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THE STRUCTURE MAPPINGS ON A REGULAR SEMIGROUP

by JOHN MEAKIN
(Received 13th December 1976)

In (5) the author showed how to construct all inverse semigroups from their trace
and semilattice of idempotents: the construction is by means of a family of mappings
between #-classes of the semigroup which we refer to as the structure mappings of
the semigroup. In (7) (see also (8) and (9)) K. S. S. Nambooripad has adopted a similar
approach to the structure of regular semigroups: he shows how to construct regular
semigroups from their trace and biordered set of idempotents by means of a family of
mappings between ZR-classes and between $-classes of the semigroup which we
again refer to as the structure mappings of the semigroup. In the present paper we
aim to provide a simpler set of axioms characterising the structure mappings on a
regular semigroup than the axioms (R1)-(R7) of Nambooripad (9). Two major
differences occur between Nambooripad’s approach (9) and the approach adopted
here: first, we consider the set of idempotents of our semigroups to be equipped with
a partial regular band structure (in the sense of Clifford (3)) rather than a biorder
structure, and second, we shall enlarge the set of structure mappings used by
Nambooripad.

1. Basic notions and notation

The standard notation of Clifford and Preston (4) will be used throughout. We
denote the set of inverses of a regular element x in a semigroup by V(x).

We shall assume familiarity with Nambooripad’s papers (8) and (9). In particular
we use the notation (E, ", @', 7) for a biordered set: we shall denote o’ N(w")™' by &
rather than £ and ©' N(@')™' by £—no confusion with Green’s ® and £ relations on a
semigroup should occur. Thus a biordered set is a set E together with quasi-orders o’
and ' and family r of the projections which satisfy Nambooripad’s axioms (B1)-(BS)
and their duals: Nambooripad shows in (8) that these axioms characterise the system
of idempotents of a regular semigroup as an ordered structure.

The problem of characterising the system of idempotents of a regular semigroup as
a partial groupoid structure seems to have been first posed in the literature by Baird
(1). The set E of idempotents of a regular semigroup S forms a partial groupoid (E, *)
with partial binary operation ““-> defined by e - f = ¢f if ef € E and e - f is undefined
otherwise: a partial groupoid which arises this way as the partial groupoid of
idempotents of a regular semigroup is called a partial regular band. In (2) and (3)
Clifford attacked the problem of characterising partial regular bands axiomatically.
His major step is to introduce the concept of a regular warp which is a partial
groupoid E satisfying his conditions (W1)—~(W5) and (R1)-(R2). He has shown that the
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partial groupoid of idempotents of a regular semigroup is a regular warp but that the
converse is false: thus axioms (W1)-(W5) and (R1)-(R2) do not completely charac-
terise partial regular bands. However, Clifford goes on to show how to extend the
partial product in a regular warp E in a minimal fashion so as to make E a partial
regular band: this depends on his characterisation of B(E), the universal regular
idempotent-generated semigroup on aregular warp. Thus, by starting with the class of all
regular warps, we may construct all partial regular bands. We adopt Clifford’s notation:
in particular if E is a partial groupoid ““Jef’” means that the product ef is defined in E: an
equation “‘ef = g’ means “Jef and ef = g”. A product efg is interpreted as in (W1).
If E is a regular warp, then we can associate a biordered set (E, »’, @', ) with it in
the following fashion: just define ew'fiff fe = e, ew'f iff ef = ¢, and for each e € E
define r'(e): w'(e)— E and 7'(e): w'(e)—> E by x1"(e) = xeVx € w'(e), xr'(e) = ex Vx €
w'(e): one checks that (E, ", w' 7) is a biordered set, called the biordered set
determined by the regular warp E. Since (E, ”, ', 7) is a biordered set it satisfies
Nambooripad’s axiom (BS) and so the regular warp E must satisfy the additional
axiom (W) below:
(W) let e,f EE, h € S(e,f) and g € w'(e) Nw'(f): then there exist g',g” € E such that

"

g'%g, 8" Rg, eg' = eg, g"f = gf, g'w'h, g"w'h and g'h = hg"=g'g".

