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MOTION OF A SLIP SPHERE IN A NONCONCENTRIC
FICTITIOUS SPHERICAL ENVELOPE OF
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Abstract

Stokes’ axisymmetrical translational motion of a slip sphere, located anywhere on the
diameter of a virtual spherical fluid ‘cell’, is investigated. The fluid is micropolar and
flows are parallel to the line connecting the two centres. An infinite-series solution is
presented for the stream function, pressure field, vorticity, microrotation component,
shear stress and couple stress of the flow. Basset-type slip boundary conditions on
the sphere surface are used for velocity and microrotation. The Happel and Kuwabara
boundary conditions are used on the fictitious surface of the cell model. Numerical
results for the normalized drag force acting on the sphere are obtained with excellent
convergence for various values of the volume fraction, the relative distance between the
centre of the sphere and the virtual envelope, the vortex viscosity parameter and the
slip coefficients of the sphere. In the special case when the spherical particle is in the
concentric position with the cell surface, the numerical values of the normalized drag
force agree with the available values in the literature.
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1. Introduction

Several non-Newtonian fluid models have been proposed to describe fluids of
microstructures. Micropolar fluid, introduced by Eringen [7], is a physically relevant
model that has many applications. These fluids consist of rigid, randomly oriented
particles with their own spins and microrotations, suspended in a viscous medium.
In micropolar fluids, rigid particles contained in a small volume element can rotate
about the centre of the volume element described by the microrotation vector. In
addition, individual particles can rotate independently from the rotation and movement
of the fluid as a whole. Therefore, new variables which represent angular velocities of
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fluid particles and new equations governing these variables should be added to the
conventional model.

Micropolar theory has been applied in an increasingly significant number of
cases in various scientific fields. One of them is the study of lubricating fluids
in bearings in lubrication theory [19]. Ferrofluid has often been modelled as a
micropolar fluid, because it consists of a stabilized colloidal suspension of Brownian
magnetic particles in a nonmagnetic liquid host [25]. The micropolar fluid model is a
continuum model to describe a fluid which consists of particles with internal structure
[10, 13, 19]. The model equations include the asymmetric stress tensor and the
couple stress tensor to describe the microrotation of constituents. Therefore, the model
may be a suitable framework to describe granular flows. In fact, granular flows
are flows which have microstructure and rotation of particles. Hayakawa [13] has
reported that the theoretical calculations of certain boundary-value problems agree
with relevant experimental results of granular flows. Cell-model techniques can be
used for Newtonian or non-Newtonian fluids [5]. To the best of our knowledge, there is
no previous work dealing with micropolar fluid flow in the cell model. This motivated
us to pursue the present work.

The area of fluid flow relative to assemblages of particles is important in many
practical applications, such as fluidization, sedimentation and flow in packed beds.
Therefore, it is required to determine whether the presence of neighbouring particles
and boundaries affects the movement of an individual particle. An important and
successful technique that has been used in the literature [12] to predict the effect on
neighbouring particles or boundaries of the motion of an individual particle is the unit-
cell model. According to this model, the swarm of particles are uniformly distributed
throughout the fluid phase and every particle is enclosed in the spherical cell formed
by the disperse medium. Moreover, the volume of the fluid cell is chosen such that the
solid volume fraction in the cell equals the solid volume fraction of the assemblage.
Thus, the entire disturbance due to each particle is confined within the cell of the fluid
with which it is associated. The cell model can be used to reduce the solution of the
boundary-value problem for the flow around a system of particles to the problem for
a single particle. Happel and Brenner [12] pointed out that although cell models of
this type give an adequate approximation of the actual average flow profile close to
particles in a real physical system, they cannot be expected to be valid for points close
to fictitious cell boundaries.

Thus, for such points, a technique like the reflection procedure may be used.
The unit-cell model has been widely used to solve boundary-value problems for
solid particles in concentrated systems where the effect of the container wall may
be ignored [6]. Different boundary conditions have been suggested at the fictitious
surface of the cell model. Happel’s model [11] assumes a uniform velocity condition
and no tangential stress at the cell surface, whereas Kuwabara’s model [16] assumes
vanishing of vorticity instead of no tangential stress. Both models result in similar
velocity fields and drag forces. Happel’s model does not require an exchange of
mechanical energy between the cell and the environment, while Kuwabara’s model
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does require such exchange. The sphere-in-cell geometry is used extensively as a
simple model that can account for the hydrodynamic interactions among the spherical
particles. Faltas and Saad [8] have adopted mathematical and numerical techniques
to investigate the quasisteady axisymmetrical flow of an incompressible viscous fluid
past an assemblage of slip eccentric spherical particle-in-cell models with Happel and
Kuwabara boundary conditions. The cell technique serves as an improvement over the
analysis of conventional lubrication theory. In lubrication, the fluid is usually confined
in a narrow region between surfaces with a variable width. The unit-cell technique has
also been used to solve boundary-value problems of the flow of a viscous fluid past
a fluid sphere which has a micropolar fluid inside it as well as the related problem
of a micropolar fluid past a viscous fluid drop [26]. In the literature, there are many
accounts where other boundary conditions on the virtual surface have been used for
the unit cell. The effect of the boundary conditions proposed by Happel, Kuwabara and
Slobodov–Chepura on the velocity of a bubble ensemble in a non-Newtonian liquid
was analysed in [31]. Prakash et al. [24] used the cell method to study the Stokes
flow problem of an assemblage of porous particles and reviewed the known boundary
proposed by Happel and Sherwood at the virtual surface. Faltas and Saad [9] have
investigated the motion of a porous spherical particle placed eccentrically within a
spherical cell using the Happel, Kuwabara, Kvashnin, Cunningham or Mehta–Morse
boundary conditions on the cell surface.

