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ON THE ERGODIC AVERAGES 
AND THE ERGODIC HILBERT TRANSFORM 

L. M. FERNANDEZ-CABRERA, F. J. MARTIN-REYES AND J. L. TORREA 

ABSTRACT. Let T be an invertible measure-preserving transformation on a a-finite 
measure space (X, /x) and let 1 < p < oo. This paper uses an abstract method devel­
oped by José Luis Rubio de Francia which allows us to give a unified approach to the 
problems of characterizing the positive measurable functions v such that the limit of the 
ergodic averages or the ergodic Hilbert transform exist for a l l / G Ifivdfi). As a corol­
lary, we obtain that both problems are equivalent, extending to this setting some results 
of R. Jajte, I. Berkson, J. Bourgain and A. Gillespie. We do not assume the boundedness 
of the operator Tf(x) = f(Tx) on LP(vd[x). However, the method of Rubio de Francia 
shows that the problems of convergence are equivalent to the existence of some measur­
able positive function u such that the ergodic maximal operator and the ergodic Hilbert 
transform are bounded from LP(vdn) into LP{udji). We also study and solve the dual 
problem. 

Introduction and results. Let (X, J, \i) be a u-finite measure space and let T\ X —» 
X denote an invertible measure-preserving transformation. This transformation defines 
an operator acting on measurable functions, denoted by the same letter T, and defined by 

(0.1) Tf(x)=f(Tx). 

For each nonnegative integer, n, we consider the averages 

(0.2) Tnf=(n+\rl£,1*f. 
k=0 

Associated to these averages we have the following maximal operator: 

(0.3) Mf=MTf=sup\Tnfl 

We also consider the ergodic Hilbert transform and the ergodic maximal Hilbert trans­
form, associated to T, defined by 

(0.4) Hf= lim £ ' X-Tkf 
n^°°k=-nk 
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and 

(0.5) H*f = suplf7 jT*A 

where the prime denotes omission of the 0-th term. The limit will be understood in the 
pointwise sense through all the paper. 

The maximal ergodic theorem asserts that Mf satisfies the inequality 

(0.6) ' jx\Mfrd^<CpJx\f\"d^ 

for 1 < p < oo. We also have a.e. convergence of the averages defined in (0.2) for 
functions in LP (dp). 

On the other hand, in [C], Cotlar studied the ergodic Hilbert transform. In particular 
it was shown that if 1 < p < oo and/ G LP (dp) then Hf exists a.e. and 

(0. 7) Jx \Hf\" d»<fx \m\p dp < Cp fx 1/f d» 

(easier proofs can be found in [PI] and [P2]). 
Several weighted versions of the inequalities (0.6) and (0.7) can be found in the liter­

ature (see [AT], [AM], [Ml]). 
Let us forget the measure p for a while and let us consider a new measure v such that 

T is a nonsingular transformation with respect to i/, i.e. \fv(E) = 0 then i/(T~lE) = 0. 
Then we could ask the following question: for fixed/?, 1 < p < oo, which are the finite 
measures v such that the averages T,/ converge a.e. for a l l / G Lp(dv)l This problem 
was treated in [MT] (see also [S]) for finite measures in the following way: since T is 
invertible, these measures are necessarily equivalent to a finite invariant measure, i.e, 
there exists a finite measure p such that T preserves the measure p and v — vdp for 
some measurable function v, 0 < v < oo a.e. (see [MT]). Therefore the problem could 
be reduced to the following: for a finite invariant measure p, characterize those positive, 
measurable functions v for which the averages defined in (0.2) converge a.e. for all the 
functions/ G If (vdp), 1 <p < oo. 

Analogously, it is considered in [GM] the problem of characterizing those positive 
measurable functions v for which there exists Hf(x) a.e. for every/ G Lp(vdp), 1 < p < 
2. 

The characterization found is the same in both papers, namely M(v /' • )(x) < oo 
a.e. Moreover, it is shown in [MT] that the condition is equivalent to the existence of a 
certain positive weight u such that M maps LP(v dp) into LP(u dp), obtaining in this way 
that the existence of the limit of the averages implies a dominated ergodic theorem with 
a change of measure. However the analogue result for H and H* could not be proved in 
[GM] although it was established the equivalence with a weighted weak type inequality. 