Actually, axiom (BS5) guarantees the existence of g’,g"” € E satisfying all of (W) except
the last statement g'h = g’g”. To see that g’'h = g’g” we argue as follows. Since ge =g
and he = h and 3(eg)(eh) it follows by (W4) that Igh and so

g'h=(g'g)h=g'(gh) byWl)
=g'(g(fh))=g'(gf)h) by (W)
=g'((g"Hh)=g'(g"(fh)) by (W1)
— gl(g”h) — glgll'

To every biordered set there corresponds at least one regular warp, but in general
more than one: two regular semigroups may have sets of idempotents which are
isomorphic as biordered sets but not as partial groupoids. Thus the partial groupoid
approach gives a finer classification of regular semigroups than does the biordered set

approach. In (3) Clifford shows how to construct all regular warps which correspond
to a given biordered set.

2. The structure mappings

Let S be a regular semigroup whose partial regular band of idempotents is E and
whose biordered set of idempotents is (E, w’, ', 7). Define k = w"Uw', so that
ek fiff ew’f or ew'f. It is an easy matter to check that if fxe (e, f € E) and if x ER,
then fx € Ry, and if y € L, then yf € L. Define mappings ¢.;: R, = R, and ,.;: L, - L;
(for fxe) by

xbes = fx, ypo;=yf Vx€ER., y€EL, (D
We refer to the mappings ¢., and ¢, defined by (1) as the structure mappings on S.
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As Nambooripad showed (9), these mappings may be used to reduce all products in §
to products in the trace of S: in fact if a,bE S, e*’=e€ L, f’=fE R, and if
h € S(e,f) then one sees that

a - b= (ages)bdsn)- 2

(This is independent of the choice of ¢ and f: also ay.,£h and hRbeys, so the product
on the right-hand side of (2) is a product in the trace of S.)

We remark that the structure mappings introduced in (1) differ from those used by
Nambooripad. Nambooripad used only the mappings ¢.;: R,—» R, for fw’e and
Yey: L. = L; for fo'e, and we are in addition going to use the mappings ¢.; for fw'e
and ¢, for fw'e. We now examine conditions which the structure mappings (1) must
satisfy.

Proposition 2.1. Let S be a regular semigroup with partial regular band of
idempotents E and associated biordered set (E, ", w',7). Let ® = {¢.;: R. = R/|f x e}
and ¥ = {{.;: L.~ L;|f « €} be the structure mappings on S defined by (1). Then ® U¥
satisfies the following conditions and their duals. (Here e,f.g € E.)

(K1) If gxfxeand gfe then .5, = bogype

(K2) If fx e then ed,; = fe.

(K3) If eRf then ¢.; is the identity map on R,.

(K4) Leta€ L, bER, a'€ V(a)NR, and f x e. Then

() a’d.s € V(ay.s) and f, = (a.;)(a’'$.s) waa’;
(ii) the map f—f, restricts to a (partial groupoid) isomorphism of w(e)
onto w(aa');

(i) (ab)daa s, = (aPes)(bey).

Remarks. If 3gfe then clearly gfe x e and condition (K1) makes sense: also (K2)
is meaningful since 3fe if f x e. Note also that all products which occur in (K4) are
products in the trace of S. Conditions (K1)-(K4) clearly reduce to the author’s
conditions (C1)-(C4) in the inverse case (see (8)).

Proof of Proposition 2.1. It is straightforward to check that @ U ¥ satisfies
(K1)—(K3) and (K4)(i) so we shall only check (K4)(ii) and (iii) here. By (K4)(i), the
map f - f1 = afa’ maps o(e) into w(aa’): it is again easy to check that this map is (1,1)
and onto. If f,g € w(e) and Ifg then fg € w(e) and Ja(fg)a’ = (afa’)aga’): on the
other hand if (afa’)aga") = a(fg)a’, then Ifg = a'(afga’)a and it follows that f - f, is
a partial groupoid isomorphism as required.

