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The theory of magnetohydrodynamic (MHD) turbulence predicts that Alfvénic and
slow-mode-like compressive fluctuations are energetically decoupled at small scales in
the inertial range. The partition of energy between these fluctuations determines the
nature of dissipation, which, in many astrophysical systems, happens on scales where
plasma is collisionless. However, when the magnetorotational instability (MRI) drives
the turbulence, it is difficult to resolve numerically the scale at which both types of
fluctuations start to be decoupled because the MRI energy injection occurs in a broad
range of wavenumbers, and both types of fluctuations are usually expected to be coupled
even at relatively small scales. In this study, we focus on collisional MRI turbulence
threaded by a near-azimuthal mean magnetic field, which is naturally produced by the
differential rotation of a disc. We show that, in such a case, the decoupling scales are
reachable using a reduced MHD model that includes differential-rotation effects. In
our reduced MHD model, the Alfvénic and compressive fluctuations are coupled only
through the linear terms that are proportional to the angular velocity of the accretion
disc. We numerically solve for the turbulence in this model and show that the Alfvénic
and compressive fluctuations are decoupled at the small scales of our simulations as the
nonlinear energy transfer dominates the linear coupling below the MRI-injection scale. In
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the decoupling scales, the energy flux of compressive fluctuations contained in the small
scales is almost double that of Alfvénic fluctuations. Finally, we discuss the application
of this result to prescriptions of ion-to-electron heating ratio in hot accretion flows.

Key words: astrophysical plasmas, plasma instabilities, plasma nonlinear phenomena

1. Introduction

Accretion of matter onto a central massive object is one of the most spectacular
astronomical phenomena. A number of theoretical and numerical studies of accretion
flows have been conducted over past decades (see Balbus & Hawley (1998), Lesur
(2021) and references therein), including the discovery of momentum transport due
to turbulence driven by magnetorotational instability (MRI; Balbus & Hawley 1991).
On the observational front, the Event Horizon Telescope (EHT) successfully captured
an image of a radiating disc at M87 (EHT Collaboration 2019), opening the door to
direct comparisons between models and observations. However, there are many unsolved
questions in MRI-driven turbulence that are crucial for interpreting such observations.
In this study, we focus on the energy partition between Alfvénic and slow-mode-like
compressive fluctuations in collisional MRI turbulence. This is important in deciding
the partition of heating between ions and electrons at dissipation scales, where plasma
is collisionless (Kawazura et al. 2020).

In order to calculate the partition of energy between Alfvénic and compressive
fluctuations in a numerical simulation, one must access scales small enough that
these fluctuations become energetically decoupled. It is known that such decoupling
is established at the scale where the reduced magnetohydrodynamics (RMHD)
approximation, k‖/k⊥ � 1 and |δB|/B0 ∼ |δu|/vA � 1, is satisfied (Schekochihin et al.
2009). Here, B denotes the magnetic field, u denotes the flow velocity, k denotes
the wavenumber, the subscript ‖ (⊥) denotes the component parallel (perpendicular)
to the ambient magnetic field, the prefix δ and the subscript 0 denote the fluctuation
and equilibrium fields, respectively, and vA denotes the Alfvén speed. The RMHD
approximation is expected to be satisfied at sufficiently small scales in the inertial range,
because the large-scale magnetic field serves as an effective mean field for the fluctuations
at the smaller scales (Kraichnan 1965). Once the cascade reaches the RMHD range, the
partition of Alfvénic and compressive fluctuations is maintained down to the ion Larmor
scale (Schekochihin et al. 2009).

While the partition of Alfvénic and compressive fluctuations has been studied in
externally forced magnetohydrodynamics (MHD) turbulence (Cho & Lazarian 2002,
2003; Makwana & Yan 2020), none of the previous studies of MRI turbulence have
investigated this problem. Previous MRI turbulence simulations have suggested that, in
order to reach the RMHD range, significantly higher numerical resolution is necessary for
MRI turbulence than for externally forced MHD turbulence, because there is non-local
energy transfer (Lesur & Longaretti 2011), meaning that the injection range is broad in the
Fourier space.