One of the main tools in the above mentioned papers is Nikishin's theorem (see [GR]), 
in fact this is the reason of the restriction/? < 2 for H in [GM]. The purpose of this 
paper is to review the problems studied in [GM] and [MT] and extend the results in both 
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papers under the scope of an abstract method developed by Professor Rubio de Franc ia. 
Our results include the study of the so called helical Hilbert transform, a more general 
operator than the ergodic Hilbert transform (see [AP] for its connection with Harmonic 
Analysis). The definition of the helical Hilbert transform He, 0 G R, is 

n ikO 
(0.8) Hé= lim £ ' — Tkf, 

and 

(0.9) Hlf=sup 
n>0 

n ikO 

l——„ K 

is the corresponding maximal operator, i.e. the maximal helical Hilbert transform. 
The first main theorem we shall prove is the following. 

THEOREM A. Let (X^.ji) be a finite measure space, 1 < p < oo, T\X —* X 
a measure-preserving transformation and v a positive measurable function. For each 
nonnegative integer n, let RJ denote either -^ E£=o Tkf or E'][=-« X Tkf where 6 G R. 
Let R*f — supw \Rnf\ and Rf = l i n v ^ / ? , / in the pointwise sense. (Therefore R* is 
either the ergodic maximal operator or the maximal helical Hilbert transform, and R is 
the limit of the averages or the helical Hilbert transform.) The following are equivalent: 

(a) For every f G LP(v d\i), Rf(x) exists almost everywhere. 
(b) For every f G LP(yd\i), R*f(x) < oo a.e. 
(c) There exist a positive measurable function u and a positive constant C such that 

for every f G LP {y dji) and all X > 0 

[ udfi<— f l/Tvd/i. 
J{xeX:R*f(x)>\} ~ \P JXV ^ 

(d) There exist a positive measurable function u and a positive constant C such that 
for every f G LP {y d/j,) 

J\R*/\"udfi<cJ\frvdti. 

[ ud\i<— [ l/fvrf/i. 
J{xeX:\Rf(x)\>\} - ~ \P JXV ' h 

JX ' ' JX' 

(e) There exist a positive measurable function u and a positive constant C such that 
for every f G UP {y d\i) and all X > 0 

C 
udu < 

!{xeX:\Rf(x)\>\} 

(f) There exist a positive measurable function u and a positive constant C such that 
for every f G LP (y dfi) 

fx\RfrudLi<cfx\f\»vdLi. 

(g) There exist a positive measurable function u and a positive constant C such that 
for every f G Lp(y d\i) and all X > 0 

C 
sup / udu < — / \f\pvdii 
n^J{xeX:\RJ(x)\>X} r ~ \P JXU^ 
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(h) There exist a positive measurable function u and a positive constant C such that 
for every f G If {y dp) 

supf\RlJYud^<cfWf'vdn. 
n>0 JX JX 

i _ 

(i) Mv p~l (x) < oo a.e. 

We should mention that Theorem A was known for the ergodic maximal operator 
M defined in (0.3) (see [MT]), and partially for the Hilbert transform if 1 < p < 2 
(see [GM]). We shall give a different and unified approach to the proof that allows to 
conclude the result for 1 < p < oo for the ergodic maximal operator and the ergodic 
Hilbert transform. We should also remark that the equivalence with the statements (c) 
and (f) was not shown in [GM], even in the case 1 < p < 2. Therefore, the approach 
of this paper gives that the existence of the ergodic Hilbert transform Hf (or the helical 
Hilbert transform) for a l l / G If (y dp), implies that H and H* are of strong type (p,p) 
with a change of measure. 

One of the interesting points of Theorem A is the equivalence of (i), (a) applied to 
Rnf = E ' L - H X 7 * / and (a) applied to RJ = ^ £Lo Tkf This gives the following 
corollary. 

COROLLARY. Let (X, f, p), p, T and v be as in Theorem A. Let 9 be a real number, 
then, the limit of the sequence linv^oo -^ T,nk=0 Tkf{x) exists a.e. for all f G Lp(vdp) 
if and only if the limit of the sequence lim^oo Yl,fl=-nirTkf(x) exists a.e. for all f G 
Lp(vdp). 