To check (K4)(iii) note that (ab)d.. s, = fiab = afa’ab = afeb = afb = (af)(fb) =
(a‘lle.i)(b‘be.f)-

3. Partial regular groupoids

The partial groupoid of non-zero elements of a completely 0-simple semigroup is
called a Rees groupoid: clearly the trace of a regular semigroup is a disjoint union of
Rees groupoids. We denote the set of idempotents of a partial groupoid S by E(S). If
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T is a subset of a partial groupoid (S, -) then by (T, -) we mean the partial groupoid T
with partial operation induced by “-”, i.e. for a,b € T, a - b is defined in (T,-) iffa - b
is defined in (S,-) and a - b € T. A groupoid (S, -) satisfying the following conditions is
called a partial regular groupoid:

(G1) S = U{S,|a € J} where each (S,, -) is a Rees groupoid;

(G2) (E(S),-) is a regular warp;

(G3) the product x - y of x,y € S is defined iff it is defined either in some (S,, ) or
in (E(S), *).

Remarks. (1) A product of e and f in § may be defined in both (E(S),"-) (in
which case we write Je - f in E(S)) and in some (S,, +) (in which case we write Je - f
in S,): both of these products are of course the product e¢-f in (S,-). Thus if
(E(S), ", @', 7) is the biordered set associated with (E(S),-) then we see that for
ef€EWS), eRfiffe-f=f, f-e=e and effiffe-f=¢, f-e=f Thus (S,-) is a
regular groupoid in the sense of Nambooripad (9) and the relations ', 0/, x, ® and £
all have the usual meaning: the restriction of the %-relation on (S, ) to (E(S), -) is the
R-relation on the biordered set E(S) so no confusion can arise.

(2) If S is a regular semigroup define the partial groupoid (S, -) as follows: a - b is
defined (and equal to ab) iff either e’ = e € L, MR, or a,b and ab are idempotents.
Then (S, *) is a partial regular groupoid.

The main theorem of the paper is the following.

Theorem 3.1. Let S=U{S,|a €EJ} be a partial regular groupoid (with partial
operation denoted by juxtaposition) and let ® U¥ be a family of mappings ¢ =
{¢pes: R.> Rf|fxe} and ¥ ={y.5: L. > L;|f xe} which satisfy (K1)~(K4) and their
duals.* Define a binary operation ‘- on S by (2) and denote the resulting groupoid
(S,-) by S(®, ¥). Then S(D, ¥) is a regular semigroup with trace S = U{S,|a € J},
partial regular band E(S) and set ® U W of structure mappings. Conversely if (S, ) is
a regular semigroup with set @ UW of structure mappings and associated partial
regular groupoid S, then @ UV satisfies (K1)-(K4) and their duals, and S = S(P, V).

Proof. The ‘“‘converse’ part of the theorem has already been established (Pro-
position 2.1), so we assume that S is a partial regular groupoid admitting a family
& UV of mappings which satisfy (K1)-(K4) and their duals. We show that ® UV
satisfies Nambooripad’s conditions (R1)<(R7) of (9) (and their duals): this will show
that S(®, ¥) is a regular semigroup with trace U{S,|la €J} and biordered set
(E(S), 0", »', 7) associated with the regular warp E(S). The proof will be completed
by checking that E(S) is actually the partial regular band of S(®, ¥). We break the
proof into several lemmas: in each of these lemmas we assume that S is a partial
regular groupoid admitting a family @ U ¥ of mappings which satisfy (K1)-(K4) and
their duals.

*A partial regular groupoid S does not necessarily admit a family & U ¥ of mappings which satisfy
(K1)—-(K4), even if each S, is a Brandt groupoid and the biordered set E(S) is a semilattice: see (6) for a
discussion of this situation.
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Lemma 3.2. The mappings @ UV satisfy (R1)-(R3) and their duals.

Proof. Axiom (R1) follows immediately from (K3), and (R2) follows from (K2).
To check (R3), suppose that eRe, and e'w’e. By Clifford’s axioms (W3) and (W1),
Je'e=e¢'e'e, so ¢e,e’¢e’.e’= ¢e‘e’c by (K1): thus by (XK3), ¢e‘e‘= Dece (and also —¢e|.e'=
®.,.cc). Again, by (K3), (K1), (W1) and (W3) we have

¢e|.e’ = ¢e,e,¢e,.e’ = ¢e‘e’qe = Peee = P

The axiom (R3) now follows.

