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Abstract
We introduce a new class of heavy-tailed distributions for which any weighted average of independent and identically
distributed random variables is larger than one such random variable in (usual) stochastic order. We show that
many commonly used extremely heavy-tailed (i.e., infinite-mean) distributions, such as the Pareto, Fréchet, and
Burr distributions, belong to this class. The established stochastic dominance relation can be further generalized to
allow negatively dependent or non-identically distributed random variables. In particular, the weighted average of
non-identically distributed random variables dominates their distribution mixtures in stochastic order.

1. Introduction
Distributions with infinite mean are ubiquitous in the realm of banking and insurance, and they are par-
ticularly useful in modeling catastrophic losses (Ibragimov et al., 2009), operational losses (Moscadelli,
2004), costs of cyber risk events (Eling and Wirfs, 2019), and financial returns from technology innova-
tions (Silverberg and Verspagen, 2007); see also Chen and Wang (2025) for a list of empirical examples
of distributions with infinite mean.

As the world is arguably finite (e.g., any loss is bounded by the total wealth in the world), why should
we use models with infinite mean as mathematical tools? The main reason is that infinite-mean models
often fit extremely heavy-tailed datasets better than finite-mean models. Moreover, the sample mean
of iid samples of heavy-tailed data may not converge or may even tend to infinity as the sample size
increases. Therefore, it is not sufficient to conclude that infinite-mean models are unrealistic by the
finiteness of the sample mean. Indeed, models with infinite moments are not “improper” as emphasized
by Mandelbrot (1997), and they have been extensively used in the financial and economic literature (see
Mandelbrot, 1997 and Cont, 2001).

This paper focuses on establishing some stochastic dominance relations for infinite-mean models. For
two random variables X and Y , X is said to be smaller than Y in stochastic order, denoted by X ≤st Y , if
P(X ≤ x) ≥ P(Y ≤ x) for all x ∈R; see Müller and Stoyan (2002) and Shaked and Shanthikumar (2007)
for extensive accounts of properties of stochastic dominance. Let X be a positive one-sided stable random
variable with infinite mean and X1, . . . , Xn be iid copies of X. For a nonnegative vector (θ1, . . . , θn) with∑n

i=1 θi = 1, Ibragimov (2005) showed that

X ≤st θ1X1 + · · · + θnXn. (1.1)

Recently, Arab et al. (2024), Chen et al. (2025a), and Müller (2024) have shown that inequality (1.1)
holds for more general classes of distributions. The case of two Pareto random variables with tail
parameter 1/2 was studied in Example 7 of Embrechts et al. (2002); see Section 3 for the precise
definition of the Pareto distribution.
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2 Yuyu Chen and Seva Shneer

Inequality (1.1) provides very strong implications in decision-making as it surprisingly holds in the
strongest form of risk comparison. If X1, . . . , Xn are treated as losses in a portfolio selection problem,
any agent who prefers less loss will choose to take one of X1, . . . , Xn instead of allocating their risk expo-
sure over different losses. This observation is counterintuitive, contrasting with the common belief that
diversification reduces risk. Other applications of (1.1) include optimal bundling problems (Ibragimov
and Walden, 2010) and risk sharing (Chen et al., 2024).

In this paper, we will study (1.1) where X1, . . . , Xn are possibly negatively dependent, a case not con-
sidered in Ibragimov (2005), Arab et al. (2024), and Müller (2024). Chen et al. (2025a) have shown that
(1.1) also holds for weakly negatively associated super-Pareto random variables X1, . . . , Xn. The class
of super-Pareto random variables is quite broad and can be obtained by applying increasing and convex
transforms to a Pareto random variable with tail parameter 1. Examples of super-Pareto distributions
include the Pareto, generalized Pareto, Burr, paralogistic, and log-logistic distributions, all with infinite
mean.

This paper aims to further generalize the result of Chen et al. (2025a) in two aspects: the marginal
distribution and the dependence structure of (X1, . . . , Xn). In Section 3, we first introduce a new class of
distributions, which has several nice properties (Propositions 2 and 3) and includes the class of super-
Pareto distributions as a special case. Within this class of distributions, we show in Theorem 1 that (1.1)
holds for identically distributed random variables X1, . . . , Xn that are negatively lower orthant dependent
(Block et al., 1982). It is well known that the behavior of the sum of extremely heavy-tailed random
variables is dominated by the maximum of the summands (see Embrechts et al., 1997). Therefore, a
possible reason why (1.1) is preserved when transitioning from independence to negative dependence
is because under negative dependence, random variables that take small to moderate values will push
the other random variables to take large values with a larger probability, leading to a stochastically
larger

∑n
i=1 θiXi. The situation is different for positively dependent random variables; see Remark 5. As

negative lower orthant dependence is more general than weak negative association, Theorem 1 (i) of
Chen et al. (2025a) is implied by Theorem 1. Remarkably, while Theorem 1 is more general, it is shown
by a much more concise proof.

In Section 4, we proceed to study (1.1) given non-identically distributed random variables X1, . . . , Xn.
Since X1, . . . , Xn do not follow the same distribution, the choice of X becomes unclear. A possible
choice is to let X follow the generalized mean of the distributions of X1, . . . , Xn. A special case is the
arithmetic mean, which leads to the commonly used distribution mixture models. Considering a rather
large class of distributions, Theorem 2 shows that (1.1) holds if the distribution of X is the general-
ized mean with non-negative power of the distributions of X1, . . . , Xn. To our best knowledge, Theorem
2 is the first attempt to establish a nontrivial version of (1.1) for non-identically distributed random
variables.