In fluid mechanics, both no-slip and partial-slip boundary conditions were proposed
in the nineteenth century [23]. Navier [22] gave the slip boundary condition, where
the tangential velocity of the fluid relative to the solid at a point on its surface is
proportional to the tangential stress acting at that point. For gas flows, Maxwell [20]
had shown that the surface slip is related to the noncontinuous nature of the gas and
the slip length is proportional to the mean-free path. For liquids, from experiments
at that time, the no-slip boundary condition was accepted and since then has largely
been treated as a fundamental law. However, from recent extensive studies on the
surface slip in micro- and nanoscales, the physics of the fluid–solid slip is recognized
to be much more complicated than that for gases. Indeed, apparent violations of
the no-slip boundary condition at the fluid–solid interface in nanoscale have been
reported [17, 23]. The hydrodynamic slip boundary condition has also been studied
in the context of nanofluidics [4]. Basset [3] derived expressions for the force
exerted by the surrounding fluid on a translating rigid sphere with a slip boundary
condition at its surface (for example, a settling aerosol sphere). The hydrodynamic
effects of homogeneous and nonhomogeneous slip boundary conditions for Newtonian
fluids have been discussed extensively in the literature [32, 33]. Motivated by
this understanding, we decided to analyse a micropolar flow problem, using the
slip boundary conditions for both the velocity and the microrotation. There is no
uniform consensus on the microrotation boundary conditions for micropolar fluids. An
interesting review for various types of this boundary condition is given by Migun [21].
Aero et al. [1] suggested a physically acceptable dynamic boundary condition for
microrotation, which states that the microrotation is proportional to the couple stress at
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the boundary. We propose a slip boundary condition for the microrotation by assuming
that the tangential component of the microrotation vector of the fluid relative to the
solid at a point on its surface is proportional to the corresponding tangential couple
stress acting at that point. Slip boundary conditions for micropolar fluids have been
used for the velocity, but not for the microrotation, by Sherief et al. and Saad [27, 29].
We think that it is physically more appropriate to use the slip boundary conditions
for both the velocity and the microrotation because both conditions are applied at the
same surface and the slip is mainly due to the nature of the surface and the fluid. More
recently, Sherief et al. [28] used this boundary condition to study the axisymmetric
rectilinear and rotary oscillations of a solid spheroidal particle in a micropolar fluid.

In the present work, the problem of the motion of a homogeneous suspension of
identical spherical particles is analysed in the limit of negligible Reynolds number
(Stokes flow) [15]. The effects of interaction among individual particles are taken
into explicit account by employing a unit-cell model, which is known to provide
good predictions for the sedimentation of monodisperse suspensions of spherical
particles [12]. We assume a typical cell envelope to be spherical and the outside
surface of each cell to be frictionless. Brownian motion and forces other than gravity
are neglected. This study is an extension of previous work [8] for a micropolar fluid
with the same geometry (see Figure 1). The slip boundary conditions for both velocity
and microrotation on the spherical particle are considered. Under the Stokesian
approximation, a general solution is constructed from the superposition of the basic
solutions in the two spherical coordinate systems based on the particle and virtual
spherical envelope. On the fictitious cell surface, Happel and Kuwabara boundary
conditions are employed. A combined analytical–numerical method with the boundary
collocation technique has been used to solve the field equations for micropolar fluids.
The total force exerted on the solid particle settling in the fluid within a unit cell can
be expressed as the sum of the gravitational forces and the buoyancy forces. The
normalized drag force acting on the particle is obtained with excellent convergence
for various cases of the particle relative to slip coefficients, the separation between the
particle and the cell wall, and the vortex viscosity parameter. The lubrication limit is
discussed as the relative distance between the centres of the particle and the cell wall
approaches unity.

2. Field equations

The balance principles for mass, linear momentum and angular momentum for
the steady isothermal flow of an incompressible micropolar fluid under the Stokesian
assumption in the absence of body forces and body couples are given by Eringen [7]

∇ · ~q = 0,

∇p + ( µ + k)∇ ∧ ∇ ∧ ~q − k∇ ∧ ~ν = 0,

k∇ ∧ ~q − 2 k~ν − γ∇ ∧ ∇ ∧ ~ν + (α + β + γ)∇∇ · ~ν = 0,
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where ~q, ~ν and p are velocity vector, microrotation vector and pressure, respectively;
µ is the dynamic viscosity coefficient; k is the vortex viscosity; α and β are the bulk
spin viscosity and γ is the shear spin viscosity.