Lemma 3.3. If e.,f € E and e¥f then x¢.; = fx Vx € R, (and dually, if eRf then
yer = yf Vy € L.).

Proof. Note that 3fx in S since e’=e &€ L;NR,. We apply axiom (K4) with
a=a’'=e and b = x: it follows by (K2) and its dual that f, = (ey.s)(ed.s) = (ef)(fe) =
ef =e and that x = x¢.. = (ex)P.. = (eY.[)(x¢.s) = e(xd.s). Hence, liberally using
associativity within the Rees groupoid containing e, fx = fe(x¢.;) = f(x¢.;) = xP.; as
required. The dual result follows in a dual fashion of course.

Lemma 3.4. The mappings @ U ¥ satisfy (R4) and its dual.

Proof. Let ¢',e" € w(e) and e'Re”, x ER,, x' € V(x)NL,. We already know from
(K4)(@) that x'¢,. € V(x¢..). By (W1), the dual of (K1) and lemma 3.3 we have
X' Yoo = X' Yo othe o= (x'Y)e”. Thus (by using associativity in the Rees groupoid
containing e’) we have

(x'(l’e‘e”)(x¢z.e')(x"l’e.e") = (x/(pe‘e’)(e”(x‘be.e’))(x’d’e.e’)e”
= (X"t )e" = X't

Similarly (x¢. ) (x' oo XD, o) = X
Lemma 3.5. The mappings ® U V¥ satisfy (R5) and (R6) and their duals.

Proof. In the notation of (K4) we know that the mapping f— fi = (a¥.s)(a’d.s)
Vf € w(e) is a partial groupoid isomorphism of w(e) onto w(aa’). Clifford has shown
in (2) that an isomorphism of warps is a biorder isomorphism (but not in general
conversely) and so the map f—f, above is an w-isomorphism (in the sense of
Nambooripad (8)) from w(e) onto w(aa’): thus Nambooripad’s axiom (RS) is satisfied.

We now check the dual of (R6). Let ewe, xER,, x’€EL.NV(x), f= x'x and
fi=(x"Y.)xd..). Then fiof (by (K4)) and by (K2) and (K4),

X'¢,‘_/I = (x,e)¢f-f| = (x"//e‘e’)(e‘be.e’) = (x’d’e‘e’)e, = x,(l’e‘e'-
Dually, (R6) and the dual of (R5) are satisfied.

Lemma 3.6. The mappings @ UV satisfy (R7) and its dual.

Proof. Let xEL, yER;, hES(ef), X EV(X)NR,, g€ w'()No'(f), h =

https://doi.org/10.1017/50013091500016096 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500016096

140 J. MEAKIN

(xdle‘eh)(x"be,eh) and g1 = (x(lle.eg)(x’d’e.eg)' BY deﬁnition Of S(e,f)7 egw,eh and so by (RS)’
g21w"h,: we aim to show that

(Oen)(YPra)l Py = (Xt g)(yye)- (3

Let a = x4, b=y and a’ = x'¢p.: a’ € V(a) by (K4). Also a = xyf.., and b = ydyy
by (R3) and its dual. In addition, (W1), (K1) and Lemma 3.3 imply that x'¢,., =
X'PerdPnen = (eh)(x'¢p.n), and thus by associativity in the Rees groupoid containing h,
we see that hy= (X ) (X' Pren) = (X ) (X' P.r). Again, E(S) is a regular warp so
dg’.g” € E(S) satisfying the conclusions of axiom (W) (Section 1). In particular g’ « h,
so let ¢ = afng and d = by, By (K4), (ab)dhy,,, = cd where g>= (adn)Xa'dn,). The
proof will be completed by showing that

Dhey = Phyg 4
and

cd = (X X Ybr.5)- )