The rest of the paper is organized as follows. In Section 2, we present some first observations on (1.1).
Sections 3 and 4 present the main results. Section 5 compares our results with the literature. Section 6
concludes the paper. The appendix contains the proofs of Propositions 2 and 3 as well as some examples
in the new class of distributions.

1.1 Notation, conventions, and definitions
In this section, we collect some notation and conventions used throughout the rest of the paper and
remind the reader of some well-known definitions.

A function f on (0, ∞) is said to be subadditive if f (x + y) ≤ f (x) + f (y) for any x, y > 0. If the inequal-
ity is strict, we say f is strictly subadditive. For a random variable X ∼ F, denote by ess-inf X (ess-inf F)
and ess-sup X (ess-sup F) its essential infimum and essential supremum. Denote by �n the stan-
dard simplex, that is, �n = {θ̄ ∈ [0, 1]n:

∑n
i=1 θi = 1}, where we use notation θ̄ for a vector (θ1, . . . , θn).

Let �+
n = �n ∩ (0, 1)n. We will also use [n] to denote the set of indices 1, . . . , n. For a distribution
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ASTIN Bulletin 3

function F, its generalized inverse is defined as

F−1(p) = inf{t ∈R : F(t) ≥ p}, p ∈ (0, 1).

Definition 1. We say that a random variable X is smaller than a random variable Y in stochastic order,
denoted by X ≤st Y , if P(X ≤ x) ≥ P(Y ≤ x) for all x ∈R. For random variables X and Y with support
[c, ∞) where c ∈R, we write X <st Y if P(X ≤ x) > P(Y ≤ x) for all x > c.

2. Some observations on the stochastic dominance
Throughout the paper, we work with random variables that are almost surely nonnegative.

The main focus of the paper is on studying random variables X such that

X ≤st θ1X1 + · · · + θnXn for all θ̄ ∈ �n, (SD)

where X1, . . . , Xn are independent or negatively dependent with the marginal laws equal to X (see Section
3.2 for the precise definition of negative dependence). We will also say that a distribution F satisfies
property (SD) if a random variable X ∼ F satisfies it. If some of θ1, . . . , θn are 0, we can simply reduce
the dimension of our problem. Therefore, for most of our results, we will assume θ̄ ∈ �+

n .
Since (SD) holds if a constant is added to X, we will, without loss of generality, only consider random

variables with essential infimum 0. We will also be interested in distributions, and random variables,
for which property (SD) holds with a strict inequality. Let us start by formulating and providing some
straightforward observations of (SD).

Proposition 1. Assume that random variables X and Y satisfy property (SD) and are independent. Then
the following statements hold.

(i) E(X) = ∞ or X is a constant.
(ii) A random variable aX + b with a ≥ 0 and b ∈R satisfies (SD).
(iii) Random variables max{X, c} and max{X, Y} satisfy (SD), with c ≥ 0.
(iv) A random variable g(X) with a convex nondecreasing function g satisfies (SD). In addition, if X

satisfies (SD) with a strict inequality, g is convex and strictly increasing, then g(X) also satisfies
(SD) with a strict inequality.

Proof.

(i) This is implied by Proposition 2 of Chen et al. (2025a).
(ii) The proof is straightforward and is omitted.
(iii) We will prove only the stronger property for the maximum of two random variables. Let

X1, . . . , Xn follow the distribution of X, Y1, . . . , Yn follow the distribution of Y , and {Xi}i∈[n]

and {Yi}i∈[n] be independent. For x ∈R and θ̄ ∈ �n, we have

P(max{X, Y} ≤ x) = P(X ≤ x)P(Y ≤ x) ≥ P

(
n∑

i=1

θiXi ≤ x

)
P

(
n∑

i=1

θiYi ≤ x

)

= P

(
n∑

i=1

θiXi ≤ x,
n∑

i=1

θiYi ≤ x

)
= P

(
max

{
n∑

i=1

θiXi,
n∑

i=1

θiYi

}
≤ x

)

≥ P

(
n∑

i=1

θi max{Xi, Yi} ≤ x

)
.

(iv) Since g is convex and nondecreasing, g(X) ≤st g(
∑n

i=1 θiXi) ≤∑n
i=1 θig(Xi), where the first

inequality holds as stochastic order is preserved under nondecreasing transforms, and the
second inequality is to be understood in the almost sure (and therefore also stochastic) sense
and is due to convexity of g. �
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4 Yuyu Chen and Seva Shneer

Properties (ii)–(iv) above demonstrate that, even if one knows only several random variables satis-
fying (SD), it is possible to construct many more. Of special interest is property (iii), which does not
require any specific distributional properties of X and Y apart from property (SD).

3. A class of heavy-tailed distributions and stochastic dominance
In this section, we introduce a new class of heavy-tailed distributions. We explore several properties of
this class and demonstrate that it contains many well-known distributions with infinite mean. We then
prove that all distributions in this class satisfy property (SD). Along with the results of Proposition 1,
this shows that the class of distributions satisfying property (SD) is large.