The equations for the stress tensor ti j and the couple stress tensor mi j are

ti j = −p δi j + µ (qi, j + q j,i) + k (q j,i − εi jm νm),

mi j = α νm,m δi j + β νi, j + γ ν j,i,

where the comma denotes partial differentiation, and δi j, εi jm are the Kronecker delta
and the alternating tensor, respectively.

3. Statement of the problem

In the present mathematical model, we consider the quasisteady translational
motion of a spherical symmetric particle of radius a in an incompressible micropolar
fluid. We employ a unit-cell model, in which each spherical particle is surrounded
by a nonconcentric fictitious spherical envelope of suspending fluid having an outer
radius b, as shown in Figure 1. This spherical envelope is termed the cell surface.
Here, (ρ, φ, z) and (r2, θ2, φ) denote the circular cylindrical and spherical coordinate
systems, respectively, with the origin of coordinates at the centre of the cell. The centre
of the particle is instantaneously located away from the cell centre at a distance d,
where (r1, θ1, φ) are the spherical coordinates based on the centre of the spherical
particle and the relation between r1 and r2 is given by r2

1 = r2
2 + d2 − 2 r2d cos θ2 or

r2
2 = r2

1 + d2 + 2 r1d cos θ1. We assume that the particle to cell volume ratio in the unit
cell is equal to the particle volume fraction ϕ throughout the entire suspension, that is
ϕ = (a/b)3. We assume that spherical particles are stationary, and steady axisymmetric
flow has been established around and through them by a uniform velocity Uz directed
in the positive z-direction. This is, of course, equivalent to the spherical particle at
rest, while the cell surface moves in the negative z-direction with velocity Uz. The
Reynolds numbers for the micropolar fluid flow are assumed to be sufficiently small
so that the inertial and gyro-inertial terms in the field equations can be neglected.
That is, we consider the Stokesian approximation assumption. The flow generated is
axisymmetric and all the quantities are independent of φ due to the axial symmetry of
the sphere-in-cell geometry. Therefore, we take the velocity and microrotation vectors
in the directions of the unit vectors (~eρ, ~eφ, ~ez) of the cylindrical coordinates as

~q = qρ ~eρ + qz ~ez,

~ν = νφ ~eφ.

Since div~q = 0, we can write the velocity components qρ and qz in terms of Stokes’
stream function ψ as

qρ =
1
ρ

∂ψ

∂z
, qz = −

1
ρ

∂ψ

∂ρ
.
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Figure 1. The physical situation and the description of the coordinate system for the cell model.

The problem is then governed by the following equations:

0 = −
∂p
∂ρ
−

k
ρ

∂

∂z
(ρ νφ) +

µ + k
ρ

∂

∂z
(L1ψ), (3.1)

0 = −
∂p
∂z

+
k
ρ

∂

∂ρ
(ρ νφ) −

µ + k
ρ

∂

∂ρ
(L1ψ), (3.2)

2 ρ νφ = L1ψ +
γ

k
L1(ρ νφ), (3.3)

where

L1 =
∂2

∂ρ2 −
1
ρ

∂

∂ρ
+
∂2

∂z2

is the axisymmetric Stokesian operator. After elimination of the pressure and the
microrotation vector component νφ from equations (3.1)–(3.3), we get

L2
1 (L1 − `

2)ψ = 0, (3.4)

with the microrotation

νφ =
1

2 ρ

(
L1ψ +

2 µ + k
k `2 L2

1ψ
)
, (3.5)

where `2 = k (2 µ + k)/[γ (µ + k)].
To solve equation (3.4), which is equivalent to the Stokes equations of micropolar

fluid equations (3.1)–(3.3), the boundary conditions have to be specified.
At a surface of the particle r1 = a, we consider the dynamical slip conditions for the

velocity, and microrotations take the following forms [21, 28]:

qρ =
1
σ

trθ cos θ1, (3.6)
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qz = −
1
σ

trθ sin θ1, (3.7)

νφ =
1
χ

mrφ, (3.8)

where trθ and mrφ are the shear stress and couple stress for the flow, respectively. The
constants σ and χ are termed the coefficients of sliding friction. These coefficients
measure the degree of tangential slip existing between the fluid and the solid at its
surface. The slip coefficients are assumed to depend only on the nature of the fluid and
the solid surface. In the limiting case of σ = χ = 0, there is a perfect slip at the surface
of the sphere and the solid sphere acts like a spherical gas bubble, while the standard
no-slip boundary condition for solids is obtained by letting σ = χ→∞. Throughout
this work, both slip coefficients are considered to be constants. The slip condition for
viscous fluids has been investigated from both a physical and a rigorous mathematical
point of view [18].

On the virtual surface of the cell, r2 = b, we consider the following two cases:

1. Happel model: we assume the continuity of the radial component of velocity and
vanishing of the tangential stress. Moreover, we assume that the couple stress
vanishes:

qρ tan θ2 + qz = −Uz, (3.9)
trθ = 0, (3.10)
mrφ = 0. (3.11)

The conditions (3.10) and (3.11) imply the existence of a free surface at the
fictitious spherical envelope or, in other words, the slip of the liquid relative to
this boundary, which can be quite acceptable from the physical point of view.

