7)
to obtain

v
dv

dz
= c2

s

v

dv

dz
− GMz

(R2 + z2)3/2
. (9)

Collecting the derivatives on v and using the following rela-
tion,

v
dv

dz
= c2

s

2

d(v2/c2
s )

dz
, (10)

we obtain a separable, ordinary differential equation for
v2/c2

s : (
1 − c2

s

v2

)
d(v2/c2

s )

dz
= − 2GMz

c2
s (R2 + z2)3/2

. (11)

Non-dimensionalising Equation (11) using v̄2 ≡ v2/c2
s , z̄ ≡

z/R, the Keplerian Mach number M ≡ vK/cs, and vK =√GM/R, we obtain(
1 − 1

v̄2

)
d

(
v̄2

)
dz̄

= − 2M2z̄(
1 + z̄2

)3/2 . (12)

Note the presence of a critical point located at the sonic point,
v̄ = 1, on the left-hand side of the equation. From inspection
of the right-hand side, the corresponding position must be at
|z̄| → ∞. For comparison, the spherically symmetric isother-
mal Parker-wind solution is transonic with the sonic point
located at rs ≡ GM/2c2

s .

Integrating Equation (12), we obtain a transcendental
equation for the outflow velocity as a function of z̄,

v̄2 − ln v̄2 = 2M2

√
1 + z̄2

+ C, (13)

where C is an integration constant. Following Cranmer
(2004), we can write the solution for the velocity in closed
form using the Lambert W function (Corless et al. 1996;
Veberič 2012):

v̄2 = −Wk

[
− exp

(
− 2M2

√
1 + z̄2

− C

)]
, (14)

where

k =
{

0, if v̄ ≤ 1
−1, if v̄ > 1.

(15)

For comparison, the velocity for the spherically symmetric
Parker wind is

v̄2 = −Wk

[
− 1

r̄4
exp

(
−4

r̄
− C

)]
, (16)

where r̄ ≡ r/rs and r is the spherical radius measured from
the centre of mass M. Figure 1 contrasts the two solutions
above. As the plane-parallel wind cannot support a finite
sonic point without diverging streamlines (Begelman et al.
1983), it looks similar to an isothermal Parker wind with its
sonic point remapped to infinity. Consequently, the plane-
parallel ‘breeze’ solutions (always subsonic) are not hydro-
static at infinity. Another minor difference is that the plane-
parallel solutions remain finite at z = 0 due to having a finite
gravitational potential at the midplane of the disc. As a final
point of interest, the rate of convergence of v → cs in the
asymptotically transonic solution (C = 1) can more conve-
niently be expressed by expanding Equation (14) in a Taylor
series in the limit |z̄| → ∞,

v̄ ≈ 1 − M√|z̄| + O
(

1

z

)
, (17)

which, due to the
√

z̄ dependence, makes convergence very
slow.

The plane-parallel wind has only three possible classes of
solutions:

(i) C < 1: v(z) is double-valued on zi ≤ z ≤ zmax.
(ii) C = 1: v(z) is asymptotically transonic and monoton-

ically increasing for outflow (k = 0) or decreasing for
inflow (k = −1).

(iii) C > 1: v(z) is not transonic and monotonically increas-
ing/decreasing.

Physically, the solution should be locally mono-valued for
stability while continuity and symmetry of the disc indicate
that the velocity should be stationary at z = 0. Meanwhile,
studies of the Parker wind show its breeze solutions to be un-
stable (Velli 1994), a result which holds in the zero-curvature
limit. The only admissible solution remaining is C = 1 with
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Figure 1. Comparison between the plane-parallel wind at R = 5 AU (left) derived in this paper and the more familiar spherically symmetric Parker wind
(right). The different contour levels are determined by the value of C in Equation (14). The sonic point for the plane-parallel case is only asymptotically
crossed as z → ∞, whereas the Parker-wind model is transonic at rs = GM/2c2

s .

k = 0, i.e.,

v̄ =
√

−W0

[
− exp

(
− 2M2

√
1 + z̄2

− 1

)]
, (18)

but this too is only marginally stable to Velli’s global stability
criterion (Velli 1994; Grappin, Cavillier, & Velli 1997; Del
Zanna, Velli, & Londrillo 1998). We must therefore turn to
numerical simulations to verify the stability of the solution,
as suggested by Waters & Proga (2012).

