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Abstract

Ambiguity, in the decision-theoretic sense, means that agents are unable to identify unique
probabilities for some events that they care about. Ambiguity characterizes many real-life
situations, but many important questions surrounding it are still open. Descriptively, we
know that people typically perceive and are sensitive to ambiguity in certain kinds of
situations. Intuitively, this is well justified. Normatively, however, many think that
ambiguous beliefs and ambiguity sensitivity are irrational. This raises questions such as:
Why are people sensitive to ambiguity? Does it lead to inferior decisions, in particular
given people’s usual decision environments? An interesting clue is that there are many
examples of social contexts in which ambiguity benefits everyone involved. Hence, we
investigate the possibility that ambiguity sensitivity is ‘ecologically rational’ or adaptive in a
multi-agent, strategic setting. We explore the viability of ambiguity sensitive behaviour
using evolutionary simulations. Our results indicate that ambiguity sensitivity can be
adaptive in strategic contexts, and is especially beneficial when agents have to coordinate.

Keywords: ambiguity; decision criteria; evolutionary selection; coordination

1. Introduction

Within decision theory, one major distinction is between theories or models with
only risk, and those with ambiguity. These models are distinguished according to
whether agents always have a unique probability distribution over all decision-
relevant events (risky models/agents), or not (ambiguous models/agents). Imagine,
for example, an agent trying to decide whether to hand money over to another
agent, and therefore estimating the probability that the other agent would in turn
hand over the goods. Perhaps it is the agent’s first black market transaction, so that
the agent does not know how likely a successful transaction really is; they don’t have
prior experience to base their expectations on, and nobody is collecting and
publishing statistics. An ambiguous agent does not reduce her belief to a single
probability distribution over the events and may for instance believe that the success
probability is between 0.5 and 0.9, while a risky (or non-ambiguous) agent instead
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always believes that the success probability is precisely 0.7, or precisely 0.8759, or
similar. This paper addresses the long-standing but still unsettled question of the
status of ambiguous beliefs. Are agents with such beliefs rational? Do they get better
or worse results? Specifically, we address the question of whether non-ambiguous
beliefs are better in an evolutionary sense: would a process of natural selection in a
competitive environment prefer agents with non-ambiguous beliefs, hence
eliminating ambiguous agents from the population?

Ambiguity is an important phenomenon. First and foremost, people regularly
face situations in which probabilities are not given. Furthermore, the empirical
evidence makes clear that real people typically reveal ambiguous beliefs in some
kinds of situations (Ellsberg, 1961; Trautmann and van de Kuilen, 2016). This
means that the ambiguous beliefs affect people’s behaviour; for example, if our agent
contemplating their black market transaction is ambiguity averse, this may lead
them to go home rather than to hand over their money, even in cases where a
counterpart who did not perceive or did not dislike ambiguity would have gone
ahead with the transaction. For this reason, economists have been studying
ambiguity empirically, developing theoretical models of decision under ambiguity,
and incorporating ambiguity into analyses of economic phenomena more and more
over the past decades (see Etner et al. (2012) for a survey). In short, ambiguity is
important to economists primarily because it in fact greatly influences people’s
decisions.

Philosophers too have increasingly incorporated ambiguity into their research,
typically focusing on the question of whether rationality permits or even requires
agents to have ambiguous beliefs and to be sensitive to ambiguity. The key intuition
behind the rationality of ambiguous beliefs is that ambiguous beliefs best reflect the
agent’s evidence in many if not most situations (see e.g. Joyce 2005; Gilboa et al.
2009; Joyce 2010; Gilboa 2015; pace Carr 2020). Suppose, for example, that I have
asked two friends how reliably my intended exchange partner hands over the goods
when I hand over the money, and one friend says “fifty-fifty” while the other says
“90%”. Suppose that the two friends have otherwise similar and lengthy experience
with these transactions, and that it isn’t clear why one has a better success rate than
the other. I therefore also can’t judge whether the exchange partner is going to treat
me like the 50% friend (maybe because we have the same gender), the 90% friend
(we are part of the same ethnic group), or in some other way. In such a case, the
argument goes, it makes sense for my belief to reflect the range of success
probabilities, and not necessarily its midpoint or any other point between the two.

However, the normative status of ambiguous beliefs remains controversial within
philosophy. For example, one argument against the rationality of ambiguous beliefs
comes from epistemic utility theory; ambiguous beliefs have been shown not to
maximize expected accuracy in that framework, given the assumptions usually made
by epistemic utility theorists (Schoenfield 2017; Berger and Das 2020; see also
Seidenfeld et al. 2012; Mayo-Wilson and Wheeler 2016). It has been shown,
however, that different assumptions about epistemic value can yield different
verdicts about ambiguous beliefs (Konek 2019). The economics literature discusses
another important concern, namely that agents with ambiguous beliefs are subject
to dynamic inconsistency (Epstein and Le Breton 1993; Ghirardato 2002; Al-Najjar
and Weinstein 2009). Further research has qualified this claim, though, for example
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by specifying conditions under which dynamic inconsistency cannot arise or even
questioning the interpretation of the purported examples in which it does arise
(see e.g. Epstein and Schneider 2007; Hill 2020).

Even if we set aside these normative debates, our understanding of ambiguity is
in an important respect partial, and in a respect that both economists and
philosophers should care about. To understand the deficit, consider that there are
two main general approaches to rationality, which we will refer to as classical
rationality and ecological rationality (cf. Rich 2016). Both philosophy and
economics have expended significant effort, and made significant progress, in
investigating the classical rationality of ambiguous beliefs and ambiguity sensitivity.
This includes the development of axiomatic theories of ambiguity sensitive
behaviour, which represent the agents as having coherent preferences (for early
examples, see Schmeidler 1989; Gilboa and Schmeidler 1989); the formulation of
abstract rules of rationality, such as to respect one’s evidence, to choose consistently
over time, or to maximize expected belief accuracy (as discussed above); and Dutch
Book arguments, which address the theoretical possibility of being subjected to a
sure loss (Diecidue and Wakker 2002; Bradley 2012; Coletti et al. 2019). The
ecological rationality of ambiguity, however, is not well understood.

Ecological rationality is fundamentally about the (expected) success of the agent’s
decisions or reasoning, given their environment (see e.g. Gigerenzer 2000;
Gigerenzer et al. 2011). As Simon (1990) famously wrote, “[h]Juman rational
behavior ... is shaped by a scissors whose two blades are the structure of task
environments and the computational capabilities of the actor.” In contrast to
classical rationality, ecological rationality does not depend on whether the agent
shows coherence, but rather on whether any incoherence carries actual costs (Arkes
et al. 2016); it does not depend on whether an agent could be exposed to a sure loss
in principle, but on whether they are actually expected to lose or gain as a result of
their choices, which is a separate question (Berg et al. 2008, 2016; Rich 2018b). Since
economists are ultimately interested in actual economic choices and their impact,
the real world consequences of ambiguous beliefs should clearly matter a lot; this is
also evident in the large economic literature on ambiguity which focuses on
modelling it, measuring it, and understanding its consequences, and not on deciding
questions of ultimate normative rationality. For philosophers, the ecological
rationality of ambiguous beliefs matters for two reasons. First, philosophers have a
strong direct interest in making normative judgements, and when it comes to
rationality, classical rationality simply doesn’t tell the whole story. Philosophers
(should) care about rationality for real people in the real world and not just about
idealized beings in a hypothetical world, and this means evaluating ecological
rationality too. Second, philosophers’ judgements about rational beliefs and
decisions feed into further research where these judgements serve as an input. For
example, philosophers often assume rational agents to be expected utility
maximizers (and hence, not ambiguity sensitive), but different assumptions
about rationality can yield different downstream conclusions (see e.g. Rich 2021).
Hence, answering basic questions about whether agents’ responses to ambiguity are
likely to help or to harm them is of broad, cross-disciplinary value.