To prove (4) we proceed as follows. Note first that by using (W) and Clifford’s axioms
for a regular warp we see that 3hg’, ehg’, g’h and g'he in E(S) and so by (K1) and its
dual,

g2 = (xd’e‘h(,/h.g’)(x,¢e.h¢h.g’) = (xd’e.ehg’)(xld’e.g’he)
= (x'j/e.eg')(x,‘be‘g’h) = (xd’e,eg)(x’(be,g’h)-
Again, by the axioms for a regular warp 3(eg)(eh)=(eg)h in E(S) and since
eg¥g’ and 3Ig'h, it follows from the dual of Clifford’s Proposition 2.3 (2) that
egeh¥g'h. Hence by Lemma 3.3,

8= (x’«,’e.eg )(x ’¢e.eg'h ) = (x(//e.eg )((g’h )(X'd’e,egeh ))
= ((XPecgen)(€8))((8 ') (X" Pegen))  (since egehReg)
= (X(I’e.egeh )((eg )(g'h )(xl¢e.egeh )

by associativity in the Rees groupoid containing h. Note that (eg)(g’h) exists in the Rees
groupoid containing h and also (from the axioms for a regular warp) in E(S) and so by
associativity in E(S), (eg)g'h) = (egg’)h = egh = egeh. Hence

&2 = (X(I’e.egeh )((egeh )(x ,¢e.egeh )) = (xd’e.zgeh )(x’¢e,egeh)'

From the definition of g,, from Nambooripad’s definition of an w-isomorphism and
from (RS5) it follows that g, = g,h,, and hence from (R3), ¢y, ,, = @n,, as required. This
establishes (4).

To prove (5) we proceed as follows. Note first that (again by (K1) and the axioms
for a regular warp)

C=XPYerthhg = Xeeg and d = YOrsPrg = Ypngs = YPpnar-
Since hfgh¥gf we have (by Lemma 3.3 and the fact that eg = eg’)
cd = (X0 (M N YPrer)) = (xthegY(AIE ) (Y1)

(by (R3) and its dual). Again, using axioms for a regular warp we see that in E(S),
3(g'h)(gf) and g'hgf = hg"gf = hgf = hfgf, so by associativity in the Rees groupoid
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containing g,

cd = (xh.)(8"h)(8f N ydre)) = (xife )8 )y s e)
= (Xt )8'8" W ydre) = (Xt )8’ 8" (ybre))
= (X‘I’e‘g)(y(ﬁf.g)'

This establishes (5) and hence the lemma.

Lemma 3.7. E(S) is the partial regular band of idempotents of the regular
semigroup S(®, V).

Proof. We know from Nambooripad’s theorem that (E(S), o", ', 7) is the bior-
dered set of idempotents of S(®, ¥). Let ef € E(S). Then in S(®, ¥) we have
e - f=(e.n)fdrn) where h € S(e,f), so by (K2) and its dual, e - f = (eh)(hf) where the
product on the right-hand side is a product in the Rees groupoid containing h. From
Clifford’s axiom (R2) (for regular warps) and from his Proposition 3.1 of (2) and from
(W1) and (WS5) we see that Jef in E(S)iff 3(eh)(hf) in E(S) and in this case
ef =(eh)(hf)=e - f. Thus e - f in E(S)iff Jef in E(S) and in this case ¢ - f = ¢f as
required. The proof of Theorem 3.1 is now complete.

Remark. If S is a partial regular groupoid then Theorem 3.1 (and in particular
Lemma 3.7) tells us that the regular warp E(S) must in fact be a partial regular band.
The multiplication in the Rees groupoids S, induces a partial multiplication in E(S)
and a regular warp E(S) which extends this partial multiplication (induced by the
Rees groupoids S,) must be a partial regular band. This gives us a reasonable feeling
for the extent to which a regular warp approximates a partial regular band.

The majority of the research for this paper was done while the author was visiting
the University of St. Andrews, Scotland in the summer of 1976. The results were
announced at the Symposium on the Algebraic Theory of Semigroups held in Szeged,
Hungary in August, 1976.
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