2. Kuwabara model: we assume again that (3.9) and (3.11) apply, but instead of
the condition of vanishing tangential stress (3.10), the model uses the condition
that the vorticity is equal to zero:

L2
1ψ = 0. (3.12)

The above condition (3.12) is physically equivalent to the absence of closed
circular flows (flow circulation) at the outer cell surface.

4. Method of solution

Because of the linearity of the governing equations of motion and boundary
conditions, the stream function of the fluid flow can be obtained by using the principle
of superposition as [8, 12]

ψ

Uz a2 =

∞∑
n=2

[{An r−n+1
1 + Bn r−n+3

1 +
√

r1 Cn Kn− 1
2
(r1 `)}In(cos θ1)

+ {Dn rn
2 + En rn+2

2 +
√

r2 Fn In− 1
2
(r2 `)}In(cos θ2)],
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where In is the Gegenbauer polynomial of the first kind of order n and degree −1/2;
Im and Km are modified Bessel functions of the first and second kinds, respectively.
The coefficients An, Bn, Cn, Dn, En and Fn are unknown constants, which will be
determined using the boundary conditions on the particle and the cell surfaces. Then,
the microrotation component can be written as

a νφ
Uz

= csc θ
∞∑

n=2

[{
(3 − 2n)

Bn

rn
1

+
(µ + k) `2

k
√

r1
Cn Kn− 1

2
(r1 `)

}
In(cos θ1)

+

{
(2n + 1) En rn−1

2 +
(µ + k) `2

k
√

r2
Fn In− 1

2
(r2 `)

}
In(cos θ2)

]
.

The corresponding pressure field is obtained by integration of the Stokes flow
equations (3.1) and (3.2), so that

a p
Uz

= −(2µ + k)
∞∑

n=2

[ (2n − 3) Bn Pn−1(cos θ1)
n rn

1
+

(2n + 1) En rn−1
2 Pn−1(cos θ2)

n − 1

]
,

where Pn is the Legendre polynomial of order n. Note that a constant of integration
has been neglected without loss of generality.

The expressions for the radial and axial velocity components (qρ, qz), the
microrotation component νφ, the shear stress trθ and the couple stress mrφ are given by

qρ = Uz

∞∑
n=2

[An A1n(r1, θ1) + Bn B1n(r1, θ1) + Cn C1n(r1, θ1) + Dn D1n(r2, θ2)

+ En E1n(r2, θ2) + Fn F1n(r2, θ2)], (4.1)

qz = Uz

∞∑
n=2

[An A2n(r1, θ1) + Bn B2n(r1, θ1) + Cn C2n(r1, θ1) + Dn D2n(r2, θ2)

+ En E2n(r2, θ2) + Fn F2n(r2, θ2)], (4.2)

νφ = Uz a−1
∞∑

n=2

[Bn B3n(r1, θ1) + Cn C3n(r1, θ1)

+ En E3n(r2, θ2) + Fn F3n(r2, θ2)], (4.3)

trθ = Uz a−1(2µ + k)
∞∑

n=2

[An A4n(r1, θ1) + Bn B4n(r1, θ1) + Cn C4n(r1, θ1)

+ Dn D4n(r2, θ2) + En E4n(r2, θ2) + Fn F4n(r2, θ2)], (4.4)

mrφ = Uz a−2
∞∑

n=2

[Bn B5n(r1, θ1) + Cn C5n(r1, θ1)

+ En E5n(r2, θ2) + Fn F5n(r2, θ2)], (4.5)

L2
1ψ = Uz

∞∑
n=2

[Bn B6n(r1, θ1) + Cn C6n(r1, θ1)

+ En E6n(r2, θ2) + Fn F6n(r2, θ2)], (4.6)
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where the functions Asn, Bsn, Csn, Dsn, Esn and Fsn with s = 1, 2, . . . , 6 are listed in
Appendix A.

To determine the unknown constants An, Bn, Cn, Dn, En and Fn for the Happel
model, we apply the boundary conditions (3.6)–(3.10), and obtain

0 =

∞∑
n=2

[An a1n(a, θ1) + Bn b1n(a, θ1) + Cn c1n(a, θ1) + {Dn d1n(r2, θ2)

+ En e1n(r2, θ2) + Fn f1n(r2, θ2)}r1=a], (4.7)

0 =

∞∑
n=2

[An a2n(a, θ1) + Bn b2n(a, θ1) + Cn c2n(a, θ1) + {Dn d2n(r2, θ2)

+ En e2n(r2, θ2) + Fn f2n(r2, θ2)}r1=a], (4.8)

0 =

∞∑
n=2

[Bn b3n(a, θ1) + Cn c3n(a, θ1)

+ {En e3n(r2, θ2) + Fn f3n(r2, θ2)}r1=a], (4.9)

−1 =

∞∑
n=2

[{An a4n(r1, θ1) + Bn b4n(r1, θ1) + Cn c4n(r1, θ1)}r2=b + Dn d4n(b, θ2)

+ En e4n(b, θ2) + Fn f4n(b, θ2)], (4.10)

0 =

∞∑
n=2

[{An A4n(r1, θ1) + Bn B4n(r1, θ1) + Cn C4n(r1, θ1)}r2=b + Dn D4n(b, θ2)

+ En E4n(b, θ2) + Fn F4n(b, θ2)], (4.11)