3.1 A class of heavy-tailed distributions
As has already been noted, we can, without loss of generality, consider random variables whose essential
infimum is zero. For a random variable X ∼ F with ess-inf X = 0, we have F(x) > 0 for all x > 0.

Definition 2. Let F be a distribution function with ess-inf F = 0 and let hF(x) = − log F(1/x) for x ∈
(0, ∞). We say that F belongs to H, denoted by F ∈H, if hF is subadditive. We write F ∈Hs if hF is
strictly subadditive. For X ∼ F, we also write X ∼H (resp. X ∼Hs) if F ∈H (resp. F ∼Hs).

Remark 1. By properties of subadditive functions (e.g., Theorems 7.2.4 and 7.2.5 of Hille and Phillips,
1996), F ∈H if hF(x)/x is decreasing or hF is concave.

In the case of continuous distribution F, F ∈H holds if and only if the survival function of 1/X
is log-superadditive where X ∼ F. We will see later that all distributions in H have infinite mean and
because of that we say H is a class of heavy-tailed distributions. Note that the definition of heavy-
tailed distributions varies in different contexts; see, for example, Remark 3. Below are some examples in
class H.

Example 1. (Fréchet distribution). For α > 0, the Fréchet distribution, denoted by Fréchet(α), is
defined as

F(x) = exp (−x−α), x > 0.

If α ≤ 1, F has infinite mean. It is easy to check that F ∈H if α ≤ 1 and F ∈Hs if α < 1, since for any
x, y > 0,

hF(x) + hF(y)

hF(x + y)
=
(

x

x + y

)α

+
(

1 − x

x + y

)α

≥ 1.

As hF is additive when α = 1, Fréchet(1) distribution can be thought as a “boundary” of class H.

Example 2 (Pareto(1) distribution). For α > 0, the Pareto distribution, denoted by Pareto(α), is
defined as

F(x) = 1 − 1

(x + 1)α
, x > 0.

Pareto(α) distributions have infinite mean if α ≤ 1. Taking second derivative of hF when α = 1, we have
h′′

F(x) = −1/(x + 1)2. Hence, hF is concave and Pareto(1) ∈Hs.

We can show that Pareto(α) with α ≤ 1, as well as many other infinite-mean distributions in Table 1
also belong toH either directly using the definition or using some closure properties ofH in Propositions
2 and 3 provided below; see Appendix for detailed derivations of examples in Table 1 and the proofs of
Propositions 2 and 3.
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Table 1. Examples of distributions in H.

Distribution functions Parameters
Fréchet distribution F(x) = exp (−x−α), x > 0 α ≤ 1
Pareto distribution F(x) = 1 − (x + 1)−α, x > 0 α ≤ 1
Generalized Pareto distribution F(x) = 1 − (1 + ξ (x/β))−1/ξ , x > 0 ξ ≥ 1
Burr distribution F(x) = 1 − (xτ + 1)

−α , x > 0 α, τ ≤ 1
Inverse Burr distribution F(x) = (xτ /(xτ + 1))α , x > 0 α > 0, τ ≤ 1
Log-Pareto distribution F(x) = 1 − ( log (x + 1) + 1)−α, x > 0. α ≤ 1
Stoppa distribution F(x) = (1 − (x + 1)−α)

β , x > 0 α ≤ 1, β > 0

Proposition 2. Let X ∼ F where F ∈H. The following statements hold.
(i) If F is strictly increasing on [0, ∞) and P(X < ∞) = 1, then F is continuous on [0, ∞).
(ii) For β > 0, Fβ ∈H.
(iii) If, in addition, a random variable Y ∼ G, where G ∈H, is independent of X, then max{X, Y} ∈

H. In terms of distribution functions, if F, G ∈H, then FG ∈H.
(iv) For a nondecreasing, convex, and nonconstant function f : R+ →R+ with f (0) = 0, f (X) ∈H.

Proposition 3. Let θ̄ ∈ �+
n . If distribution functions F1, . . . , Fn ∈H and F1 ≤st · · · ≤st Fn, then∑n

i=1 θiFi ∈H.

It is clear that the various transforms of distributions in Proposition 2 from our class generate many
different distributions, showing that the classH is indeed rather large. Suppose that F1, . . . , Fn are Pareto
distributions with possibly different tail parameters 0 < α1, . . . , αn ≤ 1. As F1, . . . , Fn are comparable
in stochastic order, by Proposition 3, mixtures of F1, . . . , Fn are in H.

3.2 Negative lower orthant dependence
The notion of negative dependence below will be used to establish the main result of this section.

Definition 3 (Block et al., 1982). Random variables X1, . . . , Xn are negatively lower orthant dependent
(NLOD) if for all x1, . . . , xn ∈R, P(X1 ≤ x1, . . . , Xn ≤ xn) ≤∏n

i=1 P(Xi ≤ xi).

Negative lower orthant dependence includes independence as a special case. It is commonly used
in various research areas, and it is implied by other popular notions of negative dependence in the
literature, such as negative association (Alam and Saxena, 1981 and Joag-Dev and Proschan, 1983),
negative orthant dependence (Block et al., 1982), and negative regression dependence (Lehmann, 1966
and Block et al., 1985) see, for example, Chi et al. (2024) for the implications of these notions.

3.3 Main result
Theorem 1. If a random variable X ∈H and random variables X1, . . . , Xn are NLOD with marginal
laws equal to X, then for θ̄ ∈ �+

n ,

X ≤st θ1X1 + · · · + θnXn. (3.1)

If X ∈Hs, then X <st
∑n

i=1 θiXi.