3 NUMERICAL STABILITY

Using Equations (6) and (18) and the equation of state, all
of the fluid parameters are uniquely determined. A practical
setup for our proposed test can be achieved in three steps:

(i) In a 2- or 3-D box with periodic horizontal boundary
conditions, set up a vertically isothermal atmosphere
using the thin-disc approximation and the gravitational
force given in Equation (5).

(ii) Instantaneously heat any fluid that falls below some
density threshold to a high temperature (e.g. T =
10 000 K to mimic ultraviolet photoevaporation; see
Alexander, Clarke, & Pringle 2006).

(iii) Create a steady-state flow using a vertical boundary
condition appropriate for the numerical method of
choice. In smoothed particle hydrodynamics (SPH),
this is done with a dynamic vertical boundary condition
that is constrained to move at the prescribed analytic
velocity from Equation (18). The benefit of this method
is that steady-state solution is obtained almost imme-
diately. Grid based codes, on the other hand, will typ-

ically converge to the steady-state solution using fixed
outflow boundary conditions. However, if convergence
is too slow, dynamically forcing a small section of the
outflow until it exits the computational domain will help
precipitate steady-state flow.

Implementing the setup and SPH boundary conditions de-
scribed above, we perform the photoevaporation test using
our SPH code gdphoto (Hutchison et al. 2016). Gdphoto
has been benchmarked against the test suite described in
Laibe & Price (2012) and achieves accuracies comparable
to commonly used SPH codes. Using 200 028 particles, we
create a 2-D disc in isothermal hydrostatic equilibrium with
the following physical parameters: M = 1 M
, R = 5 AU,
and ρ0 = 10−11 g cm−3. We then initiate photoevaporation
by ionising all particles with densities that are five orders of
magnitude below the disc midplane density. Ionised particles
are held isothermally at T = 10 000 K such that cs ≈ 10 km
s−1. Figure 2 shows the results after 100 yr plotted together
with the analytic solution from Equation (18). The L2 errors
for the velocity and density, computed using splash (Price
2007), are ∼2 and �1%, respectively.

4 DISCUSSION

The plane-parallel flow described in this paper is comparable
to the flow derived by Adams (2011) for magnetically con-
trolled outflows from hot Jupiters when the stellar magnetic
field completely dominates over the magnetic field produced
by the planet (i.e. their β → ∞ limit). The main difference
between our analytic solutions stems from assuming differ-
ent gravitational potentials; however, to apply their solution
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Figure 2. Velocity (top) and density (bottom) for 200 028 SPH gas particles plotted against their respective analytic solutions (red solid
and dashed lines) in a 2-D plane-parallel disc wind. The green points make up a semi-uniform lattice of gas particles that form a moving
boundary condition constrained to move at the velocity prescribed by the analytic solution in Equation (18). The blue points are the
unrestrained gas particles. The L2 errors between the analytic and the numerical solutions are <2%, consistently with the second-order
SPH scheme used.

to photoevaporating discs would require readers to rederive
the equations themselves. The solution in this paper is sig-
nificantly more transparent and its closed form makes it es-
pecially easy to implement as a numerical test.

Although we focus on using our plane-parallel model as a
numerical test, it may have use in wider applications as well.
For example, the model’s simple geometry, accurate approx-
imation of winds close to the disc, and closed form wind
solution could make it a perfect springboard for developing
an analytic or semi-analytic model for coupled two-phase
photoevaporation. To date, few studies have focused on dust
dynamics in winds and a simple two-phase model would be
very valuable.
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