The equivalence of the corollary has been studied recently in the setting of operators 
T not necessarily induced by pointwise transformations. In [J] R. Jajte proved that the 
equivalence holds for unitary operators on LP, and in [BBG] this result is extended for 
invertible operators on Lp, 1 < p < oo with sup„eZ ||r"|| < oo. We should remark that 
the result about pointwise transformations studied in the present paper is not a particu­
lar case of the corresponding in [BBG] because the operator Tf(x) — f(Tx) induced by 
a measure-preserving transformation does not need to satisfy that sup„eZ ||r"|| < oo, 
where the norms are taken in our spaces Ifiydp). In fact, it is possible to give an exam­
ple of a measure-preserving transformation T such that the averages are not uniformly 
bounded on Lp(yd\i) but the limit of the averages ^ E^=0 T

kf and then the ergodic 
Hilbert transform Hf exists a.e. for a l l / G Lp(vdp) (see [M2]). Moreover it can be 
proved that if T:If(ydp) —> Lp(yd[i) is induced by a pointwise ergodic transformation 
such that sup„GZ || T11| < oo then v is essentially constant, and therefore, this case reduces 
to the classical one. 

Let us point out here that the case/? = 1, 0 = 0 of the corollary has been obtained in 
[GM, Corollary 2.11]. 

Theorem A can also be viewed as the answer to the following question: Given a pos­
itive weight v, under which conditions on v, does there exist a positive measurable func­
tion u such that for a l l / G Lp(vdfi) 

jx\Rffudn<CJx\fYvdti, 
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where R is A4, Hy or H*el As Theorem A shows, the answer is the same for all these 
operators. The second main result of this paper answers the dual problem, i.e., given a 
positive weight u, under which condition on u does there exist a positive weight v such 
that for a l l / eU\vdp) 

jx\RffudiL<CJx\ffvdiL9 

where R is as above? 

THEOREM B. Let (X,f,fi) be a finite measure space, 1 < p < oo, T:X ~> X 
a measure-preserving transformation and u a positive measurable function. For each 

nonnegative integer n, let R,xf denote either ^ E£=0 T
kf or £'*=-« T" Tkf where 6 G R. 

Let R*f = supw \RJ\ and Rf = 1 
im/7-̂ oo Â?/" ^ the pointwise sense. The following are 

equivalent. 
(a) There exist a positive measurable function v and a positive constant C such that 

for every f G U\v d[i) 

fx\RfYudn<CJx\fYvdti. 

(b) There exist a positive measurable function v and a positive constant C such that 
for every f e Lp(i/ dp) 

lx\R*ffud\i<c\x\fflvd». 

(c) There exist a positive measurable function v and a positive constant C such that 
for every f G Lp(y d[i) 

sup [\Rnffudp<C I"v\f\
pvdp. 

/7>0 JX JX 

(d) Mu(x) < oo a.e. 

The organization of the paper is as follows. In Section 1 we collect the technical results 
that we shall need for the proofs of Theorems A and B that we shall give in Sections 2 
and 3. In what follows, the letter C will always mean a positive constant not necessarily 
the same at each occurrence, and if 1 < p < oo then// will be the conjugate exponent, 
i.e., the numberp1 such that/? + p' = pp1. 

1. Technical lemmas. We shall need the following definitions and lemmas about 
the maximal function and the helical Hilbert transform on the integers. 

DEFINITIONS 1.1. If a is a real-valued function on Z (the set of all integers) we define 
the one-sided Hardy-Littlewood maximal function ma on Z by 

1 I n I 
ma(j) = sup — - ]£ a(J + k)\, (j G Z). 

„>o n + 1 lA = 0 I 
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On the other hand, we define for 0 G R the helical Hilbert transform hBa and the maximal 
rotated helical Hilbert transform h*Ba on Z by 

n eikO 

hea(j)= lim £ ' ~T^ + k\ ( / e Z ) 

and 
\JL. PM 

'L ( /GZ) . h*Ba(j) = sup £ ' - r a ( / ' + *) 

respectively, where the prime denotes omission of the 0-th term. Therefore, AW, /*# and 
/^ are, respectively, the ergodic maximal operator, the helical Hilbert transform and the 
maximal helical Hilbert transform associated to the transformation on Z given by k —» 
/c+1 which preserves the counting measure. In what follows 1{S) will denote the counting 
measure of S. 