In this paper, we explore a way in which ambiguity can be conducive to ecological
rationality, by improving outcomes in contexts which are especially important for
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humans. Our starting point is new analyses of ambiguity in social and strategic
contexts. These arguments go beyond appeals to intuition or principles and show
that in some cases agents can be better off from a utility perspective when ambiguity
is enabled. Not only can agents benefit by keeping others uncertain of their own
strategies (Greenberg 2000), but better outcomes for all can become possible with
the introduction of ambiguity (Binmore 2009; Jamison and Karlan 2009; Riedel and
Sass 2014; De Castro and Yannelis 2018). In particular, it has been shown that
ambiguity can help or improve coordination (Eichberger et al. 2009; Agranov and
Schotter 2012) and cooperation (Riedel and Sass 2014; Eichberger et al. 2018) in
some kinds of games. Hence, in evaluating agents with ambiguous beliefs, it is
important to look beyond the individualist context and consider benefits to
ambiguous beliefs that only arise in multi-agent settings.

Ecological rationality does not deem a decision or reasoning strategy to be flat-
out rational or irrational, neither on the basis of abstract arguments (like classical
rationality) nor on the basis of isolated examples like those appearing in the papers
above. Instead, an ecological rationality judgement is always comparative (relative to
alternative cognitive strategies) and contextual (relative to a specified environment)
(Rich 2018a). This means that to robustly assess the ecological rationality of
ambiguous beliefs, for example, we need to measure the performance of agents with
ambiguous beliefs against the performance of agents with salient alternative beliefs,
relative to a clearly specified, ecologically important, and reasonably broad
environment — such as coordination games. In this way, we can form a general
picture of how well the ambiguous agents can be expected to do in the environment
in question. Our evolutionary modelling approach allows us to do this - it allows us
to study salient classes of choice problems and to track the relative performance of
different cognitive strategies (most importantly, both ambiguous and non-
ambiguous ones). It also, of course, provides understanding of what cognitive
strategies would be favoured by natural selection in the given environments, and can
therefore contribute to explanations of humans’ observed responses to ambiguity.

This paper therefore uses evolutionary simulation models to study the
consequences of natural selection for ambiguous and non-ambiguous agent types
in a varied strategic environment, similar to the one in Galeazzi and Franke (2017)
and Galeazzi and Galeazzi (2021). Relatedly, Eichberger and Guerdjikova (2018) and
Schipper (2021) study optimism and pessimism (opposing ambiguity attitudes) using
evolutionary models; the former use the replicator dynamics, while the latter look at
evolutionary stability. Here we use agent-based models and we focus on the contrasts
between non-strategic, strategic and coordination problems (due to the intuition that
ambiguity helps agents to coordinate).! We affirm the previous finding that
ambiguous agents can survive evolution, and additionally show that ambiguous
agents do better in strategic situations than in single-agent choice problems, and in
particular can do far better than expected-utility agents when coordination is
rewarded. This fits well with the examples in the literature in which ambiguity helps
agents to coordinate, and supports the hypothesis that this is a fairly general
phenomenon rather than a feature of the particular games which have been studied.

ISee also the Appendix for the corresponding results in the evolutionary game theory setting.
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The remainder of this paper is organized as follows: section 2 explains the models
we use, in particular the (ambiguous and non-ambiguous) strategies present in the
population and the environment in which the agents interact. Sections 3, 4 and 5
present the results of our simulations for single-agent decision problems, generic
games and coordination games, respectively. Section 6 then presents results for a
specific kind of coordination game inspired by the literature on linguistic ambiguity.
Section 7 concludes.

2. The Model
2.1 Agent Types

The population includes agents of different types, where the types are characterized
by different ways of selecting actions. There are four classic decision criteria that we
consider here: maxmin expected utility, expected utility maximization, realization-
regret minimization and distribution-regret minimization. Arguably, this list
includes some of the most important decision criteria in the literature. The expected
utility maximizer is the most important type in decision theory and economics in
general (von Neumann and Morgenstern 1944; Savage 1954). The maxmin criterion
has been extremely relevant in decision theory and statistics (von Neumann and
Morgenstern 1944; Wald 1945, 1950; Gilboa and Schmeidler 1989), while regret
minimization has also been advanced as an empirically supported variant (Loomes
and Sugden 1982) and even named ‘a bold alternative to the alternatives’ (Bleichrodt
and Wakker 2015).

Two other criteria, a random type and an altruistic type, are added to the
population on top of the classic four above in order to have more diversity in the
population, and in the case of the random type also as a control. Of these types,
expected utility maximization and its altruistic variant are non-ambiguous, as
they have probabilistic, non-ambiguous beliefs; maxmin and realization- and
distribution-regret minimization are ambiguous types, since they use sets of
probabilities as their beliefs. Since the random type does not use any beliefs, they fall
into neither category. All these criteria are formally defined below.

In general, a decision criterion can be defined as a function

Decision Criterion: Utilities x Beliefs — Actions

which associates a utility and a belief with an action choice in a decision problem
(S,A, Z, f) where S is the set (which we can assume to be finite for our current
purposes) of possible states of the world, A is the set of actions of the decision maker,
Z is the set of outcomes and f is the outcome function

fiSxA—Z
In decision theory, utilities u are usually represented by a function
uwzZ—R

and beliefs B can be represented in different ways, such as a set of states BC §, a
probability distribution B € A(S) over the states, or a set of probability distributions
B C A(S). Here we adopt the last representation, to allow agents to have ambiguous
beliefs.
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The criteria used within the population can then be defined as follows. Expected
utility maximization, axiomatized by Savage (1954), implies that the belief set B is a
single probability measure p € A(S), and it selects an action a* that maximizes the
expected utility:

a* € argmax,e,E,[ulal
where
Eylulal =) " u(f(s, @))p(s).
se§

Maxmin expected utility, axiomatized by Gilboa and Schmeidler (1989), prescribes
picking an action a* that maximizes the minimum expected utility given the belief
set B

« .
a* € argmax,cu r;lgg E,[ula].

Realization-regret minimization is the version of regret minimization that has
gained the most attention in decision theory through the axiomatizations in Hayashi
(2008) and Stoye (2011). Given a probability measure p € A(S), the realization-
regret of an action a € A is defined by

r(a,p) == E, |:1;16a/§( u(f(s,a’)) —u(f (s, a))]

= 30 max(r. ) - u(r. )

and realization-regret minimization picks an action a* that minimizes the
maximum realization-regret:

a* € argmin,cy max 1y (a,p).

