
UNDIRECTED GRAPHS REALIZABLE AS 
GRAPHS OF MODULAR LATTICES 
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1. Introduction. If (L, > ) is a lattice or partial order we may think of its 
Hesse diagram as a directed graph, G, containing the single edge E(c, d) 
if and only if c covers d in (L, > ) . This graph we shall call the graph of (L, > ) . 
Strictly speaking it is the basis graph of (L, > ) with the loops at each vertex 
removed; see (3, p. 170). 

We shall say that an undirected graph Gu can be realized as the graph of 
a (modular) (distributive) lattice if and only if there is some (modular) 
(distributive) lattice whose graph has Gu as its associated undirected graph. 
The main objective of this paper is to characterize those undirected graphs 
which can be realized as the graph of a modular lattice of finite length and to 
extend the result to distributive lattices of finite length. This is accomplished 
in Theorems 2 and 3. 

In what follows Gu will always be an undirected graph, usually the associated 
undirected graph of the directed graph G. We shall use u(c, d) [p(c, d)] and 
E(c, d)[P(c, d) = P(c, eu e2, . . . , en, d)] to denote respectively undirected 
and directed edges [arcs] from c to d. V(G) [V(GU)] will be the vertex set of 
the graph G[GU], 

2. Necessity. Throughout this section (L, > ) will be a modular lattice of 
finite length, G its graph, and Gu the associated undirected graph of G. The 
maximal chains in (L, > ) correspond in a 1-1 fashion to the directed arcs of 
G, and to each of these there corresponds an undirected arc in Gu. If c, d G Ly 

c > d, there are two ways of thinking of the distance from c to d. One is to 
consider the distance from c to d as the length of a shortest maximal chain 
from c to d in (L, > ) or equivalently the length of a shortest directed arc from 
c to d in G. This we shall call the directed distance from c to d, and we shall 
denote it by A(c, d). The other way is to consider the distance from c to d 
as the length of a shortest undirected arc from c to d in Gu. This we shall call 
the undirected distance from c to d, and we shall denote it by 8(c, d). 

We note that: (1) since (L, > ) is a modular lattice of finite length, A(c, d) 
is the length of any maximal chain or directed arc from c to d; (2) a simple 
induction argument shows that A(c, d) = b(c,d)\ and (3) Gu is connected 
and of finite diameter, so ô(c, d) is defined for all c, d G V(GU). 
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We now proceed with a succession of lemmas leading to the conclusion that 
Gu satisfies the following three conditions : 

I. Gu is a connected graph of finite diameter which contains no loops, 
multiple edges, or circuits of odd length. 

II. There exist two vertices, a\ and a2 in V(GU) such that dia(GM) = ô(aiy a2) 
and if u(c, d) and u(c, e) are distinct edges of Guy and b(au e) = b(au d) = 
b{au c) + 1, then there is a unique/* G V(GU) such that b(ai,fl) = h(auc) + 2 
and u(fu e) and u(fu d) G Gu\ i = 1, 2. 

III . If the subgraph, Fu, of the edges of a cube formed by removing one 
vertex and its incident edges is a subgraph of Gu, then the whole cube must be 
a subgraph of Gu. 

LEMMA 1. Gu is a connected graph of finite diameter which contains no loops 
or multiple edges. 

The proof follows directly from the definition of Gu. 

LEMMA 2. A connected undirected graph Hu contains an odd circuit if and only 
if given any h G V(HU) there exists an edge u{hu h2) G Hu such that ô(h, hi) = 
d(h,h2). 

Proof. Assume Hu contains an odd circuit and let h G V(HU) be arbitrary. 
Let p(ho,hi, . . . ,hn,ho) be any odd circuit of HU1 h0 chosen such that 
à(h, ho) < 8(h, hj) for all j = 0, 1, . . . , n. Either ô(h, ho) = ô(h, hn) or there 
is some j = 0, 1, . . . , n — 1 such that ô(h, hj) = ô(h, hj+i), for otherwise 

8(h, ho) = b% fci) ± 1 = Ô(A, h2) ± 1 d= 1 = . . . = Ô(h, h0) ± 1 ± 1 . . . ± 1 , 

n + 1 terms 

which is impossible since n must be even. 
Now let h G V(HU) and u(hu h2) G Hu be such that ô(h,hi) = ô(h,h2). 

There are shortest arcs pi(h, hi) and p2(h, h2) from h to hi and h2 respectively. 
The path formed by going from h to hi on pi(h, hi), then from hi to h2 on 
u(hi, h2), and then back to h by the reverse of p2(h, h2) is a path of odd length. 
At least one of its components must be a cycle of odd length. 