Here, instead of carrying out brute-force high-resolution MHD simulations, we study
the partition of Alfvénic and compressive fluctuations by reducing the MHD equations to a
more tractable form that is valid only when there is a mean magnetic field in approximately
azimuthal direction. The presence of the near-azimuthal mean magnetic field is a natural
consequence of the differential rotation of the disc; even when the system is initialized
with a purely vertical magnetic field, MRI creates a radial magnetic field which will then
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be twisted in the azimuthal direction. Indeed, a predominantly azimuthal magnetic field
is quite often seen both in local and global simulations of MRI turbulence (e.g. Suzuki
& Inutsuka 2009, 2014). A statistical analysis of MRI turbulence in incompressible MHD
also supports the presence of a near-azimuthal mean field (Zhdankin et al. 2017). We show
that the RMHD approximation captures the fastest-growing MRI modes in such a system.
We then simulate this type of MRI turbulence numerically and show that the compressive
fluctuations carry almost twice as much energy flux as Alfvénic fluctuations at the small
scales, where the two kinds of fluctuations are decoupled.

2. Model

We consider a local shearing-box approximation (Goldreich & Lynden-Bell 1965) for
a plasma in Cartesian coordinates (X, Y, Z) located at a fixed radius r = r0 and rotating
with an angular velocity Ω = ΩẐ , where X, Y and Z correspond to the radial, azimuthal
and vertical (rotation-axis) directions. The MHD equations in these conditions are

∂ρ

∂t
+ u · ∇ρ + u0 · ∇ρ = −ρ(∇ · u), (2.1a)

ρ

(
∂

∂t
+ u · ∇ + u0 · ∇

)
u = −∇

(
p + B2

8π

)
+ B · ∇B

4π
− 2ρΩ × u − ρu · ∇u0,

(2.1b)

∂B
∂t

+ u · ∇B + u0 · ∇B + B(∇ · u) = B · ∇u + B · ∇u0, (2.1c)

∂p
∂t

+ u · ∇p + u0 · ∇p + Γ p∇ · u = 0, (2.1d)

where ρ is the mass density, u is the fluid velocity, B is the magnetic field, p is the thermal
pressure, u0 ≡ qX × Ω is the background shear flow, q is a shear rate and Γ = 5/3 is
the specific heat ratio. Hereafter, we only consider Keplerian rotation (q = 3/2) and call
(2.1a)–(2.1d) the ‘full-MHD’ equations.

Balbus & Hawley (1992b) showed that the fastest-growing MRI modes have kZ →
∞ when the ambient magnetic field B0 approaches the azimuthal direction. These
fastest-growing modes also satisfy k‖vA/Ω 	 1. For a near-azimuthal B0, Ẑ is almost
perpendicular to B0, meaning that the fastest-growing modes satisfy k‖/k⊥ � 1.
Therefore, if the fastest-growing modes decide the nature of MRI turbulence at the smaller
scales, we can ignore the scales that are outside of the k‖/k⊥ � 1 approximation1 .
This idea motivates us to impose the RMHD approximation on the full-MHD equations
(2.1a)–(2.1d). We assume also that the magnetic perturbations are separated from the
time-invariant and spatially uniform mean fields as B = B0 + δB, where B0 is taken to
have finite Y (azimuthal) and Z (vertical) components but no X (radial) component. We
assume that the density and pressure are also separated into a constant background and
perturbations as ρ = ρ0 + δρ and p = p0 + δp. The angle between Ŷ and B0 is denoted by
θ [0 ≤ θ ≤ π; the same definition as Quataert et al. (2002)]. In this study, we focus on the
near-azimuthal background field, i.e. sin θ � 1. Then, we introduce a ‘tilted’ coordinate
set (x, y, z) in which the z-axis is aligned with B0, and the x-axis is aligned with the X-axis

1Note that the radial wavenumbers of the non-axisymmetric modes are time dependent: kX(t) = kX(0) + qΩtkY .
Therefore, these shearing waves inevitably pass the wavenumber domain of kx = kX � kY ∼ k‖. However, this does not
break our approximation k‖/k⊥ � 1 because when B0 is nearly azimuthal, the fastest-growing modes have large vertical
wavenumbers kZ ∼ k⊥ � kY .
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FIGURE 1. Schematic of the conventional coordinate system (X, Y, Z) and our tilted
coordinate system (x, y, z).

(figure 1), i.e. (x, y, z) is a rotation of (X, Y, Z) by π/2 − θ about the X̂ axis. When
sin θ � 1, ẑ and ŷ almost align with Ŷ and −Ẑ , respectively. This tilted coordinate set
is more convenient than the standard coordinate set (X, Y, Z) because kz ∼ k‖ � k⊥ is a
key criterion for the decoupling of Alfvénic and compressive fluctuations. In the standard
coordinate set, however, k‖ and k⊥ are more difficult to separate, both being a mixture of
kY and kZ .