LEMMA 1.2. The following inequalities are true for 1 < p < oo. 
(7.3) 77zere exists C such that for any A > 0 and any sequence {an}n of functions on Z 

UP \\ C ™ / °° , , \1/P 
71 

' , , OO , \ p x \ £ 0 0 , 0 0 x l 

{/ : (E ha„(/-)r) > AJ] < ̂  E J E k(/)l") 

(7.4) 7%ere em/s C swc/z that for any A > 0 and any sequence {an}n of functions on Z 

{/' : E l̂ ««(/-)lP > A < y E ( E \«MP) • 

PROOF. We observe that the space Z endowed with the distance d(ij) = \i — j \ 
and with the counting measure 7 is an space of homogeneous type and therefore, (1.3) 
is nothing but saying that the Hardy-Littlewood maximal operator m maps LJP(Z) into 
weak —L]P(Z), 1 <p < oo, see [RT]. 

In order to prove (1.4) it will suffice to establish the inequality for 9 = 0 (the case 
of the Hilbert transform on the integers). It is known that h$ is bounded from L2(Z) into 
L2(Z) (see [HMW] for a proof). This says that ho is a Calderon-Zygmund operator in the 
space of homogeneous type (Z,t/,7). Therefore, ho and /?Q, see [RT], are bounded from 
L)P{Z) into weak -Z | (Z) . 

DEFINITION 1.5. If {an}n is a sequence of real valued functions on Z we define 
m\a^) on Z by 

oo 1 0 

m\an)(j) = £ — r £ «„(/ + *), (/ ^ Z), 
w =0 ^ "•" [ k=-n 

and hfian) by 
OO « £/*0 

/#(«„)(/) = E E' T«»(/' + *), (/' G Z). 
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REMARK 1.6. We observe that the operator m (respectively h*e) defined in (1.1) is 
bounded from Lp

q(Z) into Lp
q(Z) for 1 < p, q < oo if and only if the sequence valued 

operator 

W = - T 7 £«(/ + *) 
ln+ 1 tl )n 

(respectively the sequence valued operator h*ea(j) — {E '^ -^y^ l / " + k)}n) is bounded 
from Lp

q{Z) into Lp
q([00)(Z). To see this, we observe that 

ma(j) = \\ma(f)\\i°o mdh*ea(j) = \\h*ea(i)\\i» 

On the other hand, it is easy to check that the operators ml and h*0
( are the transpose 

operators of m and h*Q. Since m and h^ are Calderon-Zygmund operators on the space 
(Z, d, 7) of homogeneous type then m and ^Q are bounded from Lq

lP(Z) into L^(/X))(Z), and 
therefore, by duality, ml and h* are bounded from ẐJ ;1 (Z) to Lq

[p(Z). But ml and Z?̂  are 
again Calderon-Zygmund operators and therefore they map L|/;(/1)(Z) into weak —L)P(Z\ 
1 < p < oo; in other words the following inequalities are true for 1 < p < oo and 
A > 0 : 

(i-7) T({/- : ( E kK„)(/)l") > A)J < ^ . E J E ( E k„(/)l) ) , 

(i.8) 7[{y : ( E I^K«)(/)r) > A}) < x . E J E ( E k«(/)l) J • 
It is also clear that (1.8) holds with hg instead of /ZQ, /.e. 

( ( / °° \ JIP \ \ £ 0 0 / 0 0 , 0 0 , ; A !// ; 

(1-9) 7({/' : ( E I^(«M)(/")I") > A)J " Â - I L ( S C I i |a*'"(/')i) ) ' 
DEFINITION 1.10. Assume that s is an operator defined on functions a: Z —> R as 

5fl(/) = sup|fwa(/)l 

where /„ is a family of linear operators acting over functions a: Z —* R. We shall denote 
by S2>- the "truncated" operator 

s2ra(j) = sup |*„fl(/)| 

Analogously, ifV is defined over a sequence («„): Z —» RN as 

s\an){j) = Y, tna„(j), 
n=0 

we shall denote by ŝ , the operator 

r 

n=0 

Observe that if tna(j) = -~ T,nk=0 a(k + j) then s is the maximal operator m, and if 

tna(j) = -±Ï E2=-/i a(/ + k)then 5 ' i s w '- Analogously, \ftna(j) = E'nk=^nÇa(j + k) then 
5 is /ẑ  and sl is /z^. 
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PROPOSITION 1.11. Assume that w: Z —> [0, oo] is a positive function, 0 < s < 1 < 
p < oo, k G N. 