LEMMA 3. Gu contains no odd circuits. 

Proof. If Gu contained an odd circuit, there would be some edge, u(c, d) G GUJ 

such that 5(7, c) = 5(7, d) where I is the largest element of the lattice. This 
means, however, that A(7, c) — A(7, d) and u(c, d) cannot be directed in such 
a way that (L, > ) satisfies the Jordan-Dedekind chain condition. 

THEOREM 1. The vertices c and d are complementary elements of (L, > ) if and 
only if ô(c, d) = dia(GJ. 

Proof. First we show that 5(7, 0) = dia(GM). Let e,f G V(GU) be arbitrary. 
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Then 

2B(e,f) < 0(7, e) + «( / , / ) + d(e, 0) + 8(f, 0) = 25(7, 0), 

so ô(e,f) < 5(7, 0) for all e,f G F(GJ. 
Now if c and d are complementary elements of (L, > ) and p(c, d) is any 

shortest arc from c to d, then to p(c, d) there corresponds a sequence of directed 
edges of G. This sequence may be replaced by another sequence of the same 
length constituting two arcs, one from c KJ d — I to c (this one traversed 
backwards) and one from 7 to d. Likewise it can be replaced by a sequence 
of the same length constituting two arcs, one from c to c P\ d = 0 and one 
from 0 to d (this one traversed backwards). We may conclude, therefore, that 

2ô(c, d) = ô(c, I) + «5(7, d) + 8(c, 0) + 5(0, d) = 25(7, 0) = 2 dia(G„). 

By the above argument if ô(c, d) = dia(GJ, then b(c\J d, c C\d) = dia(GM), 
implying c\J d = 7 and c C\ d = 0 . 

LEMMA 4. Gu satisfies Condition II. 

Proof. According to Theorem 1, 5(7, 0) = dia(Gw). If we take <Zi = 7 and 
a2 = 0, then the covering conditions imply II. 

LEMMA 5. Gu satisfies Condition III . 

Proof. Using the fact that there is essentially only one way in which a 
rectangle of Gu can be directed, it can be shown that there are exactly four 
(two of which are isomorphic) non-dual directed graphs that can result from 
Fu being a subgraph of Gu. Each of these gives rise to the required vertex and 
edges by use of the covering conditions. The details are straightforward. 

Lemmas 1, 3, 4, and 5 show that the three conditions are necessary in order 
that Gu be realizable as the graph of a modular lattice of finite length. 

3. Sufficiency. Throughout this section Gu will be an undirected graph 
satisfying Conditions I, II, and III , and a = ax and b = a2 will be as in 
Condition II. 

Since Gu is connected and contains no odd circuits, we shall direct the edges 
of Gu away from the vertex a by directing each edge towards the vertex farthest 
from a. That this can be done is assured by Lemma 2. This directed graph we 
denote by G, and we shall prove that G is the graph of a modular lattice of 
finite length. In particular we shall show that the pair (L, > ) , L = V(G), 
where c > d if and only if there is a directed arc (possibly of zero length) from 
c to d in G, is a modular lattice of finite length. 

LEMMA 6. (1) If c > d, then ô(c, d) = A(c, d). 
(2) (L, > ) is a partial order of finite length satisfying the Jordan-

Dedekind chain condition. 
(3) The graph of (L, > ) is G, and a > c for all c 6 L. 
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Proof. (1) Let c > d and P(e0, eu e2, . . . , en), ̂ o = c, en = d, be any arc in G 
from c to d. If n = 1, 5(c, d) = 1 = A(c, d). If m is the smallest integer such 
that ô(c, em) ¥" m and 8(c, ek) = k for all 0 < k < m, then 

8(c, eTO) = (w — 1) db 1. 

Since ô(c, em) = m — 2 is impossible, <5(c, em) = m, This yields a contradiction, 
so no such m exists and 8(c,d) = n = A(c, d). 

(2) Since G cannot contain any directed circuits, " > " is anti-symmetric; 
it is clearly reflexive and transitive. Hence, (L, > ) is a partial order. That 
(L, > ) is of finite length and satisfies the Jordan-Dedekind chain condition 
follows immediately from (1). 

(3) G is a directed graph with no multiple edges; G is acyclic and transitive, 
so by (3, p. 170) G is the graph of a partial order. That (L, > ) is that partial 
order is clear. That a > c for all c G L follows from the way G is directed. 

LEMMA 7. (L, > ) satisfies the two covering conditions of a modular lattice, 
and c > b for all c G L. 