Distribution-regret minimization follows the same logic as realization-regret
minimization, in that it dictates choosing an action a* that minimizes the maximum
distribution-regret:

a* € argmin ., maxrp(a
gMIN g s D( aP)

where the distribution-regret of an action a given probability measure p is defined as

rD(a,p) = I;}ng[uW] — E,[ula] = Ig}eaj(Zp(s)u(f(s,a’)) — Zp(s)u(f(s, a)).

seS se§

The altruistic type acts according to a criterion based on the altruistic utility function
U, which essentially pertains to game-theoretic situations. A game is just an
interactive decision problem, where multiple agents have to take actions and the
outcome depends on the actions of all the agents involved. In parallel to the definition
of a decision problem above, we can formally define a game as a tuple (J, (4))jes, Z, f)
where ] is the set of agents, A; is the set of actions of agent j € ], Z is the set of
outcomes and f : Xje; Aj — Z is the outcome function. Given a game and utility
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up: Z—>R
for each agent j € J, the altruistic utility function is then defined as

ua(2) = Y u(2).
jel
The altruistic decision criterion is then defined as the maximization of expected
utility, except for the use of the altruistic utility u,, in place of the utility u, i.e. the
altruistic criterion selects an action that maximizes expected altruistic utility:

a* e argmaxaeAEp[ualt | a]'

The evolution of altruism has been studied at least since Hamilton (1964); see
Okasha (2018: Ch. 5) for discussion. Finally, the random type just picks an action
uniformly at random.

2.2 The Environment

In the following, we study the evolution of ambiguous beliefs using agent-based
modelling (ABM) and a multigame framework. In the multigame environment,
different (possibly interactive) decision problems are generated (by randomly
drawing values from an interval) and placed on a k x k toroidal grid.” It is valuable
to study decision-making in this framework because it allows us to represent a
variety of decision problems, which better matches real-world decision-making than
would a model without this variety. In the Appendix, we also abstract away from any
spatial component by moving to the setting of evolutionary game theory.

The payoffs for these decision problems represent fitness (in the biological sense),
and for everything that follows, we fix the agents’ subjective utility (the function u
above) as their fitness. The only exception to this is the altruistic type, for whom
their utility is the sum of their and their opponent’s fitness. We then generate a
population of agents and randomly place them on the grid. The grid is hence the
agents’ environment, or playground. For all simulations reported here, half of the
cells are populated by agents and the other half are unoccupied. We allow only one
agent per cell.

At the beginning of the first generation, the decision criteria are randomly
distributed to the agents in equal proportions, so that no criterion is over- or under-
represented in the first generation. We know from section 2.1 that for a decision
criterion such as those considered here to produce a choice two things are needed:
utilities attached to outcomes, and beliefs attached to the opponent’s actions in
game environments, or to the possible states of the world in single-agent decision
environments. While the utilities are already given by the fitness payoffs of the
decision matrix, each decision problem on the grid is also paired with a belief set B.
For our purposes, B is then a random convex subset of the simplex (i.e. the set of all
probability distributions over the states of the world in single-agent decisions and
the other agent’s actions in interactive decisions). This set B is enough to fully
represent the beliefs of the ambiguous types, and to determine their choices. In our

2Note that in the following we discuss both variants with single-agent decisions and variants with
interactive decisions, but we use the term ‘multigame’ to refer to both cases for simplicity.
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black market example above, B would represent the set of probability distributions
over successful and unsuccessful transactions that are compatible with whatever
evidence the agent has gathered, i.e. the set of probability distributions assigning
probability 0.5-0.9 to a successful transaction. For each of the non-ambiguous
agents (i.e. the expected utility maximizers and the altruistic agents), we set her
belief to be a single probability distribution drawn at random from B.’

Each cell of the grid thus comes with two things: a (possibly interactive) decision
problem and a set B of probability distributions over the domain of uncertainty
(see Figure 1). Note that this modelling choice entails two features: First, for any
given decision problem, all the agents have the same belief set B. Ambiguous agents
therefore all have the same belief; probabilistic agents will generally have different
specific beliefs,* but these will be all included in B. Second, in the interactive case,
there are no requirements about the belief in the rationality of the opponent. A few
words about these two features are in order. The rationale behind the first feature is
that we want to focus on the main qualitative distinction between ambiguous and
probabilistic beliefs without making any further assumption about the beliefs of
probabilistic agents other than that they are probabilistic and included in B. The
second comes from the fact that the approach of the present work is ecological and
evolutionary more than strategic. No restrictions about agents’ beliefs in the
rationality of other agents are therefore imposed. However also notice that, as the
decision criteria considered here are all somehow “rational”, no agent — except for
the random type of course — ever chooses an irrational (dominated) action.

After the environment is created and the agents are placed on the grid, decisions
are made. For single-agent decisions, agents react to the decision problem on their
own cell. In interactive decision problems, agents interact with their neighbours.
Specifically, when two agents are in two adjacent’ cells, they play together the two
games corresponding to the cells they are in. In all cases, the obtained payoffs from
the decisions are recorded. After all decisions have been made, all agents move by
one cell either horizontally or vertically at random into an unoccupied cell, and the
round ends. This procedure is repeated anew in each subsequent round. The spatial
aspect of the environment and the fact that agents move randomly do not play a
substantial role, but instead just provide a convenient way to have multiple games in
the environment. The Appendix shows that we get essentially the same results if we
abstract away from the spatial component by using the evolutionary game theory
methodology of just calculating expected payoffs for the types in the population.

After a number of rounds, a generation ends and the agents in the population
reproduce in the following way. A percentage of the worst-performing agents dies,
and those who die are replaced by new agents. New agents are created by drawing
criteria at random proportional to the accumulated fitness of the types in the
previous generation. Specifically, the probability that a new agent is of a given type ¢

3Specifically, the probabilistic belief for each agent is generated by first generating a random Dirichlet
distribution (by selecting Dirichlet parameters uniformly at random) and then by drawing a random point
from such random Dirichlet distribution.

“Section 5.3 however also considers the case in which for each game the ambiguous agents have different
beliefs and the case in which a single probabilistic belief is randomly drawn for all the probabilistic agents.

>We mean adjacent in the sense of Moore neighbourhood. It is a modelling choice here that no two agents
can occupy the same position in the grid.
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Figure 1. Multigame environments with interactive (1a) and single-agent (1b) decisions. Each grid cell is
associated with both a decision matrix and a belief set. The dots on the grid represent the agents, the
different dot colours represent the different agent types (i.e. the agents’ decision criteria), the grey areas
in the simplexes shown to the side represent the belief sets associated with each decision. Notice that
those grids have to be thought of as being toroidal.
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is equal to the total accumulated payoff of that type, divided by the total
accumulated payoffs in the population. This means that two factors matter to the
population composition in the next generation: how well the individuals of each
type performed, and how common the type was in the population. Note that our
rule for the evolution of the population is simply the translation into agent-based
modelling of the rule for population change given by the replicator dynamics in
standard evolutionary game theory. The key difference is that our rule uses the
actual accumulated fitness since we model individual agents, whereas the replicator
dynamics - which only represents proportions of types in the population and not
individuals - uses expected fitness. However, given the size of the environment, we
expect the actual accumulated fitness to approximate the expected fitness. That this
is the case is confirmed by the evolutionary game theory results in the Appendix,
which show that using the replicator dynamics directly yields very similar results.

The qualification of the concept of environment is important to understand the
difference between our approach here and that of classic evolutionary game theory. In
classic evolutionary game theory, the environment consists of two fundamental
elements: the population of agents and the game played by the agents that drives the
evolution of the population. Each agent type then represents a possible action that can
be played in the game. In our case instead, the environment consists of the population of
agents and a set of different games that are played by the agents and drive the evolution.
The agent types in our model then represent various possible decision criteria.

To exemplify, consider an environment consisting of a population with two types
of decision criteria, maxmin expected utility and regret minimization; and of the
following three games. The first game is a Stag Hunt, the second is a Prisoner’s
Dilemma, and the third is an anti-coordination game. For simplicity, let the
associated beliefs represent full uncertainty, i.e. B = A({I,II}), for each of the
three games.