(i) If we denote by s> either the truncated maximal function or the truncated maxi­
mal helical Hilbert transform on the integers then the following inequality holds 

(1.12) 

E (YJ\sAanX[^x,])(j)\p)S'P 

2r-l<\i\<2r V n J 

s«"-f,(nW £ W")""(s £ K«M"" 
« /=-2'M 

(7z) If we denote by S?2r the truncation of any of the operators defined in (1.5) then the 
following inequality holds 

(1.13) 

( ln\s/P 
J2\Sr(ankX[-2>+\2^] |02 rV l*«/cA[-2 r r i ,2 r r |J/Vy| 

2 ' - , <| / |<2 ' - v A: 

s/p 

s « " - " ( r ^ É (»<o)-'7')'"ÏE E (EMOI)VO) 
v x ^ z /=-2'-+1 Vi t / = - 2 ' + l n J J 

PROOF. The proofs of (1.12) and (1.13) are the same. They use as the main step 
Kolmogorov condition, see [GR,V.2.8], and afterwards inequalities (1.3), (1.4), (1.7) and 
(1.8). We shall prove (1.12) in the case that s is the maximal function defined in (1.1). 

As we said above, by Kolmogorov condition and (1.3), we have 

/ \S/P 

E ( E \m2'(anX[-T+\2^)(J)\P ) 
2'-'<[/'|<2'- V n J 

1— ( °° / \ 1 lp\s 

<C(7({/-:2-' <|/1<2'-}))1-î^Eo(Çk(0P'X[-2-,2-](0) J 

= a*-v(i-ï £ (EM/rx^+,2,1](o)'Vo)%(orv'V 
V /=—oo n J 

<cz»-ï>(i-ï{ E EMOIMo) '^ £ (KO)^"')"']' 

<C2!^(Z g |an(/)|"w (/))^(-^ g (-(O)^7^ 
/=_2,+1 / Vl+2«/=f^ 

where in the two last inequalities we have used Holder's inequality and the definition of 
m. 

Now we introduce the concept of ergodic rectangle and state a lemma proved in [Ml]. 

DEFINITION 1.14. Let T: X —> X be a invertible measure preserving transformation 
and let s be a positive integer. The measurable set B C X is the base (with respect to T) 
of an ergodic rectangle of length s if TB D VB — 0, / ^j, 0 < /,y < s — 1. In such case 
the set R — Uo</<s-i ^B will be called ergodic rectangle with base B and length s. 
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LEMMA 1.15. Let Y be a measurable subset ofX and let k be a positive integer. Then 
there exists a countable family {£/ : / G Z+} of sets of finite measure such that 

(i) Y = \J£aBi 

(ii) BiHBj^teifi^j 
(Hi) For every i, B[ is the base of an ergodic rectangle of length s(i) < k and such that 

ifs(i) < k then TS^A — A for every measurable set A C B[. 

Now we state the result of Rubio de Francia in the version that we shall use, see [FT]. 

THEOREM 1.16. Let (Y,d) be a measure space, F and G Banach spaces and let 
{Ar}

(£L_0O be a sequence of disjoint sets in Y such that Y — \J£L_OQAr. Assume that 
0 < s < p < oo and T is a sublinear operator which satisfies 

MP UP 

/ WLs{Ar,dv) V • / 
(1-17) 

j 

where for each r G Z, Cr is a constant depending on G, F, p and s. Then there exists a 
positive function u on Y such that 

i, Y\\Tf(x)\\p
Fu(x)dHx)<C\\f\\G 

holds. 

2. Proof of Theorem A. We shall prove this theorem as follows: (g) =4> (i), (a) => 
(b) =» (i) =» (d) => (c) => (a), (d) =» (f) => (e) =» (a), (d) => (h) => (g). 

We first observe that the implications (a) => (b), (d) => (c), (f) => (e), (d) => (h), 
(h) =̂> (g) are obvious. Second, (c) implies (a) because of the weak type inequality (c) and 
the Banach's principle since Rf exists a.e. for a l l / G Lp(v dp) Pi Lx(dy) which is a dense 
class in Lp(vdfi). In the same way, (d) implies the existence of Rf for a l l / G LP{vdp) 
and then it is obvious that (f) holds. It is also clear (e) => (a) because statement (a) is 
included in statement (e). 