Proof. If c covers d and e, d ^ e, then 

5(a, c) + 1 = <5(a, d) = 5(a, e) 

and Condition II implies that there is a unique f £ L such that d and e 
cover / . 

Let c G .L be arbitrary and let d G L by any minimal element of {e\e > c 
and e > 6}. We shall show that d = c. If d 7e- c, then there are non-intersecting 
(except at d) maximal chains from d to c and from d to b. We have, therefore, 
an edge E(d, e), e > £, and an arc Pi(e0, e±, e2, . . . , en), e0 = d, en = b in G. 
According to the first part of this lemma and the minimality of d, we can 
construct an arc of G, P2(fo,fi, • • • ,/»),/o = e, such that /^ ^ ^. for any 
i,j = 0, 1, . . . , n, and eû covers fj for each j = 0, 1, . . . , n. Since this gives 
an edge E(b,fn) G G contradicting the choice of b, we must conclude that 
d — c and c > £ for all c £ L. 

The second covering condition now follows. Since 

0(6, c) = A(c, b) = A (a, b) - A (a, c) = dia(GJ - 5 (a, c), 

a simple calculation shows that E(e,f) G G if and only if 8(b,f) = 8(b, e) — 1. 
Thus, II gives the second covering condition in the same way that II gave the 
first one. 

LEMMA 8. Any rectangle of four edges in G is directed as the graph of the 
distributive lattice of length two on four elements. 

Proof. By Lemma 6 there cannot be any arcs of length four or three. If c 
and d cover both e and/ , c 7^ d, e 7e / , we have a contradiction to the preceding 
lemma. Therefore, the only possibility is for the edges to be directed as desired. 

We shall now show in three steps that given any two elements c and d in L, 
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the set {e\e > c and e > d] has a unique minimal element. This, of course, 
will mean that every pair of elements of L has a least upper bound, and since 
L has a lower bound, we shall have shown that (L, > ) is a lattice. 

LEMMA 9. If e covers c and d, c 9^ d, f > c, f > d} and A(f, c) = A(f, d), 
then f > e. 

Proof. The proof proceeds by induction on A(J, c). If c, d, e,f are as in the 
statement of the lemma and A(f,c) = 1, then e = / by Lemma 8. We now 
assume that for some m > 0 the lemma is true for all c, d, e,f as above such 
that A(f,c) < m. Let c, d, e,f £ L be as above and let A(f,c) = m. Let us 
further assume t h a t / > e. There are in G two arcs, 

-̂ 01(̂ 00, Coi> • • • » Com) and Po2\doo, doi, . . . , dom), 

where c0o = f = d0o, c0m = c, and d0m = d. Note that c0j ^ d0J for all 
1 < 7 < m; otherwise / > e by the inductive hypothesis. Using Lemma 7, 
the Jordan-Dedekind chain condition, and the inductive hypothesis, we can 
find C10, £11, . . . , Ci,m_i, C10 = dio, dn, . . . , di,m_i such that 

(1) Î 
{£oo> £oi> • • • , ^omt ^00, ^01, • . • , domj e) = 0 , 

(2) en covers £ilZ-+i and is covered by c0)i+i and ^ H covers da, i+i and is covered 
by d0ti+i for all 0 < i < m — 1. 

Now we show that Ci,m_i 9^ di,TO_i. Assume that Ci,m_i = d\,m-\. c0m and 
^i>m_2 cover Ci,m_i = di,m-i and £0m ^ di,m_2. Hence by Lemma 7 there is a 
g which covers both. According to Condition III and Lemma 8 there is some 
h G L which covers g, ô,m—1> and e. If g — Co.m—1> 

the inductive hypothesis 
implies t h a t / > h > e, contrary to our assumption. If g 9^ c0,m_i, the inductive 
hypothesis implies that c0i > g, and hence that Coo = / > e, which again is 
contrary to assumption. We conclude that d 

Since e covers c0m and d0m and c0m ^ d0m, there is an ei which is covered by 
both Com and d0m. We can conclude that e\ 9^ Ci,m-i or rfi,m_i as follows. If 
ei = Ci,m_i, then Cio > £i and ci0 > ^i,m-i. Hence c10 > d0m by the inductive 
hypothesis. But now Coi > £10 > ô™ and c0i > £om- Hence c0i > e by the 
inductive hypothesis, and therefore / > e. A similar argument applies if 
instead ei = di,m_i. 