SH | I II PD | I II AG | I II
I {3302 I 122103 1 1,1 | 2,5
17 12,0 |22 17 13,0 | L1 I 15200

When faced with the Stag Hunt, the maximinimizers want to maximize the
minimum outcome and thus choose action II, because the minimum of action II
is higher than the minimum of action I, 2 > 0. Regret minimizers instead aim to
minimize their regret, defined as the maximum amount possibly given up by
playing a certain action. In the Stag Hunt, the regret of action I is therefore 2,
which is the payoff lost when the other agent plays II. By the same reasoning, the
regret of action IT is 1, and a regret minimizers will also pick action II in the Stag
Hunt, as 1 < 2. Similar computations show that both types will choose action IT
in the Prisoner’s Dilemma too, as II is strictly dominant in the Prisoner’s
Dilemma. When we look at the anti-coordination game instead we notice that a
maximinimizing agent will choose action I, as I has the higher minimum payoff,
while a regret minimizer will choose action II, because the regret of IT is 2 and the
regret of I is 4 in this case. Having multiple games in the environment thus
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allows us to tell apart the different types in the population that would otherwise
be indistinguishable if the environment consisted of the first or the second
game only.

Beyond this, we want to learn how the different types perform in games that go
beyond the handful of cherry-picked examples usually encountered -and
encountered because they are theoretically interesting, not necessarily because
they are more common than other possible games. To achieve this, we randomly
generate games to populate the environment. Between the large number of games
considered, the fact that they are randomly generated, and the fact that the
population composition matters and evolves, it quickly becomes intractable to
analytically derive the evolutionary trajectory of the different types. For this reason,
computational methods are needed.

2.3 Common Parameter Settings

For all reported results, the grid has size 20 x 20, for a total of 400 different games
per trial. The interval from which payoffs are drawn goes from 0 to 100. We use a 0.5
density of agents on the grid, meaning that half the cells are occupied. Unless
otherwise noted, all types are equally represented in the initial population.

Each generation lasts 50 rounds, and the simulations can run for a maximum of
500 generations, but stop earlier if no further evolution can take place (for ABM, this
happens when only one type remains in the population). We set the survival
threshold such that the 10% of agents with the lowest accumulated fitness die at the
end of each generation.

We run simulations for decision problems with 3, 5 and 7 actions; for single-
agent decision problems, there are always the same number of states of the world as
there are actions. For each tested simulation variant and parameter setting, we run
100 simulation trials.

The large grid, random generation of games and beliefs, and large number of
trials provide insurance against the worry that our simulation results are an artefact
of the particular games or beliefs that are generated. For the most substantial
assumptions in the simulations - those regarding the types of decisions agents face
and the kinds of beliefs they have — we explore several sensible variants according to
our interest, as described below. We also check whether our results are robust to
different parameter choices; robustness checks for decisions with 13 available
actions are described in the Appendix.

3. Single-Agent Problems
3.1 The Setting

Although our main focus is on coordination games, having a single-agent
comparison as a reference point helps us to see the extent to which ambiguous
beliefs may provide special advantages in coordination games. The single-agent
setting goes as follows. Each cell of the grid is now associated with a single-agent
decision problem. As explained above, each decision problem is associated with an
ambiguous belief set B; to enforce that the agents have true beliefs about the
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probabilities of the states, we draw a single probability distribution at random from
B to serve as the true probability distribution over the states.®* We accordingly draw a
state at random from this true distribution, which is the realized state in that
decision problem. Notice that while the belief sets and the true probability
distributions of the states stay the same across rounds and generations, the realized
state is randomly drawn each time an agent faces a decision problem. Note also that
the altruistic type is not included in the single-agent simulations, since altruism does
not make sense in this context.

3.2 Results for Single-agent Problems

We next report the results for the single-agent trials of the simulations. Figure 2
shows the evolutionary dynamics for the first three runs for each number of actions.
This figure depicts the population shares (y-axis) of the types over the generations
before the simulations end (x-axis). We see in Figure 2 that for these simulation
runs, the simulations continue for the maximum 500 generations for the 3-action
menus, while they end earlier for the larger menus, since one type typically takes
over completely before 500 generations are over, meaning that the evolutionary
processes has reached a fixed point.

As expected, the random type dies quickly. As to which type is best, we see that it
depends on the number of actions available in the game: with 3 actions, the
distribution-regret minimizer is the best, while with 5 or 7 actions the expected
utility maximizer is the strongest (see Figure 3). That is, the dominant type
(distribution-regret or expected utility, respectively) takes over the population, with
the other types dying out, in the vast majority of cases.

It is perhaps unsurprising that the expected utility type dominates for the larger
menus. More surprising is that distribution-regret minimizers are so dominant for
the small menu of actions, and also that there seems to be a clear threshold effect
somewhere between 3 and 5 actions. However, the key point for our purposes here is
the dominance of the expected utility type in most cases, i.e. at least from 5 actions.

Even when ambiguous types survive, in half of those cases, they have less than a
10% population share when the simulations end. We conjecture that these types
would die out completely, given a longer period of evolution. This is also supported
by the visual depiction of the evolutionary dynamics in Figure 2. Similarly, Figure 3
shows how the ambiguous types (apart from distribution-regret minimizing for
3-action menus) typically have low population shares.

Indeed, the ambiguous types do not do well at all in this setting; most ambiguous
types never do well, while distribution-regret minimizers do well only for small
menus. While the ambiguous beliefs are correct in a sense that the non-ambiguous
agents’ are not — they contain the truth - this seems to be less important than the
ability of the non-ambiguous agents to act on more specific (though strictly speaking
almost surely wrong) expectations regarding the true state. Again, it will be important
to compare the single-agent case and the later strategic variants in this respect.

%Specifically, the true probability distribution is drawn from a random Dirichlet distribution, as described
in footnote 1. Note that different random Dirichlet distributions are used each time.
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Figure 2. Example dynamics for single-agent decision problems. The figure shows the evolutionary
dynamics for the first three runs for each number of actions. This figure depicts the population shares (y-
axis) of the types over the generations before the simulations end (x-axis).

4. Generic Games

Our central interest in this paper is to study the viability of ambiguous types in
games, especially coordination games. We therefore turn now to games. We first
turn to a variant in which the agents play generic games in pairs; after that, we will
restrict our attention to coordination games.

4.1 The Setting

The most obvious difference between the generic game setting and the single-agent
setting is that the agents now play (symmetric) games with one another. The agents
do not know the other agents’ types, which are unobservable, and their beliefs
pertain to the actions of the opponent. Recall that for any game in the grid the agents
are given the same beliefs; one can imagine that these beliefs are the product of prior
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Figure 3. Histogram of the proportions of different types in the final population states for single-agent
decisions. The x-axis shows the fraction of the total population, while the y-axis shows the number of
simulation runs (out of 100) for which each type had that fraction of population share at the end.

experience interacting with other agents and observations of others” behaviour.
See sections 5.3 and 7 for further discussion on this point.

We also consider a slightly different set of agent types in the game variants of the
simulations. First of all, we now include the altruistic type as described above.
Second, we exclude the realization-regret minimizer. While we are interested in
regret minimizing behaviour, we have noticed that it is problematic to include both
maxmin and realization-regret minimizing in strategic situations, and especially for
coordination games. Specifically, the realization-regret minimizer tends to take the
same actions as the maxmin type in the majority of the games. This, in turn,
produces a significant (and, we think, unfair’) advantage for both of those types,
since their almost identical behaviours lead them to reinforce each other in
coordination games - it is like having a type of agents that is twice as numerous as
the other types in the population.