Thus, we impose the RMHD ordering k‖ � k⊥, u � vA and δB � B0 on (2.1a)–(2.1d).
We also assume ∂/∂t ∼ Ω ∼ k‖vA and a near-azimuthal B0, i.e. sin θ � 1, with sin θ the
same order of smallness as k‖/k⊥ and δB/B0. The assumed anisotropy between k‖ and k⊥
is motivated by the critical balance conjecture (Goldreich & Sridhar 1995, 1997)

k‖vA ∼ k⊥u⊥, (2.2)

which physically means that the time scales of linear wave propagation along B0 and
nonlinear cascade in the plane perpendicular to B0 are of the same order2 . Then, we
obtain the RMHD equations with differential rotation (see Appendix A for the detailed
derivation)

dΨ

dt
= vA

∂Φ

∂z
, (2.3a)

d
dt

∇2
⊥Φ = vA∇‖∇2

⊥Ψ − 2Ω
∂u‖
∂y

, (2.3b)

du‖
dt

= v2
A∇‖

δB‖
B0

+ (2 − q)Ω
∂Φ

∂y
, (2.3c)

d
dt

(
1 + v2

A

c2
S

)
δB‖
B0

= ∇‖u‖ + qΩ

vA

∂Ψ

∂y
, (2.3d)

where cS is the sound speed, and Φ and Ψ are the streamfunction and magnetic flux
function defined by u⊥ = ẑ × ∇⊥Φ and δB⊥ = √

4πρ0ẑ × ∇⊥Ψ , respectively. We have
also defined d/dt ≡ ∂/∂t + u⊥ · ∇⊥ and ∇‖ ≡ ∂/∂z + (δB⊥/B0) · ∇⊥. Hereafter, we call
these equations rotating RMHD (RRMHD)3 . When Ω = 0, these become the standard

2In a rapidly rotating fluid, turbulence can also develop anisotropy due to the effect of rotation, leading to kZ �
kX, kY (see Nazarenko & Schekochihin (2011) and references therein). However, in our magnetic and differentially rotating
system, MRI will inject motions that are in the opposite limit: kZ ∼ k⊥ � k‖ ∼ kY and also kZ � kX (see § 3). We do not
expect the MRI-driven turbulence to be able to access the part of the wavenumber space where the rotational anisotropy
is possible.

3Note that (2.3a)–(2.3d) are akin to the two-dimensional incompressible MHD model (Julien & Knobloch 2006;
Morrison, Tassi & Tronko 2013), but our model is three-dimensional and applicable to arbitrary β = 8πp0/B2

0.
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RMHD equations (Kadomtsev & Pogutse 1974; Strauss 1976), which is a long-wavelength
limit of gyrokinetics and in which Alfvénic and compressive fluctuations are decoupled
(Schekochihin et al. 2009).

One may notice that (2.3a)–(2.3d) do not have the shearing effect that originates from
u0 · ∇ terms in (2.1a)–(2.1d). This is due to k‖/k⊥ � 1 and sin θ � 1; in a shearing box,
the radial wavenumber depends on time as kx(t) = kx(0) + qΩt(ky sin θ + k‖ cos θ) (see,
e.g. the fourth term on the left-hand side of (A2)), and the time-dependent term on the
right-hand side is ordered out because sin θ ∼ k‖/kx(0) ∼ ε. However, when we consider
a long-time evolution Ωt ∼ ε−1, the time dependence is not negligible. In that case, the
non-modal growth of MRI (Squire & Bhattacharjee 2014a,b) becomes important. On the
other hand, as we will show below, the eddy turnover time in RRMHD turbulence becomes
shorter than the disc rotation time, i.e. k⊥u⊥/Ω � 1 immediately below the injection scale
(see figure 7). Therefore, we do not need to consider a long-time evolution with Ωt ∼ ε−1.

As we shall see in the next section, when Ω 
= 0, this system can be MRI unstable. In
the turbulent state, the magnitudes of the nonlinear terms in (2.3a)–(2.3d) increase as the
cascade proceeds to smaller scales, and at some point, the linear terms that are proportional
to Ω become negligible. Below the scale at which this happens, the turbulence is governed
by standard RMHD, and thus Alfvénic and compressive fluctuations are decoupled. As
we will see below, this critical scale roughly corresponds to the scale at which the eddy
turnover time becomes shorter than Ω−1. In other words, when an eddy’s lifetime is much
shorter than the orbital time of the disc, the effects of the disc’s rotation are insignificant.
Therefore, the transient growth effects (Balbus & Hawley 1992a; Mamatsashvili et al.
2013) are absent. We also note that, with the normalizations tΩ → t, zΩ/vA → z, x/L⊥ →
x, Φ/L2

⊥Ω → Φ, Ψ/L2
⊥Ω → Ψ , u‖/L⊥Ω → u‖ and vAδB‖/B0L⊥Ω → δB‖, the rotation

rate is no longer a free parameter, and the only remaining parameter is c2
S/v

2
A = Γβ/2,

where β = 8πp0/B2
0.