We now use Lemma 7 again to find C\m and dlm such that ei and Cim_i cover 
Cim, and 1̂ and ^i,m_i cover dlm. If cim = dlm, according to Condition III and 
Lemma 8, we first have some g £ L, g ^ c0m or d0m, which covers CitOT_i and 
di,m_i and is covered by e. The inductive hypothesis yields c0i > do > g. 
Using it again, we obtain c0i > e, s o / > e, contrary to our assumption. Thus 
cim 9* dlm; cf. Figure 1. 

Next we shall show that Cio > ei. If £10 > eu then there is some g £ L such 
thatcoi > g and g covers ei. If g = c0m, then d0i > Cio > g = Comanddoi > d0m. 
Hence d0i > £ by the inductive hypothesis, and so / > 0, which is impossible. 
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FIGURE 1 

We deduce that g 9e c0m and similarly g 9^ d0m. Since g ^ Com or d0m, and 
g, Com, and d0m cover e±, there are h\ and h2 in L such that /H covers Com and g, 
and h2 covers d0m and g. Now applying the inductive hypothesis twice, we 
conclude that c0i > hi and rf0i > h2; hence neither hi nor h2 is equal to e. 
Now Condition III and Lemma 8 yield the existence of an A3 G L which 
covers Ai, A2, and e, and the inductive hypothesis yields f > h% > e. This 
contradiction to our assumption t h a t / > e implies that Cio > ei, as desired. 

We now have constructed two arcs Pn(cio, Cim) and Puicio, dim) of length m 
and a vertex ei which covers Cim and dim. Since Cio > £1, the Ci/s must be 
distinct from the du s (except for Cio = dio), so the situation with respect to 
these arcs and the vertex ei is the same as it was with respect to Poi(f, Com)» 
Po2(f, dom), and e. We may, therefore, continue the above construction indefi­
nitely, producing subsets of L, V0, Vi, V2, . . . such that for every 
k = 0, 1, 2, . . . : 

(1) Vjc = [Cjco, Cjci, . . . , c#m, dko, dki, . . . , a#w, ek\, eo = e, and ĉ o = dko\ 
(2) F*_! H F» = 0, 
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(3) c*-i.y+i covers ckj and ckj covers ckJ+1 for each j = 0, 1, . . . , m — 1, and 
e* covers £*m and rfATOI 

(4) ck0 > ek. 
We can, therefore, construct arcs and hence maximal chains 

-Ln\€0i COmi &li Clmi • • • » ^n—1> ^n—l,mi &n) 

of arbitrary length, contradicting the fact that (L, > ) is of finite length. This 
contradiction proves that / > e, as desired. 

LEMMA 10. If e and f are greater than c and d, c 9e dy then there is some g G L 
such that e > g > c andf > g > d. 

Proof. The proof of this lemma proceeds by induction on 

R = $[A(e, c) + A(e, d) + A(f, c) + A(f, d)]. 

For R = 2 the preceding lemma yields the result. 
Now assume inductively that if R < s, s > 2, the lemma is true. Let 

e,f, c,d £ L satisfy the hypotheses of the lemma; R = s. Suppose that no 
g G L exists such that e > g > c and / > g > d (Assumption A). We may 
assume the vertices have been named such that 

A(e, c) = min{ A(e, c), A(e9 d), A(f, c), A(f, d)}, 

and we may assume A(e, c) is minimal for c, d, e, and/satisfying Assumption A. 
Case I, A(e, c) = A(e, d) = m. A calculation based on Lemma 6 shows that 

A(f, c) = A(J,d)j and the preceding lemma shows that m > 1. Let 

-* oo(£oo> CQIJ . . . , Com) and iio(<ioo, «oi> • • • > dom), 

Coo = e = d0o, c0m = £, d0w = d be any two maximal chains from e to c and e to 
d respectively. By Lemma 6, Assumption A, and the inductive hypothesis, 
it follows that c0k 7* don for every k, n = 1, 2, . . . , m. Thus there exists 
C\o = dio (z L covered by c0i and d0i. If £io > c or d, then Lemma 6 and the 
inductive hypothesis yield a contradiction to Assumption A. A sequence of 
similar arguments gives rise to two maximal chains, 

-^oifcioj en» • • • i £i,m-i) and Pn(^io, duj . . . , di>m-i), 

such that Cok covers d,k-\ and do*; covers ^l.^-i for each & = 1, 2, . . . , ra, and 
neither c^ > c o r ^ nor du > c o r i holds for any k = 0, 1, . . . , m — 1. 