7But see also the discussion in sections 5.3 and 7.
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4.2 Results for Generic Games

As with the single-agent case, we see that smaller menus produce less extreme
results. Here, for the smallest choice menus, non-ambiguous and ambiguous types
(specifically, the expected utility type and the maxmin and distribution-regret
minimizing types, respectively) are roughly equally viable. In contrast, with the 7-
action menu, while the ambiguous types still sometimes do well, the expected utility
type is overall the strongest.

Figure 4 shows the results. Overall, as in the single-agent case, expected utility
maximization is the strongest type; however, ambiguous types do somewhat better
in this generic game case as compared with the single-agent case. We see that
ambiguous types survive fairly often, with both maxmin and distribution-regret
minimizing agents surviving until the end even with the large choice menu in about
20% of trials. This apparent success must be qualified, though. Specifically, while the
ambiguous types survive fairly often, they survive somewhat less often in substantial
numbers with larger choice menus. For more than 3 actions, the ambiguous types
have come to dominate the population (in the sense that one such type has achieved
at least 90% population share) relatively rarely.

Why are ambiguous types more successful in games? We can get an intuition as
to how games are different from single-agent decision problems by reconsidering
the examples from page 10. There, we considered a Prisoner’s Dilemma, a Stag
Hunt, and an anti-coordination game, and presumed complete ignorance (i.e. the
belief set includes all probability distributions). Imagine now that we have three
agent types, the maxmin and regret minimizing ambiguous types and the expected
utility non-ambiguous type.

The Prisoner’s Dilemma is not very interesting, since there is a dominant action
which all types play. The Stag Hunt, in contrast, shows a case where the expected
utility type can easily be worse off. In the Stag Hunt with no information about the
opponent’s behaviour, both maxmin and regret minimizing agents choose the safe
action II (hunting hares for a guaranteed payoff of 2). Each expected utility agent
will choose action I or IT depending on their probabilistic belief; specifically, they
will choose action I or II according to whether they believe the opponent chooses I
with probability greater than or less than 2. Assuming that the three types are
equally represented in the population, then, the ambiguous types accumulate
higher payoffs here because their behaviour is in fact a best response to the
majority of agents in fact playing II. Some of the expected utility agents behave the
same as the ambiguous agents and get the same (but not better) payoffs, while
other expected utility agents play I and get lower payoffs on average (often 0, with
an expected payoff of less than 1 given our assumptions). The key difference
between single-agent decision problems and games, which we see here, is that in
single-agent decision problems we can view nature’s choice of state as essentially
random, but the opponent’s choice in a game can often not be seen as random, for
example when the ambiguous types infallibly choose one particular action (and
this can be especially relevant for coordination games, as we shall also see below).
When both nature and the expected utility maximizing agent choose distributions
at random and with no particular bias towards any states or actions, there is no
reason why the expected utility type would always perform worse than our
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Figure 4. Histogram of the proportions of different types in the final population states for generic games.
The x-axis shows the fraction of the total population, while the y-axis shows the number of simulation
runs (out of 100) for which each type had that fraction of population share at the end.

ambiguous types, if they would all face the same single-agent problem over and
over with new beliefs each time. In a game, however, the expected utility type may
necessarily do worse, as the case of the Stag Hunt shows.

It is less immediately obvious how the evolutionary dynamics would be in the
anti-coordination game, as it incentivizes the presence of types choosing different
actions in the population, but the example still shows how the expected utility type
may not have any special advantage. In this game, maxmin agents will take action I,
while regret minimizing agents will take action II. This means that regret
minimizing agents get very high payoffs when they play with maxmin agents, and
both ambiguous types do poorly when they meet their own kind, with regret
minimizers doing worse than maxmin agents in this case. Which action is best
depends on the precise frequency of the other types in the population, and will
therefore change as the population evolves. As in the Stag Hunt, expected utility
agents may choose either action depending on what belief they have. Some will
therefore act like maxmin agents, while others act like regret minimizers. As a type,
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then, we expect their average payoff to be between that of the other two types. This
example again drives home the key reason why games and single-agent decision-
problems are different, namely that facing strategic uncertainty as in interactive
decision problems may be different from single-agent decision problems where
nature does not select states strategically. But then maximizing expected utility with
respect to an arbitrary probabilistic belief need not be expected to yield higher
payoffs, on average, than strategies like maxmin or regret minimization which
display less behavioural diversity. The comparison between the Stag Hunt and the
anti-coordination game also serves as a reminder that the agents in our simulations
face numerous games and different games will favour different types, even beyond
the question of whether the types are ambiguous or not. Some of the games in the
environment will also look quite different from these classical examples, and rather
than analysing games individually we must look at the aggregate dynamics to
determine the final evolutionary outcome.

Summing up, we see that moving to a strategic setting makes ambiguous types
somewhat more viable, but they still are not very strong. Next, we will see how this
changes when we consider coordination games specifically.

5. Coordination Games
5.1 The Setting

We explained in section 1 that there are several models showing that ambiguous
beliefs can be of mutual benefit to agents, especially when the agents need to
cooperate or coordinate (Eichberger ef al. 2009; Agranov and Schotter 2012; Riedel
and Sass 2014; Eichberger et al. 2018). As we pointed out, those models pertain to
particular kinds of strategic interaction, ie. to specific games; this raised the
question of how general the benefits of ambiguity for coordination and cooperation
might be. There is an intuitive reason why ambiguous beliefs could make
coordination easier. Coordination rewards agents who take the same actions; these
actions are driven by the agents’ beliefs, and so coordination should be easier to
achieve the better those beliefs ‘fit together’, figuratively speaking. Now, when agents
have to reduce the belief set to precise beliefs, these beliefs will be incompatible -
i.e. they give different probabilistic weights to the events—unless they are exactly the
same. When agents have ambiguous beliefs, in contrast, those beliefs may overlap
substantially even if they are not exactly the same (see below for more details on this
point). This overlap could enable coordination.

By coordination games, we mean n x n symmetric games where the best reply to
some action is the action itself. We can generate environments consisting solely of
coordination games by filling the game payoff matrices by randomly drawn payoffs,
with the further constraint that u(a;, a;) > u(aj, ai) for all actions a;, a;, a; # a;. Since
the games are symmetric, this holds for all players.

5.2 Results for Basic Coordination Games

Our simulation results, which pertain to a multigame environment with diverse
payoff structures by design, provide strong support for the hypothesis that
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ambiguity helps agents to coordinate in a broader range of settings. As can be seen
in Figure 5, there is a substantial difference between the outcomes in general games
and coordination games. In coordination games, the ambiguous types — specifically
maxmin and distribution-regret minimization - seem to be the only viable types.
One or the other of these two always takes over the population, and does so quickly.
Note that in contrast to all the results shown above (and also to the graded games
presented later), maxmin is not inferior to distribution-regret minimization in
coordination games; it is the strongest type for 3-action menus, and otherwise
comparable to distribution-regret minimizing.