In order to complete the proof we have to prove (g) => (i), (b) ^> (i) and (i) => (d). 
(g) =̂> (i). For every positive integer k, let {B^ : / G Z+} be the sequence given by 

Lemma 1.15 for X and an integer sufficiently large, for example 4k. Let s(i,k) be the 
length of the rectangle with base B^. We consider X — YUZ where 

oo , 

Y=f)( U % 
k=\ y{i:s(i,k)=4k} 

and 

z=U U % 
k=\ {i:s(i,k)<4k} 

It is clear that Mv~~x (x) < oo a.e. in Z (see [GM]). Now we will prove that (i) holds for 
almost every x in Y. Let us fix a positive integer k and let Bik be a base of a rectangle 
with length s(i, k) = 4k. For each integer r we define 

E^r = {* e S a : 2r+[ < \ E v~^{Tx) < 2'+2 
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and for a measurable set E C E^r with [i{E) > 0, let ^ be the rectangle with base E 

and length k, i.e. ^ = Uo</<*-i VE-
Let g be the function with support on ^ defined by 

g(Tlx) = e-uev-{/p-\?x) if 0 < / < £ - 1 andx E £. 

Then if Rnf(x) = ££=-„ ^ / ( ^ J C ) we have for -k <j < 0 andx G £, 

l^g(^)| = 
2£ g/70 |A-1 e / ( / -7)0 

E T « = E W ^ 
k-\ e~ij0 , , i *-l , 

/=o z - y ' 2 / : /=o 

Now, if Ryfix) = £ Z"~of(Tlx) we take g = v " 1 / ^ 1 ^ and then for -A: <y < 0 and 

I%(^) |> | /EV"^(^) . 
z / t /=o 

Therefore, in both cases we have a function g such that \g\ = v~/~ x ^ and 
1 k~x i 

|^2Ag(^x)| > — E V"FÎ(7VJC) forx G £ and - k <j < 0. 
2^ /=o 

Then, by the definition of Ei^r 

\R2kg(Tjx)\ >2r for x G £ and - k <j < 0. 

Consequently, it follows from (g) that 

/ ,_, ud\i < 2 rpC I lk, v /-' rf/x 

that is 

2r/7 /" E u(TJx)dfi(x) <C f E v ~ïLj(Tjx)dfi(x) 
jEj=-k jEj=0 

Therefore, by the definition oïE^r we n a v e 

/ , ( T E v-^(Tlx))P\ E u(Tx)dii(x) < 4PC [ - E v-^(Px)dKx) 

and, thus, we obtain that there exists a constant C such that for almost every x in B& 

f\k~x i • \p-\ 1 - 1 

and, therefore, for a.e. x in Y and every positive integer k. 
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On the other hand, assuming without loss of generality that u G Lx(djj) and u < v, 
we get by Birkhoff's ergodic theorem that 

1 -I 
0 < lim - ]T u(Px) = a(x) < oo 

£—>oo K ;=__£ 

Therefore 

and then 

i * - ! i / r \-Li 
hms 

k-
i sup - V v />-> (Px) < ( —— )P ' a.e. x in K 
-.oo £y=o \a(x)J 

Mv p-] (x) < oo a.e. x in F. 

(b) => (i). If 1 < p < 2 we can use Nikishin Theorem, see [GR], and then we obtain 
(g) for 1 < p < 2 and therefore by the above proof we get (i). 

If 2 < p we have 
L\wdii) C Lp(vdp)+Ll(dn) 

where w = v™1. In order to prove this inclusion we take a nonnegative/ G L (wdfi) 
and define 

f=g+h 

where g(x) =f(x) if/(x) < v p~l (x) and 0 if/(x) > v p~l (x). The following inequalities 
prove that g£lf(v d/i): 

/ ^vd\i — I g2v/7^Tg/?~2v/,-1 dji < I ^v~[ dji < lf2wdfi < 00. 

In order to see that h G Lx(d\i) we apply Holder inequality and we set 

<(//w^) l / 2(4W0}^-"^)1 /2 

< ( / / ^ ) , / 2 ( ^ } * 2 - v ^ < / A i ) , / 2 < / / - < o o . 

Once we have proved L2{wdji) C LP{vdp) + Lx{dji) with w = v 1 /^ 1 we proceed as 
follows. By (b), the inclusion and the classical fact that R*f(x) < 00 a.e. for every/ G 
Ll(dfi) we obtain R*f(x) < 00 a.e. for every/ G I2(w), z.e., we have (b) for/? = 2 and 
the weight w. Then, by the case/? = 2 of the implication (b) => (i), we have Mw~~x(x) — 
Mv p-1 (x) < 00 a.e. 