If Cif77l_i = di.TO-i, then Lemmas 7 and 9 show that there is some g Ç Z, 
which covers £0m and d0w such that e > g > c0m and / > g > d0m, which con­
tradicts Assumption A. Thus since £i>w_i 7̂  diim_i and A(e, c) is minimal, 
there is some gf £ L such that Cio > g' > Ci,m-i and / > g' > di,TO_i; cf. 
Figure 2. If g' = Com, then d0i, £om, d0m, a n d / satisfy the inductive hypothesis. 
This gives some g Ç L such that e > d0i > g > Co™ = c a n d / > g > d0w = d, 
which contradicts Assumption A. 

If g' = ci,m-i, then by Lemma 6, g' = di,m_i, contrary to the fact that 
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•f 

FIGURE 2 

Ci,m-i 9^ ^i,m_i. Now a calculation based on Lemma 6 and this observation 
shows that c0i, / , c0m, and gf satisfy the inductive hypothesis. Hence there is 
some g" £ L such that c0i > g" > Com and f > g" > g'- Now if g" = c0m, 
then 

A ^ ^ i ^ - i ) = 1 = A(g",g') + Aig'td,»-!)] 

hence gr = g" = Com, which is impossible. This means that 

A(coo, g") + Atf, *") + A (coo, d) + A (f, <*) < s. 

If g" = d, there is nothing more to prove. If not, the inductive hypothesis 
applies, and we have some g £ L such that e = c0o > g > g" > c and 
/ > g > d, contradicting Assumption A. This concludes the proof of case I. 

Case II , A(e, c) 9* A(e, d). Thus A(e, c) < A(e, d). Let 

-Poo (cooi • • • » £om) and -Pio(^oo, . . • , ôro)» 

Ceo = e = doo, Com = c, don = d be any two maximal chains from e to c and e 
to d respectively. As in the preceding we can find a maximal chain 
Poi(cio, . . . , £i,m_i) such that c0Jc covers Citk-i and Citk-i is not greater than or 
equal to c or d for each k = 1, 2, . . . , m. 
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Suppose there is a g' £ L such t h a t d0i > gf ^ d^ = d a n d / > g' > Ci,m_i. 
Then g' is not greater than or equal to c and either A(g',d) = 0 or A(g', d) > 0. 
A(g'> ^) = 0 would imply tha t g' = d = d0n. Thus Lemma 6 and the fact t h a t 
Ci,m-i 5e d imply t h a t 

A(dou CilTO_i) = m > A(d0i, gf) = n — 1 

and t h a t m > #, which is impossible. If A(g', d) > 0, then we may apply the 
inductive hypothesis to e = c0o, g', c = c0m, a n d / to obtain a g Ç Z, such t h a t 
£ > g > £ a n d / > g > &' > >̂ contrary to Assumption A. 

We now have J0 i , £i,™-i, rf, and / satisfying the same hypothesis as c, d} e, 
and / , b u t now A(d0i, ^i,m-i) = w and A(d0i, rf) = w — 1. By repeating the 
above argument p = n — m t imes, we can find d0p, cv,m-\, d, a n d / c o n t r a d i c t i n g 
case I. Since this is impossible, our Assumption A must be false for case II 
also, and the proof of the lemma is complete. 

LEMMA 11. (L, > ) w d modular lattice of finite length whose graph is G. 

Proof. Let c, d Ç L be arbi t rary. By Lemma 10 there can be only one 
minimal element of {e\e > c and e > d}. This is cVJd. Since e > b for all 
e Ç L and c U d is defined for all c, d £ L, (L, > ) is a lattice. I t is of finite 
length and its graph is G by Lemma 6. By Lemma 7 (L, > ) satisfies the two 
covering conditions, so it is modular. 

The proof of the following theorem is now complete. 

T H E O R E M 2. Gu can be realized as the graph of a finite modular lattice if and 
only if Gu satisfies Conditions 1, 11, and I I I . 

T H E O R E M 3. Gu can be realized as the graph of a finite distributive lattice if 
and only if Gu satisfies Conditions I, I I , I I I , and: 

IV. / / Gu contains the rectangle of edges, u(c, d), u(d, e), ti(e,f), u(f, c), there 
is no vertex g such that u(c, g) and u(g, e) G Gu. 

Proof. The proof is immediate from Theorem 2 above and (2, p. 134, corol­
lary 2) . (Two misprints should be noted in t ha t corollary. The figure which is 
referred to is the figure of the first edition (1 ) and (x* C\v) \J u should read 

0* \Jv) r\ u.) 
Using Theorems 1 and 3, it can be shown t h a t for Gu satisfying I, I I , I I I , 

and IV, it does not mat te r which diametrically opposite vertices are chosen. 
Any choice results in a distr ibutive lattice. 
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