5.3 (Mis)coordination of Beliefs

So far, we have analysed situations in which there is a certain amount of “objective”,
given non-probabilistic uncertainty in the (possibly interactive) decision problems
and different agent types have to resolve such ambiguity to an action choice. While
the non-probabilistic criteria are able to do so without reducing the ambiguity - that
is, the set of probability distributions - to a single probability distribution, the
probabilistic types need a single probability distribution to produce an action choice
and hence pick one distribution from the belief set B. In the presence of an
environment consisting of symmetric coordination games only, this may look like
an unfair disadvantage for the probabilistic agents: while two non-probabilistic
agents with the same belief set and the same criterion always choose the same action
and hence always coordinate, two probabilistic agents with the same criterion are
forced to pick a probabilistic belief at random from the belief set and may thus fail to
coordinate if their probabilistic beliefs are sufficiently different. In other words, it is
in the structure of symmetric coordination games that two agents with the same
criterion and the same belief about the other’s actions always coordinate (when
there is a unique best reply). In this perspective, it may seem that we have just
moved the coordination problem one level higher, where the probabilistic agents are
disadvantaged by their different beliefs, while all the non-probabilistic agents can
still act based on the same, although non-probabilistic, belief. Non-probabilistic
agents are then in a better position to successfully solve the coordination problems
by having their beliefs already coordinated. The following question therefore arises:
Are the non-probabilistic types favoured by evolution because their decision criteria
are evolutionarily superior in the presence of ambiguity, or simply because their
beliefs are coordinated by construction? We now introduce two variations of the
basic coordination setting that answer the question.

In the first variation, the probabilistic beliefs of the expected utility maximizers
are chosen randomly exactly as in the basic coordination case, but the belief set is
then also perturbed for each agent by moving each of its vertices by a vector of
length 0.05 in a random direction (as we are dealing with a probability simplex, a
shift of length 0.05 corresponds to a difference in belief of 5 percentage points). This
way, each non-probabilistic agent too has a different (non-probabilistic) belief. The
results for 100 simulation runs with this setting are shown in Figure 6, and they are
very similar to the results in the basic coordination case.

In the second variation instead, the imprecise belief of all the non-probabilistic
agents still coincides with the “objective” belief set B, but for each game a single
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Figure 5. Histogram of the proportions of different types in the final population states for coordination
games. The x-axis shows the fraction of the total population, while the y-axis shows the number of
simulation runs (out of 100) for which each type had that fraction of population share at the end.

probabilistic belief is randomly drawn from the belief set for all the probabilistic
agents, so that all the probabilistic agents too have the same (probabilistic) belief
when facing a coordination game. The results of 100 simulation runs are presented
in Figure 7. Although the graphs show that the non-altruistic expected utility
maximizers can sometimes survive, this only happens very rarely, and max-
iminimizers and regret minimizers are still favoured by the evolutionary dynamics.

It may be surprising at this point that expected utility maximizers barely survive
even when they coordinate on the same action by construction as they hold the same
probabilistic belief. There are two possible reasons for this. One possibility is that
holding the same ambiguous belief indirectly introduces some degree of
coordination between ambiguous types even if they adopt different decision
criteria. Another possibility is instead that expected utility maximizers just
coordinate on worse outcomes. To see which of these might be happening, we show
(in Figure 8) the results of further simulations with only three criteria in the
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Figure 6. Histogram of the proportions of different types in the final population states for coordination
games with different imprecise beliefs. The x-axis shows the fraction of the total population, while the y-
axis shows the number of simulation runs (out of 100) for which each type had that fraction of population
share at the end.

environment: expected utility maximization, distribution-regret minimization, and
the random criterion. The expected utility maximizers are still given identical
probabilistic beliefs, as in the case shown in Figure 7.

Our findings indicate that while the ambiguous types do benefit from having
other ambiguous types in the population, it also happens that expected utility
maximizers often coordinate on worse outcomes. As an intuitive example, imagine
that two agents have to coordinate on where to meet and they could either meet at
the bar or in the bathroom; both permit a meeting, but the bar is better as a meeting
place. Ambiguous types may hold beliefs that leave more open where the other agent
is going to go and hence break this symmetry by looking at the different payofts
associated with the possible alternative outcomes; this supports meeting at the bar.
Expected utility maximizers, in contrast, may simply head for the bathroom because
they attach higher prior probability to the other going there.
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Figure 7. Histogram of the proportions of different types in the final population states for coordination
games with the same probabilistic beliefs. The x-axis shows the fraction of the total population, while the
y-axis shows the number of simulation runs (out of 100) for which each type had that fraction of
population share at the end.

These variations then demonstrate that it is because of the decision criterion, and
not only because of the coordination of their beliefs, that maxmin and regret
minimization are better off in coordination games in the presence of ambiguity.

6. Graded Payoff Games
6.1 The Setting

As we explained in the Introduction, we are motivated to study ambiguity-sensitive
agents in large part because of evidence that ambiguity sensitivity can be beneficial
for all parties in multi-agent settings. While this pertains primarily to the economics
literature, it is noteworthy that there are analogous findings in the literature on
linguistic ambiguity. On the one hand, linguistic ambiguity is a separate
phenomenon from epistemic ambiguity, pertaining to uncertainty about what is
being communicated or to imprecision in the signals when language is conceived of

https://doi.org/10.1017/50266267125100394 Published online by Cambridge University Press


https://doi.org/10.1017/S0266267125100394

22 Paolo Galeazzi and Patricia Rich
(a) Histogram of the final proportions ABM (b) Histogram of the final proportions ABM
100 . EU 100 - EU
. RmD . RmD
N Rand BN Rand
80 80
60 60
40 40
20 20
o

3 actions 5 actions
(C) Histogram of the final proportions ABM
100 - E
s RMD
== Rand
80
60
40
20
0 .
DQ Q\ 51' C!'5 QD‘ Qb) Dh bl\ Oa Da '\Q

7 actions

Figure 8. Histogram of the proportions of different types in the final population states for coordination
games with the same probabilistic beliefs, when there are only three types. The x-axis shows the fraction
of the total population, while the y-axis shows the number of simulation runs (out of 100) for which each
type had that fraction of population share at the end.

as a signalling system. On the other hand, this literature shows that greater
uncertainty can be advantageous when there is common interest in communication
(Santana 2014; O’Connor 2015),% which is naturally interpreted as coordination in
the game-theoretic sense. We find this parallel intriguing, and use the literature on
linguistic ambiguity as a source of intuitions regarding mechanisms by which
ambiguity could provide benefits. Specifically, we implement a final variant of our

8This has only been shown to be true when signalling is costly, and hence less precise communication is
cheaper. In the economic case, whether ambiguity is cheaper or more expensive depends on how you look at
it, so we set costs aside.

9 Ambiguity has also been shown to be beneficial in other cases, for example with conflict of interest when
one party can benefit from keeping the other in the dark (Crawford and Sobel (1982), parallel to Greenberg
(2000) in the economic case), but this is less relevant for us here.
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simulations to test an additional such mechanism — which we call graded payoffs -
inspired by the linguistic literature.

Graded payoffs in the linguistic case are modelled by O’Connor (2015), who
shows that (her implementation of'®) graded payoffs plus costly signalling are
sufficient for ambiguous signalling to be optimal. By ‘graded payoffs’, we mean
that there is an underlying measure such that the payoff is a function of the
distance. This intuitively reflects many situations. In the linguistic case, O’Connor
gives the example of communication about how ripe a piece of fruit is. While it is
in some sense ideal for the precise degree of ripeness to be communicated, the
payoffs are nearly as good if the signaller manages to communicate approximately
how ripe the fruit is. I don’t need to tell you precisely how hard a rock-hard peach
is; if T tell you that it isn’t ripe, you won’t eat it, which is the correct response.
Similarly, if we are talking qualitatively about a movie which you call ‘terrible’ and
would have quantitatively assessed as a 2 out of 10, then although the
communication could have been more precise, my payoft would not improve
much through more precision; either way, I probably won’t watch the movie. In
these cases, we can intuitively understand why ambiguous communication could
be beneficial or at least viable.