(i) => (d). For each r G Z we consider the invariant set 

Xr = jx : T < limsup —!— ]T V"^(7*JC) < 2r+1 

It is clear that A" = U^-oo^- anc* m e s e t s Xr
 a r e pairwise disjoint. 
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By using Theorem 1.16 it is clear that in order to prove (d) it is enough to prove that 

(2.1) l i f e \Rjjr)>/P\\ < C £ [\fj(x)\"v(x)dKx) 

in other words we take Ar = Xr,F = C (the complex numbers), G = LP{yd\i) and 
T = R*. 

By Fatou's Lemma it is clear that in order to have (2.1) it is enough to show 

(2.2) ( E Kfj\P)>/P\\ < CrZ [\fj(x)\PV(x)dn(x) 
\ ; / WLHXrdu.) ; JX 

where we denote by R^f, k = 0,1,2, . . . , the truncated operator 

R*2hf(x) = sup|/y(*)| , 
n<2k 

and Cr is a constant independent of &. 
We now prove (2.2). Given a function g:X —+ C a n d x G l w e define the function 

g*: Z -> C by g*(/) = g(7V). Given A: = 0,1,2,3, . . . we consider Sk = {i G Z : 2*"1 < 
|/| < 2k}. Since T is a measure preserving transformation and Xr is invariant, we have 

s/p 1 \5//> 
L (E i^wr)' ' ̂ w = ôï £ /r (E i^(^)h P Mxy 

JXr\ j / ^ 2 * - ' < | / | < 2 * ^ v y y 

Assume now that Rtf(x) = -^ ELo/T?7*); therefore R*2k = M2* (the proof is the same 
in the other cases). Observe that if / G Sk then 

M2kfj(Tlx) < w2*(/;*X[-2<+',2*+']X0 

Therefore, by using Proposition 1.11 with w = Ve and Holder inequality, we have. 

I A E (El^wf '^ 
•/A,Z 2*-><|/|<2*V j 7 

v,/ 
\x({MT + MT-s)v~-^x)yKs) dii(x)) 

• f i / r E £ VATlx)fv(Tlx)d^x)XIP 

where in the last equality we have used that T is a measure-preserving transformation. 
- _L/£V . Finally, we observe that as /3 = 4(f )' < 1 we have 

V0 
( ^ [(Mrv~Fî +Mr-,v~Fï)(jt)f J M W ) < ( M W ) ÏÏ ' | |M rv~^ +Mr_. v \\Ll(d^X) 
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where ||/l|/j(dju) is the weak— Lx norm of w. Then since Mj+MT\ is of weak type (1,1) 

For the last inequality see [GM]. This ends the proof of (2.2) and therefore the proof of 
(i) => (d). 

3. Proof of Theorem B. We shall make the proof as follows: (a) => (d) => (b) => (c), 

(b) => (a) and (c) => (d). First, we observe that (b) => (c) and (b) => (a) are obvious. 

On the other hand, by duality, (a) is equivalent to 

Jx\RT^f(xt'(v(x)YP'/pd^x) < Cjx\f(x)fu-Ux)d^x) 

where RT \ is the same operator as R but defined with respect to the transformation T {. 
Therefore, by Theorem A, the weight u~~p' lp must satisfy 

MTx[{u'p'lpY^](x) < oo a.e. 

i.e. 
1 n 

sup Y^j u(T~kx) < oo a.e. 
«>o n + 1 k=0 

but this is equivalent to Mu(x) < oo a.e. which is (d). Therefore (a) => (d). In the same 
way it is proved (c) => (d). 

Now we shall prove (d) => (b). We define the operator R*1 acting on sequences of 
functions (fn) by 

oo 

R*'(f„){x) = Z^Mx). 
n 

R* maps Lp(yd[i) into Lp(ud[i) if and only if the operator 

f^{Rrfh 

maps Lp(yd\i) into Lp
loo(udn), and therefore, by duality, if and only if R** maps 

LpAu~p'lp dfi) into Lp\v~p'lp d\i). We can apply to the operator R** the techniques de­
veloped in the proof of Theorem A and by using (1.12) , (1.13) and Theorem 1.16 
we can conclude that /?*' maps Uj^u-P'/Pdn) into Lp\vp'lpdii) if u~p'lp satisfies 
M([u~p///?)_l/(/?/-1))(x) < oo a.e., but this is exactly condition (d). 
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