Proof. Let X ∼ F and θ̄ ∈ �+
n . We have, for all x > 0,

P

(
n∑

i=1

θiXi ≤ x

)
≤ P(θ1X1 ≤ x, . . . , θnXn ≤ x) ≤

n∏
i=1

F

(
x

θi

)
=

n∏
i=1

exp

(
−hF

(
θi

x

))

= exp

(
−

n∑
i=1

hF

(
θi

x

))
≤ exp

(
−hF

(
n∑

i=1

θi

x

))
= exp

(
−hF

(
1

x

))
= F(x).

The strictness statement is straightforward. The proof is complete. �
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6 Yuyu Chen and Seva Shneer

An immediate consequence of Theorem 1 and Proposition 1 (i) is that all distributions in H have
infinite mean.

Remark 2 (Value-at-Risk). One regulatory risk measure in insurance and finance is Value-at-Risk
(VaR). For a random variable X ∼ F and p ∈ (0, 1), VaR is defined as VaRp(X) = F−1(p). For two random
variables X and Y , it is well known that X ≤st Y if and only if VaRp(X) ≤ VaRp(Y) for all p ∈ (0, 1). Note
that VaR is comonotonic-additive; a risk measure ρ is comonotonic-additive if ρ(Y + Z) = ρ(Y) + ρ(Z)
for comonotonic random variables Y and Z .1 Then we have VaRp(X) =∑n

i=1 VaRp(θiXi) for identi-
cally distributed random variables X1, . . . , Xn. By Theorem 1, superadditivity of VaR holds for θ̄ ∈
�+

n and identically distributed risks X1, . . . , Xn ∈H that are NLOD: For all p ∈ (0, 1), VaRp(θ1X1) +
· · · + VaRp(θnXn) ≤ VaRp(θ1X1 + · · · + θnXn). More generally, the superadditivity property holds for any
comonotonic-additive risk measure that is consistent with stochastic order.

Remark 3 (Heavy-tailed distributions). A distribution F is said to be heavy-tailed in the sense of Falk
et al. (2011) with tail parameter α > 0, if F(x) = L(x)x−α where L is a slowly varying function, that is,
L(tx)/L(x) → 1 as x → ∞ for all t > 0. For iid heavy-tailed random variables X1, X2, · · · ∼ F, if there
exist sequences of constants {an} and {bn} where bn > 0 such that ( max{X1, . . . , Xn} − an)/bn converges
to the Fréchet distribution, F is said to be in the maximum domain attraction of the Fréchet distribution.
It is known in the Extreme Value Theory (Embrechts et al., 1997) that a distribution is in the maximum
domain of attraction of the Fréchet distribution if and only if the distribution is heavy-tailed. Note that
for a heavy-tailed random variable X with α ≤ 1, E(|X|) = ∞. An interesting property of heavy-tailed
risks with infinite mean is the asymptotic superadditivity of VaR: If X1, . . . , Xn are iid and heavy-tailed
with tail parameter α < 1,

lim
p→1

VaRp(X1 + · · · + Xn)

VaRp(X1) + · · · + VaRp(Xn)
> 1.

See, for example, Example 3.1 of Embrechts et al. (2009) for the claim above. Heavy-tailed risks with
infinite mean are not necessarily inH as the condition ofH applies over the whole range of distributions,
whereas heavy-tailed distributions have power-law shapes only in their tail parts. On the other hand,
risks in H are not necessarily heavy-tailed in the sense of Falk et al. (2011). For instance, the survival
distributions of log-Pareto risks are slowly varying functions. Distributions with slowly varying tails are
called super heavy-tailed.

Remark 4 (Convex order). Besides stochastic order, another popular notion of stochastic dominance
to compare risks is convex order. For two random variables X and Y , X is said to be smaller than Y
in convex order, denoted by X ≤cx Y , if E(u(X)) ≤E(u(Y)) for all convex functions u provided that the
expectations exist. The interpretation of X ≤cx Y is that Y is more “spread-out” than X. If X1, . . . , Xn

are iid and have a finite mean, by Theorem 3.A.35 of Shaked and Shanthikumar (2007), for θ̄ ∈ �+
n ,∑n

i=1 θiXi ≤cx X1. Unlike Theorem 1, this leads to a diversification benefit. Note that ≤cx is not suitable
for the analysis of risks with infinite mean as the expectation of any increasing convex transform of these
risks is infinity.

Remark 5 (Positive dependence). One may expect positive dependence to make larger values of the
sum in (3.1) more likely and thus the sum more likely to stochastically dominate a single random vari-
able. We believe that this intuition does not hold due to the very heavy tails of the random variables
under consideration. It is known, for instance, that very large values of the sum of iid random variables
with heavy tails are likely caused by a single random variable taking a large value, while other ran-
dom variables are moderate. If random variables are positively dependent and some of them do not take
large values, it makes others more likely to take moderate values too, hence positive dependence may
hinder large values; see Alink et al. (2004) and Mainik and Rüschendorf (2010) for such observations