0 =

∞∑
n=2

[{Bn B5n(r1, θ1) + Cn C5n(r1, θ1)}r2=b

+En E5n(b, θ2) + Fn F5n(b, θ2)] (4.12)

and, for the Kuwabara model, equation (4.11) is replaced by

0 =

∞∑
n=2

{[Bn B6n(r1, θ1) + Cn C6n(r1, θ1)]r2=b + En E6n(b, θ2) + Fn F6n(b, θ2)}, (4.13)

where the expressions for akn, bkn, ckn, dkn, ekn and fkn, with k = 1, 2, 3, 4, are also
given in Appendix A. To determine the fluid velocity and pressure, the boundary
conditions (4.7)–(4.12) (or (4.7)–(4.10), (4.12) and (4.13)) should be satisfied exactly
along the particle and cell surfaces. This would result in infinite linear algebraic
equations for infinitely many unknown coefficients, which are impossible to solve. The
multipole collocation technique [14] is used to truncate the infinite series in equations
(4.1)–(4.6) after N terms, and to satisfy the boundary conditions mentioned above
at N discrete points on each longitudinal arc of the particle and cell surfaces. This
leads to a system of 6N simultaneous linear algebraic equations. This matrix equation
can be solved by any matrix-reduction technique to yield the 6N unknown constants
An, Bn, Cn, Dn, En and Fn appearing in the truncated form of equations (4.1)–(4.6).
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The fluid flow field is completely obtained once these constants are solved for a
sufficiently large value of N. In all subsequent expressions in this paper, r and r j are
nondimensional with respect to the porous sphere of radius a.

The hydrodynamic drag force Fz exerted on the particle surface r1 = 1 in a cell by
the external fluid can be evaluated as

Fz = 2π a2
∫ π

0
r2 (trr cos θ − trθ sin θ) |r=1 sin θ dθ

= 2π a2(2µ + k)
∫ π

0
r2

[{
−p

2µ + k
+
∂

∂r

( 1
r2

∂ψ

∂ cos θ

)}
cos θ −

∂

∂r

(1
r
∂ψ

∂r

)
+

1
2r `2 L−1(L−1 + `2)ψ

] ∣∣∣∣∣
r=1

sin θ dθ = 2π a Uz(2µ + k)B2. (4.14)

The above expression shows that only the lowest-order coefficient B2 contributes
to the hydrodynamic force acting on the particle. In fact, the coefficient B2 is the
most accurate (fastest-convergent) result obtainable from the boundary collocation
method [8, 14].

For the slow translation of a slip sphere situated at the cell centre, the exact
solution of the drag force on the spherical particle with the same type of the boundary
conditions at the fictitious surface is given in Appendix B. The drag force on a slip
spherical particle in the case of uniform streaming in an unbounded micropolar fluid
is also derived in Appendix B. The normalized drag force Wc is defined as the ratio of
the actual drag experienced by the sphere in the cell surface to the drag on a sphere in
an infinite expansion of fluid. With the aid of equations (4.14) and (B.9), this becomes

Wc =
(3 + 2λ) (µ + k)(`2 + δ (1 + `)) − k δ (1 + λ)

3(µ + k) (1 + λ)(`2 + δ (1 + `))
B2,

where δ = γ−1 (χ a + 2γ + β) and λ = σ a/(2µ + k). Note that Wc = 1 as a/(b − d) = 0
for any specified values of λ and δ.

The presence of the virtual surface of the unit cell always enhances the
hydrodynamic drag on the particle, since the radial fluid flow vanishes there. For the
model under consideration, the drag force per particle multiplied by the number of
particles per unit volume is balanced by the pressure drop per unit length of the particle
bed due to passage of fluid through it as

(a/b)3Fz

4π a3/3
= −

∆P
L
. (4.15)

Hence, from equations (4.14) and (4.15), we get the superficial fluid velocity through
the bed of porous spherical particles as

Uz =

(
−

a2

3ϕ B2

)
∆P

(µ + k/2) L
.

The expression in parentheses is the permeability coefficient in Darcy’s law. This law
was obtained empirically by Darcy in experiments with water flow through sand filters.
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If we use U(0)
z and ∆P(0) to represent Uz and ∆P, respectively, as ϕ→ 0 (for a dilute

medium), the ratio Uz/U
(0)
z with ∆P = ∆P(0) (equals the ratio ∆P(0)/∆P with Uz = U(0)

z )
is also equal to the inverse normalized drag force (that is W−1

c ).

4.1. Results When specifying the points along the semi-circular generating arcs of
the solid sphere and cell surfaces where the boundary conditions are exactly satisfied,
the first two points that should be chosen are θ1,2 = 0 and π, since these points control
the extreme gaps between the particle and the cell surfaces. In addition, the points
θ1,2 = π/2 are also important. However, an examination of the systems of linear
algebraic equations for the unknown constants An, Bn, Cn and Dn shows that the
coefficient matrix becomes singular if these points are used. In order to avoid this
singular matrix and achieve good accuracy, we adopt the method recommended in the
literature [8, 14] to choose the collocation points as follows. On the half unit circle
0 ≤ θ1,2 ≤ π in any meridional plane, θ1,2 = ε, π/2 − ε, π/2 + ε and π − ε are taken as
four basic multipoles, where ε is specified by a small value, so that the singularities at
θ1,2 = 0, π/2, and π can be avoided. The other points are selected as mirror-image pairs
of θ1,2 = π/2, which are evenly distributed on the two quarter circles, excluding those
singularity points. A Gaussian elimination method is used to solve the linear equations
to determine the coefficients. The normalized drag force is then calculated.