The nonlinear free-energy invariant of (2.3a)–(2.3d) consists of Alfvénic and
compressive portions Wtot = WAW + Wcompr, where

WAW = 1
2

∫
d3r
[|∇⊥Φ|2 + |∇⊥Ψ |2] , (2.4a)

Wcompr = 1
2

∫
d3r

[
u2

‖ + v2
A

(
1 + v2

A

c2
S

)
δB2

‖
B2

0

]
. (2.4b)

The time evolution of WAW and Wcompr is given by

dWAW

dt
= −2Ω

∫
d3ru‖

∂Φ

∂y
≡ IAW, (2.5a)

dWcompr

dt
= qΩ

∫
d3r
[
vA

δB‖
B0

∂Ψ

∂y
− u‖

∂Φ

∂y

]
+ 2Ω

∫
d3ru‖

∂Φ

∂y
≡ Icompr, (2.5b)

where IAW and Icompr are the energy-injection rates of Alfvénic and compressive
fluctuations. Noticing that the second term of Icompr is identical to −IAW, we may write
Icompr = IMRI − IAW. Then the net injection rate by the MRI is IMRI, and it goes into
compressive fluctuations, which then exchange energy with Alfvénic fluctuations at the
rate IAW via linear coupling.

3. Linear MRI of RRMHD

Next, we compare the linear MRI growth rate of full MHD and RRMHD to show that
RRMHD can capture the MRI growth rate of full MHD when B0 is nearly azimuthal, viz.,
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sin θ � 1. Here, we focus on the modes that are symmetric with respect to the rotation axis
Ẑ , viz., kY = 0, which is equivalent to ky = −kz/ tan θ . We focus on these modes because
they are the fastest-growing ones. The linear dispersion relation of full MHD (Balbus &
Hawley 1998, (99)) is[
ω2 − (k‖vA)

2] {ω4 − [
k2

x + (k‖/ sin θ)2] (c2
S + v2

A)ω
2 + (k‖vA)

2 [k2
x + (k‖/ sin θ)2] c2

S

}
= 2

{
(2 − q)ω4 − k2

‖
[
2c2

S + (2 cos2 θ − q)(c2
S + v2

A)/ sin2 θ
]
ω2 − qc2

Sv
2
Ak4

‖/ sin2 θ
}
Ω2.

(3.1)

On the other hand, the dispersion relation of RRMHD, (2.3a)-(2.3d), is

[
ω2 − (k‖vA)

2] [(1 + v2
A

c2
S

)
ω2 − (k‖vA)

2

]

= 2
[
(2 − q)

(
1 + v2

A

c2
S

)
ω2 + q(k‖vA)

2

] k2
y

k2
⊥

Ω2. (3.2)

One can show that, for both (3.1) and (3.2), kx = 0 gives the fastest-growing mode. For
the RRMHD dispersion relation (3.2), the growth rate does not depend on ky when kx =
0. When Ω = 0, (3.1) recovers the Alfvén, slow, and fast modes, while (3.2) recovers
the Alfvén and slow modes (the fast mode is eliminated in the RMHD ordering). The
maximum growth rate of RRMHD is given by

γmax

Ω
=
√

5
18

β[20β + 15 −
√

8(50β2 + 75β + 18)], (3.3)

where we have used q = 3/2 and Γ = 5/3. One finds that γmax is an increasing function
of β ranging from γmax/Ω → 0 for β → 04 to γmax/Ω → 3/4 for β → ∞. Note that the
high-β limit of the maximum growth rate in RRMHD is the same as in full MHD (Balbus
& Hawley 1998, (114)), and the stabilization of MRI at β → 0 is consistent with the study
by Kim & Ostriker (2000), who found that MRI in full MHD was stabilized when β → 0
and θ < 30◦.