1 Random variables Y and Z are comonotonic if there exists a random variable U and two increasing functions f and g such that
Y = f (U) and Z = g(U) almost surely.
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in some asymptotic senses. These phenomena can also be seen from the deadly risks considered by
Müller (2024): For all i ∈ [n], P(Xi = 0) = 1 − p and P(Xi = ∞) = p where p > 0. For θ ∈ �+

n , it is
clear that

∑n
i=1 θiXi = ∞ as long as one of X1, . . . , Xn is ∞. If X1, . . . , Xn are positively lower orthant

dependent (PLOD), that is P(X1 ≤ x1, . . . , Xn ≤ xn) ≥∏n
i=1 P(Xi ≤ xi) for all x1, . . . , xn ∈R, then

P

(
n∑

i=1

θiXi = ∞
)

= 1 − P (X1 = · · · = Xn = 0) ,

= 1 − P (X1 ≤ 0, . . . , Xn ≤ 0) ≤ 1 −
n∏

i=1

P(Xi = 0).

Hence,
∑n

i=1 θiXi is stochastically smaller when X1, . . . , Xn are PLOD compared to the case when
X1, . . . , Xn are independent. The situation is reversed for NLOD random variables. However, (SD) still
holds for PLOD risks X1, . . . , Xn as

P

(
n∑

i=1

θiXi = ∞
)

= 1 − P (X1 = · · · = Xn = 0) ≥ 1 − P(X1 = 0) = P(X1 = ∞).

In Chen et al. (2025b), (SD) is shown to hold for infinite-mean Pareto random variables that are positively
dependent via some specific Clayton copula.

4. Weighted sums of non-identically distributed risks
In the previous section, property (SD) is studied for risks with the same marginal distribution. We now
look at the case when risks are not necessarily identically distributed. Given non-identically distributed
random variables X1, . . . , Xn and any θ̄ ∈ �n, the question is to study for which random variable X the
following property holds

X ≤st θ1X1 + · · · + θnXn. (4.1)

To study this problem, we introduce the class of super-Fréchet distributions defined below.

Definition 4. A random variable X is said to be super-Fréchet (or has a super-Fréchet distribution) if
X and f(Y) have the same distribution, where Y ∼ Fréchet(1) and f is a strictly increasing and convex
function with f (0) = 0.

As convex transforms make the tail of random variables heavier, super-Fréchet distributions are more
heavy-tailed than Fréchet(1) distribution, and thus the name. It is easy to check that a random variable
X with ess-inf X = 0 is super-Fréchet if and only if the function g : x �→ 1/(− log P(X ≤ x)) is strictly
increasing and concave on (0, ∞) with limx↓0 g(x) = 0.

As Fréchet(1) distribution is in H, by Proposition 1 (iv), Super-Fréchet distributions are in H. On the
other hand, not all distributions in H are Super-Fréchet, which can be seen from the following example.

Example 3. For c > 0, define a distribution function on (0, ∞]:

F(x) = exp (−c
1/x�), for x ∈ (0, ∞),

and F(∞) = 1. Then hF(x) = c
x�, x ∈ (0, ∞), is subadditive, and thus F ∈H. However, since F is not
a continuous distribution, it is not super-Fréchet. The distributions in this example are the so-called
inverse-geometric distributions, also considered in Example 2.7 of Arab et al. (2024).

Fréchet distributions with infinite mean, as well as many other distributions in the following example,
are super-Fréchet.

Example 4. Pareto, Burr, paralogistic, and log-logistic random variables, all with infinite mean,
are super-Fréchet distributions. Since all these random variables can be obtained by applying strictly
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increasing and convex transforms to Pareto(1) random variables (see Appendix C), it suffices to show
that a Pareto(1) random variable is super-Fréchet. Write the Pareto(1) distribution as F(x) = 1 − 1/(x +
1) = exp (−1/g(x)), x > 0, where g(x) = 1/ log (1 + 1/x). It is clear that g is strictly increasing and
limx↓0 g(x) = 0. We show g is concave on (0, ∞). We have

g′′(x) = 2 − (1 + 2x) log (1 + 1/x)

x2(1 + x)2 log3 (1 + 1/x)
.

Let r(x) = log (1/x + 1) − 2/(1 + 2x), x > 0. It is easy to verify that r is strictly decreasing on (0, ∞)
and r(x) goes to 0 as x goes to infinity. Thus, r(x) > 0 and g′′(x) < 0 for x ∈ (0, ∞).

We will assume X1, . . . , Xn in (4.1) are super-Fréchet. Since X1, . . . , Xn may not have the same
distribution, how to choose the distribution of X is not clear. A perhaps natural candidate is the gen-
eralized mean of the distributions of X1, . . . , Xn. For r ∈R \ {0}, n ∈N, and w = (w1, . . . , wn) ∈ �n, the
generalized r-mean function is defined as

Mw
r (u1, . . . , un) = (

w1u
r
1 + · · · + wnu

r
n

)1/r
, (u1, . . . , un) ∈ (0, ∞)n.

The generalized 0-mean function is the weighted geometric mean, that is, Mw
0 (u1, . . . , un) =∏n

i=1 uwi
i ,

which is also the limit of Mw
r as r → 0. A generalized mean of distribution functions is a distribution

function. In particular, if r = 1, it leads to a distribution mixture model, that is, if X ∼ Mw
1 (F1, . . . , Fn),

X has the same distribution as
∑n

i=1 Xi1Ai where A1, . . . , An are mutually exclusive, independent of
X1, . . . , Xn, and P(Ai) = wi for all i ∈ [n].