The games in our previous simulations will not (except by chance) have any
such structure, since they are randomly generated (and forced to be coordination
games, when applicable). It is easy to imagine coordination games which have
such additional structure even in non-communication scenarios, however. For
example, if we are coordinating on a meeting place, then it is best if we go to
exactly the same place, and worse for us the farther the distance between the
places we go (because we will have more trouble finding each other, longer to
travel if we have to phone each other and try again, etc.). Similarly, we can
imagine coordination involving resources — you will order pizza, and I will show
up with some number of hungry friends. Our payoffs are graded, such that it is
strictly worse the farther apart our actions are, in this case in terms of food units
(needed/provided).

We implement this idea in a class of games as follows: As before, each game is
symmetric and has N possible actions. The actions are numbered from 1 to N, with
the two players choosing actions i,j € 1,..., N. The payoffs for the game are then
given by the function

(N — DF — i —jI, (1)

where k is a positive rational number. The game size N reflects an aspect of the
difficulty of the coordination problem (because with more actions there are more
possibilities to miscoordinate), and k reflects the stakes (how costly is
miscoordination?). By allowing k to be a fraction, we allow both convex and
concave payoff functions; they are concave if k <1 and convex if k > 1. In the
simulations shown here, the games are generated by drawing k randomly for each
game, such that % < k < 2. This means that we leave open whether the payoffs for
almost-coordination are very similar to the payoffs for perfect coordination, with

190’Connor’s framework and problem are somewhat different from ours; she uses the sim-max game,
introduced by Jager (2007), in which the payoff depends on distance from the state chosen by nature.
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each further departure being more and more costly, or whether the opposite is true
and being imperfect at all carries a larger cost, with the relative additional cost
shrinking as the level of miscoordination grows. We can imagine both kinds of
situations: When we need to meet each other, the payoff function over places we
might each go is plausibly concave. Yet the payoff function for the time we might
budget is plausibly convex; imagine that we meet up on a Sunday, and one of us
expects it to be a quick encounter, while the other expects for us to spend the whole
day together. Our payoffs will take a big hit just from not coordinating perfectly, but
given that this has happened, it is not so much worse for the discrepancy in
expectations to be four hours rather than three.

6.2 Results for Graded Payoff Games

As can be seen by comparing Figure 9 with the previous figures, ambiguous types
remain the strongest when we move to this special coordination setting. As with
arbitrary coordination games, maxmin and distribution-regret minimization are
clearly the strongest, in that one or the other of those two is usually coming to
dominate the population. That is, in almost all cases, one or the other of them
has at least 90% population share. Maxmin still does well here in comparison to
the generic game and single-agent cases, although distribution-regret
minimization does better. These types’ good performance may be due to the
fact that the games are structured such that while the perfect coordination
payoffs are the same for all actions, the worst case payoff always gets worse as we
move away from the middle action (e.g. action 3 in a 5-action menu). By the
nature of the maxmin and distribution-regret strategies, this makes these two
types more likely to play more ‘central’ actions; both the maximum possible
regret and the minimum possible payoff are better for more central actions,
although the agents’ beliefs may still push them away from the middle action in
one direction or the other. Hence, when maxmin and distribution-regret agents
don’t perfectly coordinate with the other agent, their payoff cannot be as low as
what may be the case for the other types.

A final, interesting difference between the graded payoff case and the others is
that the altruistic type now sometimes survives. Specifically, the altruist sometimes
survives for the 7-action menu. This menu size is also relatively good for the
expected utility type, as we have also seen in the previous environments. This is no
coincidence: in the graded payoff environment, the altruist and the expected utility
maximizer will take the same actions given the same beliefs. This is because the
payoff for action i against action j is the same as that for action j against action i, by
construction. This is an interesting property of the graded payoff games, since
altruism is usually only seen to be viable in models including some kind of
reciprocity or assortative matching. Here, in contrast, we see that the game structure
itself can make altruism viable.

7. Discussion

We began this paper by pointing out that the status of ambiguous beliefs and
ambiguity sensitivity remains controversial. On the one hand, there are abstract
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Figure 9. Histogram of the proportions of different types in the final population states for graded games.
The x-axis shows the fraction of the total population, while the y-axis shows the number of simulation
runs (out of 100) for which each type had that fraction of population share at the end.

arguments - typically focused on single-agent decision problems - that purport to
show that agents who have (or act on) ambiguous beliefs are (classically) irrational.
On the other hand, there is a collection of results showing that ambiguity can be
beneficial in various contexts, and especially in interactive contexts in which agents
must cooperate or coordinate. This suggests that ambiguous beliefs could be
ecologically rational in such contexts. Hence, we have here explored potential robust
benefits of ambiguity across contexts, focusing on the comparison between games
and single-agent decision problems as well as between different classes of games.
Our results show, in line with existing examples in the literature, that ambiguity
sensitivity becomes more and more beneficial and evolutionarily viable as we move
from single-agent decision problems to games to coordination games.

Given the results shown above, it seems that two key things are happening that
can explain our main results on coordination games. We can use a few example
games to illustrate the intuitions. Consider the two games below.
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I 17 11T 1 17 117

1 11,11 2,1 0,0 1 10,10 | 4,0 1,2
17 1,2 12,12 1,1 11 0,4 10,10 | 2,2
117 | 0,0 1,1 13,13 117 | 2,1 2,2 10,10

In both games, let’s assume that the ambiguous types have a maximally
ambiguous belief. In the first game, maxmin agents choose action II and regret
minimizing agents choose action III. Expected utility agents’ choice depends on
their belief; let’s imagine that this belief places significant probability on action I, so
that the expected utility agents choose action I. Hence, all agents coordinate with
members of their own type, but the regret minimizers get a higher payoff when they
play with their own, followed by minimaxers, followed by expected utility agents.
This illustrates how precise beliefs can lead to inferior actions, even when
coordination is successful, as discussed in section 5.3. In the second game, maxmin
and regret agents choose action III. Let’s imagine that the expected utility agents
now believe that all three opponent actions are equiprobable. Then the expected
utility agents choose action I. As before, all agents coordinate with other members of
their own type, and they get the same payoff for doing so. However, the maxmin and
regret minimizing agents also coordinate with each other, meaning that they get this
high payoff more often than do expected utility agents, as we have also seen in
section 5.3. These two examples exemplify two features that individually as well as in
combination can explain our results on coordination games.

Of course, there are coordination games for which one or both of these
mechanisms is not in force. For example, expected utility agents can also have beliefs
leading them to coordinate on the best outcome in the game on the left. Our results
show, though, that when we look at the general class of games, then the ambiguous
types are advantaged, and these simple mechanisms seem to be significant reasons
why that would be the case. The examples thereby highlight a key tenet of ecological
rationality, the fact that when it comes to the kind of strategic behaviour which serves
agents best, the environment makes a critical difference; recall Simon’s (1990)
description of rationality as scissors, whose two blades are the mind and the
environment. The analogous point is also familiar in the evolutionary literature: an
organism or trait is not fit or unfit in general, but relative to the evolutionary context —
which also includes the composition of the population. Even once we focus on a
particular kind of environment, it appears that the details of the randomly generated
choice problems mattered, in that the particular choice problems can make different
types survive (e.g. see Figure 3 in which different types survive differently in different
treatments). More substantially, since fitness in strategic situations is in general
frequency dependent (i.e. depends on the frequency of other types in the population;
Ayala and Campbell 1974), the population dynamics are sensitive to the particular
ways the types are defined (e.g. how their beliefs are drawn) and to the set of types
present in the population. Nonetheless, trends are apparent in terms of which kinds of
environments are better for which types, and we have shown our main findings to be
generally very robust.