The collocation solutions of the normalized drag for both cases of Happel and
Kuwabara models are presented in Figures 2–5, when the parameters are given by
γ/µa2 = 0.3, β/µa2 = 0.2 for various values of the following parameters:

(1) the solid volume fraction, ϕ (0 < ϕ ≤ 0.74);
(2) the vortex viscosity parameter k/µ;
(3) the relative distance between the centres of the particle and cell δ (= d/(b − a));
(4) the slip coefficients of the particle σ a/µ and χ/µ a.

The accuracy and convergence behaviour of the boundary-collocation and truncation
technique depends mainly upon the ratios δ and ϕ. For the difficult case of δ = 0.99, the
number of collocation points N = 150 is sufficiently large to achieve this convergence.
The results are presented up to ϕ = 0.74, which corresponds to the maximum possible
volume fraction for an assemblage of identical spherical particles [30]. It is also clear
that at volume fractions approaching this value, accumulation due to contacts between
particles may occur, and the present model will not give satisfactory results. However,
a solid volume fraction close to unity is geometrically possible.

The results in Figure 2 show that the normalized drag, Wc, force exerted on
the spherical particle increases monotonically with an increase in ϕ or δ, when the
other parameters are fixed. Also, this drag, in general, increases as σa/µ increases
while keeping the other parameters unchanged. Figure 3 indicates that Wc decreases
monotonically with an increase in k/µ for any specified values of ϕ, but at fixed values
of the other variables. For the Newtonian fluid situation, k/µ = 0, the normalized drag
force is at a maximum. Interestingly, for constant values of ϕ, σa/µ, χ/µa, k/µ and δ,
the Kuwabara model predicts larger values of the normalized drag force on a slip
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Figure 2. Normalized drag force distribution for different values of σ a/µ and δ with χ/µ a = σ a/µ and
k/µ = 2. (a) Happel cell model calculations; (b) Kuwabara cell model calculations.
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Figure 3. Normalized drag force distribution for different values of k/µ with σ a/µ = χ/µ a = 10 and
δ = 0.25. (a) Happel cell model calculations; (b) Kuwabara cell model calculations.

spherical particle than the Happel model does. This occurs because the zero-vorticity
model yields a larger energy dissipation in the cell than that due to particle drag alone,
owing to the additional work done by the stresses at the outer boundary [12]. The
predictions of the two models, in general, result in the same behaviour qualitatively
and are in numerical agreement with each other within 5–23% (see Figure 4). Also,
it can be observed that the normalized drag has its minimal value when the particle is
in the concentric position inside the virtual envelope (δ = 0). In the lubrication limit,
the micropolar fluid is confined in a narrow region and occurs as δ ≈ 1, where in this
case the drag force increases indefinitely. Figure 5 shows that the drag force is finite in
both the perfect slip and no-slip limits. It indicates also that for the entire range of the
slip parameter, Wc increases with the increase of volume fraction parameter for both
models.
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Figure 4. Normalized drag force distribution for different values of ϕwithσa/µ = χ/µa = 10 and k/µ = 1.
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Figure 5. Normalized drag force distribution for different values of ϕ and δ with χ/µ a = 10 and k/µ = 3.
(a) Happel cell model calculations; (b) Kuwabara cell model calculations.

5. Conclusion

A combined analytical–numerical solution for the slow motion of a micropolar fluid
past a spherical particle, via the particle-in-cell model, along the line connecting their
centres is presented using the Happel and Kuwabara cell models. The field equations
for micropolar fluids are solved and the hydrodynamic drag force acting on the particle
has been calculated for a range of parameters. As expected, the normalized drag force
is a monotonically increasing function of the solid volume fraction for the two models,
but it decreases as the vortex viscosity parameter increases. For a constant value of
volume fraction, the normalized drag force is minimal when the particle is situated
at the cell centre, and increases monotonically with the relative distance between the
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centres of the particle and the cell wall. Clearly, the normalized drag force acting
on the particle increases with its increasing slip coefficient while keeping the other
parameters unchanged. In general, the vortex viscosity parameter depends on the shape
and concentration of the microelements. For a given shape of the microelements, k/µ
directly gives a measure of concentration of the microelements [2]. It is observed that
the drag in a micropolar fluid is smaller than that in a Newtonian fluid. However,
at this stage, no experimental data is available in the literature that indicates how
particles interact in an assemblage. Experiments are needed to prove the validity of
the theoretical results obtained in this study for the cell model at various values of the
particle’s relative slip coefficients, the vortex viscosity parameter and the solid volume
fraction.