Theorem 2. If X1, . . . , Xn are super-Fréchet and NLOD with Xi ∼ Fi, i ∈ [n], and X ∼ Mθ̄
r (F1, . . . , Fn)

for some r ≥ 0, then for θ̄ ∈ �+
n ,

X ≤st θ1X1 + · · · + θnXn.

Proof. Let gi(x) = 1/(− log Fi(x)), x > 0, for all i ∈ [n]. As gi, i ∈ [n], is strictly increasing and con-
cave on (0, ∞) with limx↓0 gi(x) = 0, gi(x) ≥ θgi(x/θ ) for all x > 0 and θ ∈ (0, 1). Then, for θ ∈ (0, 1),

Fi

( x

θ

)
= exp

(
−gi

( x

θ

)−1
)

≤ exp
(−θgi(x)−1

)= Fi(x)θ . (4.2)

As X1, . . . , Xn are NLOD, by 4.2, for any x > 0, (θ1, . . . , θn) ∈ �n, and r ≥ 0,

P

(
n∑

i=1

θiXi ≤ x

)
≤ P(θ1X1 ≤ x, . . . , θnXn ≤ x) ≤

n∏
i=1

Fi

(
x

θi

)
≤

n∏
i=1

Fi (x)
θi

= M θ̄

0 (F1(x), . . . , Fn(x)) ≤ M θ̄

r (F1(x), . . . , Fn(x)) = P(X ≤ x).

The last inequality is because the generalized mean function is monotone in r; that is, given any w ∈ �n,
Mw

r ≤ Mw
s for r ≤ s (Theorem 16 of Hardy et al., 1934). �

5. Comparison with existing results
In this section, we compare our results with the literature. We first consider the case when X1, . . . , Xn in
(SD) are iid. In Arab et al. (2024), it is shown that (SD) holds for nonnegative random variables that are
InvSub; a random variable X ∼ F and its distribution is called InvSub if 1 − F(1/x) is subadditive. The
class of InvSub distributions is larger thanH as hF = − log F(1/x) is subadditive implies that 1 − F(1/x)
is subadditive. Müller (2024) showed that (SD) holds for super-Cauchy random variables; a random
variable X ∼ F and its distribution is called super-Cauchy if F−1(G(x)) is convex where G is the standard
Cauchy distribution function. Super-Cauchy distributions are continuous and can take positive values on
the entire real line but they do not containH asH includes non-continuous distributions (see Example 3).
The proofs in both Arab et al. (2024) and Müller (2024) are short and elegant.
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As our results cover the case of negatively dependent risks, for the rest of this section, we will focus
on the comparison of our results with Chen et al. (2025a); to our best knowledge, Chen et al. (2025a) is
the only other paper that deals with negatively dependent risks. Chen et al. (2025a) showed that

(SD) holds for super-Pareto risks X1, . . . , Xn that are weakly negatively associated. (5.1)

For ease of comparison, definitions of super-Pareto distributions and weak negative association are given
in a slightly different form from Chen et al. (2025a) below.

Definition 5. A random variable X and its distribution is super-Pareto if X and f(Y) have the same
distribution for some non-decreasing, convex, and non-constant function f with f (0) = 0 and Y ∼
Pareto(1).

Definition 6. A set S ⊆R
k, k ∈N is decreasing if x ∈ S implies y ∈ S for all y ≤ x. Random variables

X1, . . . , Xn are weakly negatively associated if for any i ∈ [n], decreasing set S ⊆R
n−1, and x ∈R with

P(Xi ≤ x) > 0,

P(X−i ∈ S, Xi ≤ x) ≤ P(X−i ∈ S)P(Xi ≤ x).

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).

Lemma 1. If random variables X1, . . . , Xn are super-Pareto and weakly negatively associated, then
X1, . . . , Xn ∈H and they are NLOD.

Proof. As Pareto(1) risks are in H (see Example 2), by Proposition 2 (iv), super-Pareto risks are in
H. Since X1, . . . , Xn are weakly negatively associated, for any (x1, . . . , xn) ∈R

n,

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤ P(X1 ≤ x1, . . . , Xn−1 ≤ xn−1)P(Xn ≤ n) ≤
n∏

i=1

P(Xi ≤ xi).

Thus, X1, . . . , Xn are NLOD. �
The above lemma shows that Theorem 1 implies (5.1), which is in Theorem 1 (i) of Chen et al.

(2025a). We present below a corollary, which leads to a similar result as Theorem 1 (ii) of Chen et al.
(2025a).

Corollary 1. Suppose that a random variable X ∈H, random variables X1, . . . , Xn are NLOD with
marginal laws equal to X, and ξ1, . . . , ξn are any positive random variables independent of X, X1, . . . , Xn

with
∑n

i=1 ξi ≤ 1. If P(cX > t) ≥ cP(X > t) for all c ∈ (0, 1] and t > 0, then for x ≥ 0,

P

(
n∑

i=1

ξiXi > x

)
≥E

(
n∑

i=1

ξi

)
P(X > x). (5.2)

Proof. By Theorem 1 and the independence between ξ1, . . . , ξn and X, X1, . . . , Xn, we have

P

(
n∑

i=1

ξiXi > x

)
=E

[
P

(
n∑

i=1

ξiXi > x|(ξ1, . . . , ξn)

)]

≥E

[
P

((
n∑

i=1

ξi

)
X > x|(ξ1, . . . , ξn)

)]
≥E

(
n∑

i=1

ξi

)
P (X > x) .