In this work we have assumed that each (possibly interactive) decision problem is
associated with an “objective” belief set, that is, a set of probability distributions over
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the states of the world or over the actions of the opponent. Here we understand such
belief set as some irreducible/primitive knowledge that the agents have, and it may
come from experience, observations, or other sources. We think this is a sensible
approach given our research focus, but there are alternative modelling assumptions
that one may consider. For instance, one could keep track of the different decision
problems that each agent faces in each generation and make each agent’s belief set
shrink based on such experience. This alternative, however, relies on the agent-
based modelling framework and would not be straightforward for the models from
evolutionary game theory in the Appendix below. A second alternative, at least for
the interactive decision problems, could be to define a concept of equilibrium for
games where players have different decision criteria and just assume that the agents’
play is always in equilibrium. This alternative, however, would not be applicable to
the single-agent decision problems, and moreover the assumption of equilibrium
play would need to be justified. A third alternative could be to consider agent’s types
that are characterized by both a decision criterion and a level of theory of mind
(Nagel 1995; Camerer et al. 2004). In this case, each agent would choose an action
(possibly uniformly at random) among those that survive some iterated elimination
procedure given her criterion and her level of theory of mind. The evolution of
ambiguous beliefs under these alternative modelling assumptions is worthy of
exploration, but must be left for future work.

At this point, when it comes to the status of ambiguous beliefs and ambiguity
sensitivity for real-world agents, what are the most (ecologically or in practice)
rational beliefs and behaviour becomes partly an anthropological question. In fact,
humans are highly interdependent. There is reason to think that our ability to
coordinate in particular has been especially significant evolutionarily (on the
importance of coordination for cooperation and evolution, see e.g. Tomasello et al.
2012). Coordination also remains central to our lives, extending far beyond
situations in which two agents aim to take literally the same action (see e.g. Eickers
2023; and note the existence of ‘social coordination dynamics’ as a field: Oullier et al.
2008; Oullier and Kelso 2009). Hence, arguments for the irrationality of the
ambiguous types that ignore the decision-making context may mislead us, and
arguments that reflect natural strategic contexts may be more relevant. The
simulations support the hypothesis that ambiguous beliefs, which look irrational
from some perspectives, can be advantageous in the specific types of situations that
people may often find themselves.
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Appendix

In this Appendix, we check the robustness of our results against two scenarios that seem particularly
relevant. In the first, we make use of models from evolutionary game theory rather than agent-based models
to test the fitness of our decision criteria in the same classes of games considered above. In the second, we
increase the number of actions. As the results in the main text are given for menus of 3, 5, or 7 actions, a
possible worry may be that the results do not generalize to larger menus. As a robustness check on this point,
we also test 13-action menus below.

https://doi.org/10.1017/50266267125100394 Published online by Cambridge University Press


http://www.jstor.org/stable/2950991
https://doi.org/10.1017/S0266267125100394

30 Paolo Galeazzi and Patricia Rich

Evolutionary game theory

As a first robustness check, we test whether we can reproduce the same or similar
results using the framework of classic evolutionary game theory (EGT). The
difference with respect to the agent-based models we employed above is that in
evolutionary game theory all the individual characteristics of the agents, such as
the specific positions on the grid, are abstracted away and only the proportions of
the different types in the population are considered. In each generation, we hence
only have the proportions of different types evolving according to the famous
replicator dynamics, which in our case are given (in discrete time) by the following
formula:

pitt =pt 6_(i,pt)
TS
where p! is the proportion of type i in generation , ®(i,p') is the expected fitness

of type i in generation t and ®(p') is the expected fitness of the population in
generation t. For a (discrete) set of two-player games G, these are defined by:

B(i,p') = D > PGP (i, )

Geg jel

and
B(p) = o(ip)
iel
where I is the set of types in the population and ®(i,j) is the fitness obtained by
type i against type j in game G € G and P(G) is the probability of game G € G.

For each of the treatments above, we thus perform 100 EGT simulations too,
where we use the same sets of games as for the 100 ABM simulations - i.e. the first
EGT simulation is run based on the same set of games as the first of the ABM
simulations, and so on. We set equal type proportions in the population at the
beginning of each simulation run for the EGT case too, and each EGT run also
lasts 500 generations at most. We notice that for the vast majority of the runs the
final population states of the EGT simulations match the final population states of
the ABM simulations. Moreover, looking at Figure 11 and Figure 10, the EGT
results seem to be even less favourable to probabilistic types in some cases. For
instance, in generic games EU types are less dominant in final states in the EGT
case than in the ABM case for 5 and 7 actions. As for coordination games with the
same probabilistic beliefs, while there is a minority of the ABM runs where EU
types dominate the final population, this almost never happens in the EGT runs.
Another difference between the ABM and the EGT case seems to be that in the
latter RmD types are more favoured over Mm types in graded games than they are
in the former.

Overall, however, it is noticeable that all such and similar differences between the
ABM and the EGT simulations are quantitative rather than qualitative, as only in a
small minority of the simulation runs are the ABM final population states and the
EGT final population states at odds. The general patterns and the results are hence
the same in the EGT and in the ABM case for all our treatments, as we can see by
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Figure 10. EGT results. The figure shows histograms of the final type proportions in the 100 EGT
simulation runs for single-agent decisions (first row), generic games (second row) and coordination games
(third row), and for 3, 5 and 7 actions.

comparing Figure 11 and at Figure 10 with the figures in the main text. The EGT
simulations thus confirm and strengthen our previous findings that evolution seems
to favour ambiguous types when the players have incentives to coordinate their
actions. Other related findings are also confirmed by the EGT results. For example
in coordination games with 3 actions, Mm types seem to be better off than RmD
types, while for 5 and 7 actions regret minimizers turn out to be the best in most
simulation runs. Also for single-agent decisions, the result that RmD types are
favoured for 3 actions while EU types are better with 5 and 7 actions holds in the
EGT case too. In conclusion, our findings on the evolution of ambiguous beliefs are
the same independent of using EGT or ABM techniques.
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Figure 11. EGT results. The figure shows histograms of the final type proportions in the 100 EGT
simulation runs for coordination games with different imprecise beliefs (first row), coordination games
with the same probabilistic beliefs (second row) and graded games (third row), and for 3, 5 and 7 actions.

More actions

Finally, Figures 12 and 13 show the results of both ABM and EGT simulations
for all the classes of games above for menus of 13 actions. Looking at the pictures
in detail, one can notice that there are some differences with 13 actions. The
most evident is in graded games, where final states with monomorphic
populations consisting only of RmD players occur much less frequently. Regret
minimizers are still dominant in the sense that they seem to survive in the largest
population share in general, but now in mixed populations where also the other
criteria (except for the random one) may survive. Interestingly, this is also the
only case where we can perhaps see a qualitative difference between the ABM
and the EGT simulations, as Mm seems to do equally well as RmD in the ABM
runs, but much less so in the EGT runs.
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Figure 12. Robustness checks with 13 actions.
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Figure 13. Robustness checks with 13 actions.

A second thing that can be noticed is that there are some situations where
probabilistic agents seem to perform slightly better with more actions. The graded
games just described are an instance, but also in generic games the results are more
extreme in favour of expected utility maximizers than with fewer actions, and in
coordination games where probabilistic agents have the same belief there is now a
small minority - but a bit more than with 7 actions - of runs where the final
population consists of expected utility maximizers exclusively. In general, however,
it is evident that doubling the number of actions has not changed the patterns that
we have observed in the main text and our findings are thus confirmed and
reinforced.
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