Appendix A

The functions appearing in equations (4.1)–(4.6) are defined as

A1n(r, θ) = −r−n−1 (n + 1)In+1(cos θ) csc θ,

B1n(r, θ) = −r1−n [(n + 1)In+1(cos θ) csc θ − 2In(cos θ) cot θ],

C1n(r, θ) = −r−3/2 [(n + 1) Kn− 1
2
(r`)In+1(cos θ) csc θ + r` Kn− 3

2
(r`)In(cos θ) cot θ],

D1n(r, θ) = −rn−2 ((n + 1)In+1(cos θ) csc θ − (2n − 1)In(cos θ) cot θ),

E1n(r, θ) = −rn [(n + 1)In+1(cos θ) csc θ − (2n + 1)In(cos θ) cot θ],

F1n(r, θ) = −r−3/2 [(n + 1) In− 1
2
(r`)In+1(cos θ) csc θ − r` In− 3

2
(r`)In(cos θ) cot θ],

A2n(r, θ) = −r−n−1 Pn(cos θ),

B2n(r, θ) = −r1−n [2In(cos θ) + Pn(cos θ)],

C2n(r, θ) = r−3/2 [r` Kn− 3
2
(r`)In(cos θ) − Kn− 1

2
(r`) Pn(cos θ)],

D2n(r, θ) = rn−2 ((1 − 2n)In(cos θ) − Pn(cos θ)),

E2n(r, θ) = −rn [(1 + 2n)In(cos θ) + Pn(cos θ)],

F2n(r, θ) = −r−3/2 (r` In− 3
2
(r`)In(cos θ) + In− 1

2
(r`) Pn(cos θ)),

B3n(r, θ) = r−n (3 − 2n)In(cos θ) csc θ,

C3n(r, θ) = r−1/2 k−1 `2 (µ + k) Kn− 1
2
(r`)In(cos θ) csc θ,

E3n(r, θ) = (1 + 2n) rn−1
In(cos θ) csc θ,

F3n(r, θ) = r−1/2 k−1 `2 (µ + k) In− 1
2
(r`)In(cos θ) csc θ,

A4n(r, θ) = (n2 − 1) r−n−2
In(cos θ) csc θ,

B4n(r, θ) = n (n − 2) r−n
In(cos θ) csc θ,

C4n(r, θ) = r−5/2 [n (n − 2) Kn− 1
2
(r`) + r` Kn+ 1

2
(r`)]In(cos θ) csc θ,

D4n(r, θ) = n (n − 2) rn−3
In(cos θ) csc θ,
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E4n(r, θ) = (n2 − 1) rn−1
In(cos θ) csc θ,

F4n(r, θ) = r−5/2 (n (n − 2) In− 1
2
(r`) − r` In+ 1

2
(r`))In(cos θ) csc θ,

B5n(r, θ) = r−n−1 (2n − 3) (γ n + β)In(cos θ) csc θ,

C5n(r, θ) = r−3/2 (2µ + k) [(n − 1 − β/γ) Kn− 1
2
(r`) − r ` Kn+ 1

2
(r`)]In(cos θ) csc θ,

E5n(r, θ) = rn−2 (2n + 1) (γ n − β − γ)In(cos θ) csc θ,

F5n(r, θ) = r−3/2 (2µ + k) [(n − 1 − β/γ) In− 1
2
(r`) + r ` In+ 1

2
(r`)]In(cos θ) csc θ,

B6n(r, θ) = 2r−n+1 (3 − 2n)In(cos θ),

C6n(r, θ) = r1/2 `2 Kn− 1
2
(r`)In(cos θ),

E6n(r, θ) = 2(1 + 2n) rn
In(cos θ),

F6n(r, θ) = r1/2 `2 In− 1
2
(r`)In(cos θ).

Also, the functions appearing in equations (4.7)–(4.10) are defined as

a1n(r, θ) = A1n(r, θ) − σ−1 A4n(r, θ) cos θ1,

b1n(r, θ) = B1n(r, θ) − σ−1 B4n(r, θ) cos θ1,

c1n(r, θ) = C1n(r, θ) − σ−1 C4n(r, θ) cos θ1,

d1n(r, θ) = D1n(r, θ) − σ−1 D4n(r, θ) cos θ1,

e1n(r, θ) = E1n(r, θ) − σ−1 E4n(r, θ) cos θ1,

f1n(r, θ) = F1n(r, θ) − σ−1 F4n(r, θ) cos θ1,

a2n(r, θ) = A2n(r, θ) + σ−1 A4n(r, θ) sin θ1,

b2n(r, θ) = B2n(r, θ) + σ−1 B4n(r, θ) sin θ1,

c2n(r, θ) = C2n(r, θ) + σ−1 C4n(r, θ) sin θ1,

d2n(r, θ) = D2n(r, θ) + σ−1 D4n(r, θ) sin θ1,

e2n(r, θ) = E2n(r, θ) + σ−1 E4n(r, θ) sin θ1,

f2n(r, θ) = F2n(r, θ) + σ−1 F4n(r, θ) sin θ1,

b3n(r, θ) = B3n(r, θ) − χ−1 B5n(r, θ),
c3n(r, θ) = C3n(r, θ) − χ−1 C5n(r, θ),
e3n(r, θ) = E3n(r, θ) − χ−1 E5n(r, θ),
f3n(r, θ) = F3n(r, θ) − χ−1 F5n(r, θ),
a4n(r, θ) = A1n(r, θ) tan θ2 + A2n(r, θ),
b4n(r, θ) = B1n(r, θ) tan θ2 + B2n(r, θ),
c4n(r, θ) = C1n(r, θ) tan θ2 + C2n(r, θ),
d4n(r, θ) = D1n(r, θ) tan θ2 + D2n(r, θ),
e4n(r, θ) = E1n(r, θ) tan θ2 + E2n(r, θ),
f4n(r, θ) = F1n(r, θ) tan θ2 + F2n(r, θ).
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Appendix B. Translation of a slip sphere in a concentric virtual spherical cell