�
For θ̄ ∈ �n, let A1, . . . , An be any events independent of (X1, . . . , Xn) and event A be independent of

X satisfying P(A) =∑n
i=1 θiP(Ai). If X1, . . . , Xn are financial losses, A1, . . . , An can be interpreted as the

triggering events for these losses. Let ξi = θi1Ai . By (5.2), for x ≥ 0,

P

(
n∑

i=1

θiXi1Ai > x

)
≥E

(
n∑

i=1

θi1Ai

)
P(X > x) = P(A)P(X > x) = P(X1A > x),
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which is equivalent to

X1A ≤st

n∑
i=1

θiXi1Ai . (5.3)

Theorem 1 (ii) of Chen et al. (2025a) showed (5.3) with different assumptions from Corollary 1; we
refer readers to Chen et al. (2025a) for more details.

6. Conclusion
In this paper, we provide some sufficient conditions for property (SD) to hold. One can see that the
property, while very strong, holds for a remarkably large class of distributions. We have also shown that
it remains valid for non-identically distributed random variables.

We conclude with some open questions. First, we are interested in understanding how close our
sufficient conditions for (SD) are to the optimal ones, that is, we would like to understand what conditions
are necessary for (SD).

Second, the definition of our class of heavy-tailed random variables seems to suggest that it is the
distribution of 1/X that is of importance. We currently lack an intuitive explanation of this.

Finally, property (SD) raises the possibility that, for some random variables X1, . . . , Xn and two
vectors η̄, γ̄ ∈R

n
+,

η1X1 + · · · + ηnXn ≤st γ1X1 + · · · + γnXn, (6.1)

where γ̄ is smaller than η̄ in majorization order; that is,
∑n

i=1 γi =∑n
i=1 ηi and

∑k
i=1 γ(i) ≥∑k

i=1 η(i) for
k ∈ [n − 1] where γ(i) and η(i) represent the ith smallest order statistics of γ̄ and η̄. Clearly, (6.1) implies
(SD). It is well known that (6.1) holds for iid stable random variables with infinite mean (see Ibragimov,
2005), and it was recently shown to hold for iid Pareto random variables with infinite mean by Chen et al.
(2025b). It is of question whether (6.1) can hold for a larger class of distributions. Note that the methods
used in the current paper do not appear to be useful to address (6.1) as we rely on the comparison of a
sum with each of the summands. A more subtle approach to sums is required.
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Appendices
A. Proof of Proposition 2
(i) As hF is subadditive and increasing, and limx↓0 hF(x) = 0, hF is continuous on (0, ∞), and so is F (see
Remark 1 of Matkowski and Światkowski, 1993). The desired result is due to the right-continuity of F.

(ii) Proof of (ii) is straightforward and thus omitted.
(iii) This is also straightforward.
(iv) For y ≥ 0, let f −1+(y) = inf{x ≥ 0 : f (x) > y} be the right-continuous generalized inverse of f with

the convention that inf ∅ = ∞. As f is increasing, convex, and nonconstant with f (0) = 0, f −1+ is strictly
increasing and concave and f −1+(0) ≥ 0. Therefore, by concavity of f −1+ and f −1+(0) ≥ 0, it is clear that
f −1+(tx) ≥ tf −1+(x) for any x > 0 and t ∈ (0, 1]. For any a, b > 0,

f −1+
(

ab

a + b

) (
f −1+ (a) + f −1+ (b)

)≥ a

a + b
f −1+ (b) f −1+ (a) + b

a + b
f −1+ (a) f −1+ (b)

= f −1+ (a) f −1+ (b) .
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Hence, we have (
f −1+

(
ab

a + b

))−1

≤ (f −1+ (a)
)−1 + (

f −1+ (b)
)−1

. (A1)

Denote by F and G the distribution functions of X and f (X), respectively. Then G(x) = P(f (X) ≤ x) =
P(X ≤ f −1+(x)) = F(f −1+(x)) for x ≥ 0. By letting g(x) = 1/f −1+(1/x) for x > 0, we write hG = hF ◦ g. By
inequality (A1), for any x, y > 0,

g(x + y) =
(

f −1+
(

1/xy

1/x + 1/y

))−1

≤
(

f −1+
(

1

x

))−1

+
(

f −1+
(

1

y

))−1

= g(x) + g(y).

Therefore, g is subadditive. As hF is subadditive and nondecreasing, it is clear that hG = hF◦g is
subadditive and we have the desired result.

B. Proof of Proposition 3
Let G =∑n

i=1 θiFi. It suffices to show

G

(
xy

x + y

)
≥ G(x)G(y) for all x, y > 0. (B1)

For n = 2, as F1 and F2 are super heavy-tailed,

G

(
xy

x + y

)
− G (x) G (y) = θ1F1

(
xy

x + y

)
+ θ2F2

(
xy

x + y

)
− G (x) G (y)

≥ θ1F1 (x) F1 (y) + θ2F2 (x) F2(y) − G (x) G (y)

= θ1F1 (x) F1 (y) + θ2F2 (x) F2(y)

− (θ1F1(x) + θ2F2(x))(θ1F1(y) + θ2F2(y))

= θ1θ2(F1 (x) − F2(x))(F1 (y) − F2(y)) ≥ 0.

Hence, (B1) holds for n = 2. Next, assume that (B1) holds for n = k − 1 where k > 3 is an integer. Let
a =∑k−1

i=1 θiFi(x), b =∑k−1
i=1 θiFi(y), c = a/(Fn(x)(1 − θn)), and d = b/(Fn(y)(1 − θn)). For n = k,

G

(
xy

x + y

)
− G (x) G (y) =

k∑
i=1

θiFi

(
xy

x + y

)
− G (x) G (y)

=
k−1∑
i=1

θiFi

(
xy

x + y

)
+ θnFn

(
xy

x + y

)
− G (x) G (y)

= (1 − θn)
k−1∑
i=1

θi

1 − θn

Fi

(
xy

x + y

)
+ θnFn

(
xy

x + y

)
− G (x) G (y)

≥ (1 − θn)

(
k−1∑
i=1

θi

1 − θn

Fi (x)

)(
k−1∑
i=1

θi

1 − θn

Fi (y)

)

+ θnFn

(
xy

x + y

)
− G (x) G (y)

≥ ab

1 − θn

+ θnFn(x)Fn(y) − (a + θnFn(x))(b + θnFn(y))

= abθn

1 − θn

+ (θn − θ 2
n )Fn(x)Fn(y) − aθnFn(y) − bθnFn(x)

= θn(1 − θn)Fn(x)Fn(y) (cd + 1 − c − d) .
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As F1 ≤st · · · ≤st Fk, Fk ≤∑k−1
i=1 θi/(1 − θn)Fi. Thus c, d ≥ 1 and cd + 1 − c − d ≥ 0. The proof is

complete by induction.

C. Examples of distributions in the class H
In this section, we demonstrate that many well-known infinite-mean distributions are in H.

Example A.1 (Pareto distribution). For α > 0, the Pareto distribution, denoted by Pareto(α), is defined
as

F(x) = 1 − 1

(x + 1)α
, x > 0.

If α = 1, for x, y > 0,

hF(x + y) − hF(x) − hF(y) = log (x + y + 1) − log (x + 1) − log (y + 1) ≤ 0

Thus, Pareto(1) ∈Hs. Then we note that any Pareto(α) random variable X can be written as X = f (Z)
where Z ∼ Pareto(1) and f (x) = (x + 1)1/α − 1 for x ≥ 0. By Proposition 2 (iv), as f is increasing and
convex for α ≤ 1, Pareto(α) ∈Hs if α ≤ 1.

Example A.2 (Generalized Pareto distribution). The generalized Pareto distribution with parameters
ξ ∈R and β > 0 is defined as

F(x) =
⎧⎨
⎩1 −

(
1 + ξ x

β

)−1/ξ

, if ξ �= 0,

e−x/β , if ξ = 0,

where x ∈ [0, ∞) if ξ ≥ 0 and x ∈ [0, −β/ξ ) if ξ < 0. By the Pickands-Balkema-de Haan Theorem
(Balkema and de Haan, 1974; Pickands, 1975), the generalized Pareto distributions are the only possi-
ble nondegenerate-limiting distributions of the excess of random variables beyond a high threshold. If
ξ ≥ 1, F ∈H. This is by Proposition 2 (iv); that is, the generalized Pareto random variables with ξ ≥ 1
can be obtained from location-scale transforms of Pareto(1/ξ ) random variables.

Example A.3 (Burr distribution). For α, τ > 0, the Burr distribution is defined as

F(x) = 1 −
(

1

xτ + 1

)α

, x > 0. (C1)

Let Y ∼ Pareto(α). Then Y1/τ follows a Burr distribution. If α, τ ≤ 1, the Burr distribution is super-Pareto
and hence F ∈H. Special cases of Burr distributions are the paralogistic (α = τ ) and the log-logistic
(α = 1) distributions; see Kleiber and Kotz (2003) and Klugman et al. (2012).

Example A.4 (Inverse Burr distribution). Suppose that Y follows the Burr distribution (C1). Then X =
1/Y follows the inverse Burr distribution

F(x) =
(

xτ

xτ + 1

)α

, x > 0,

where α, τ > 0. If τ ≤ 1, it is easy to check that the second derivative of hF is always negative, and thus
hF is subadditive. Hence F ∈H if τ ≤ 1. Note that the property of H may not always be preserved under
the inverse transformation. For instance, if Z follows a Fréchet distribution without finite mean, then
1/Z follows a Weibull distribution whose mean is always finite.

Example A.5 (Log-Pareto distribution). If Y ∼ Pareto(α), α > 0, then X = exp (Y) − 1 has a log-Pareto
distribution (see p. 39 in Arnold, 2015), with distribution function

F(x) = 1 − 1

( log (x + 1) + 1)α
, x > 0.
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If α ∈ (0, 1], by Proposition 2 (iv), F ∈H.

Example A.6 (Stoppa distribution). For α > 0 and β > 0, a (location-shifted) Stoppa distribution can
be defined as

F(x) =
(

1 − 1

(x + 1)α

)β

, x > 0.

Since a Stoppa distribution is a power transform of a Pareto distribution, by Proposition 2 (ii), if α ≤ 1,
F ∈H. Power transforms have also been used to generalize Burr distributions (see p. 211 of Kleiber
and Kotz, 2003).
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