For the purpose of comparison, we consider the quasisteady translational motion of
a slip spherical particle of radius a in a concentric fictitious spherical cell of radius
b filled with an incompressible micropolar fluid. Under the assumption of Stokesian
flow, the stream function ψ and the microrotation component νφ satisfy equations (3.4)
and (3.5), respectively.

The boundary conditions used here are as follows:

• At the particle surface (r = 1):
The normal component of the fluid velocity vanishes:

ψ = 0. (B.1)

Slip conditions at its surface are

λ
∂ψ

∂r
= 2r

∂

∂r

(1
r
∂ψ

∂r

)
− L−1ψ, (B.2)

χ a νφ = γ
∂νφ

∂r
− β

νφ

r
. (B.3)

• At the virtual surface of cell model (r = b/a or r = η−1):
Continuity of normal velocity given by

∂ψ

∂θ
= Uz a2 r2 sin θ cos θ. (B.4)

According to Happel [11], the tangential stress vanishes, and the couple stress is equal
to zero at the virtual boundary of the cell:

2r
∂

∂r

(1
r
∂ψ

∂r

)
− L−1ψ = 0, (B.5)

γ
∂νφ

∂r
− β

νφ

r
= 0. (B.6)

The solution to equations (3.4) and (3.5) suitable for satisfying the boundary conditions
on the spherical and virtual cell surfaces for the stream function and the microrotation
component in the spherical coordinates is given by Happel and Brenner [12] and
Saad [27]

ψ

Uz a2 =
[
A r−1 + B r + D r2 + E r4 +

√
r C K 3

2
(r`) +

√
r F I 3

2
(r`)

]
I2(cos θ),

(B.7)
a νφ
Uz

=

[
−

B
r2 + 5E r +

(µ + k) `2

k
√

r
C K 3

2
(r`) +

(µ + k) `2

k
√

r
F I 3

2
(r`)

]
I2(cos θ) csc θ,

where A, B, C, D, E and F are arbitrary constants to be determined from the above
boundary conditions (B.1)–(B.6).
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Using formula (4.14), the drag force is found to be

Fz = 2π a Uz (2µ + k) B. (B.8)

When b→∞ (or η = 0), the drag on a solid sphere with slip in the case of uniform
streaming in an unbounded micropolar fluid is

Fz∞ =
−6π a Uz (2µ + k) (µ + k) (1 + λ)

[
`2 + δ (1 + `)

]
(3 + 2λ) (µ + k)

[
`2 + δ (1 + `)

]
− k δ (1 + λ)

. (B.9)

As χ→∞, the drag on the sphere is found to be

Fz∞ = −
6π a Uz (2µ + k) (µ + k) (1 + `) (1 + λ)

(µ + k) (2λ + 3) (1 + `) − k (1 + λ)
,

a result previously obtained by Saad [27].
For perfect slip (σ = χ→ 0), the drag reduces to

Fz∞ = −
6π a Uz (2µ + k) (µ + k)

[
γ `2 + (2γ + β) (1 + `)

]
3(µ + k)

[
γ `2 + (2γ + β) (1 + `)

]
− k (2γ + β)

for the slow translation of a slip solid sphere located at the centre of a fictitious
spherical envelope in an axisymmetric viscous fluid based on Happel’s model. The
exact expression of its normalized drag force is obtained explicitly as

Wc = −
σ a + 3µ
σ a + 2µ

[2
3

(σ a − 3µ)ϕ5/3 + σ a + 2µ
]

×

[
(σ a − 3µ)ϕ2 −

3
2

(σ a − 2µ)ϕ5/3 +
3
2

(σ a + 2µ)ϕ1/3 − σ a − 3µ
]−1
.

(B.10)

This is in agreement with the result obtained by Faltas and Saad [8].
A different approach, which was developed by Kuwabara [16], is based on the

assumption that the curl of the velocity at the fictitious surface of the cell is equal
to zero. In this case, equation (B.5) is replaced by vanishing of vorticity:

L2
1 ψ = 0. (B.11)

With this change, the stream functions and the drag force can still be expressed in the
forms of equations (B.7) and (B.8), but the values of unknown constants should be
determined by boundary conditions (B.2)–(B.4), (B.6) and (B.11).

Therefore, for the viscous fluid of the Kuwabara model, the normalized drag force
on a slip spherical particle is given by

Wc = (σ a + 3µ)
[
σ a + 3µ − ϕ1/3{ 1

5 (σ a − 3µ)ϕ5/3 − σ aϕ2/3 + 9
5 (σ a + 2µ)

}]−1
.
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