In figure 2, we compare the solutions with (3.1) and (3.2). Figure 2(a) shows the growth
rate obtained with RRMHD for different values of β; one finds that γmax of RRMHD
decreases as β decreases as expected from (3.3). Figure 2(b–d) shows the growth rate
obtained with full MHD for different values of β and θ . For full MHD, the growth rate
does not depend on β when θ = π/2; however, when sin θ � 1, the growth rate decreases
as β decreases. Clearly, the growth rates in RRMHD match those in full MHD with
sin θ � 1, meaning that RRMHD captures the fastest-growing MRI modes when B0 is
nearly azimuthal.

4. Simulation of MRI turbulence in RRMHD

Next, we carry out nonlinear simulations of the RRMHD equations to compute the
energy partition between the Alfvénic and compressive fluctuations in the saturated state
of MRI turbulence. We solve (2.3a)–(2.3d) using a three-dimensional pseudo-spectral
code CALLIOPE (Kawazura 2022). In order to terminate the energy cascade at small scales,

4For the fastest-growing modes that satisfy kX = kY = 0 and k‖vA ∼ Ω , the locality of the modes in the Z direction,
i.e. kZH � 1, implies

√
β/ sin θ � 1, where H = cS/Ω is the scale height of the disc. While this condition is satisfied in

RRMHD as we assume β ∼ 1 and sin θ � 1 in the derivation of RRMHD (Appendix A), one must make θ even smaller
in order to make our ordering valid at the low β limit.
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(a) (b) (c) (d )

FIGURE 2. The linear MRI growth rate of (a) RRMHD and (b–d) full MHD. The line colours
correspond to the values of β as given in the legend of (a). The line thickness for (b–d)
corresponds to the value of θ as given in the legends of these panels. The horizontal dotted
lines indicate that, independently of β, the maximum growth rates in RRMHD coincide with
those in full MHD in the limit of θ → 0.

we add hyper-viscous and hyper-resistive terms proportional to k8
⊥ and k8

z to the right-hand
sides of (2.3a)–(2.3d). As mentioned above, the Alfvénic and compressive fluctuations
are expected to be decoupled below some critical scale where the nonlinear terms start to
dominate the linear terms. We set the computational grids so that this critical scale is well
resolved, which we confirm later in this section. Therefore, the dissipation caused by the
hyper-viscosity and hyper-resistivity in (2.3a) and (2.3b) is a measure of the energy flux
carried by the Alfvénic fluctuations. Likewise, we can measure the energy flux carried
by compressive fluctuations via the hyper-dissipation in (2.3c) and (2.3d). We denote
the dissipation rates of the Alfvénic and compressive fluctuations by DAW and Dcompr,
respectively. The power balance of the system is then

dWtot

dt
= IAW + Icompr − DAW − Dcompr. (4.1)

In a statistically stationary state, 〈IAW〉 + 〈Icompr〉 = 〈DAW〉 + 〈Dcompr〉, where 〈· · · 〉
denotes the time average. We set the box size of the simulations as (Lx, Ly, Lz) =
(8πL⊥, 2πL⊥, 8πvA/Ω) which is discretized by ‘low-resolution grids’ (nx, ny, nz) =
(512, 128, 512), ‘medium-resolution grids’ (nx, ny, nz) = (1024, 256, 1024) and ‘high-
resolution grids’ (nx, ny, nz) = (1024, 256, 2048). We choose Lz so that the fastest-growing
mode (kzvA/Ω 	 1, as seen in figure 2) fits in the box. We investigate three cases:
β = 0.1, 1 and 10. For all of these values of β, we start the simulation with the
low-resolution grids and run for a sufficiently long time in the nonlinearly saturated state
until 〈dWtot/dt〉 	 0 is satisfied before restarting with the higher-resolution grids.

Figure 3 shows the time evolution of the free energy (WAW and Wcompr), the
power balance (IAW, Icompr, DAW, Dcompr), the compressive-to-Alfvénic energy-injection
ratio Icompr/IAW and the dissipation ratio Dcompr/DAW. From panel (a), one finds that
the linear-growth phase occurs at 10 � Ωt � 20 and is followed by the nonlinearly
saturated turbulent phase. While the Alfvénic energy consists predominantly of δB⊥, the
compressive energy has almost the same contribution from u‖ and δB‖. We have confirmed
that this trend is the same for β = 0.1 and 10. Panel (b) shows that the energy injection
balances with the energy dissipation. Interestingly, the amount of Alfvénic injection IAW
balances with Alfvénic dissipation DAW, and likewise, the compressive injection Icompr and
dissipation Dcompr are in balance. So, in the saturated state, there is, on average, barely
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(a)

(b)

(c)

FIGURE 3. Time evolution of the β = 1 run: (a) each component of the free energy (2.4a) and
(2.4b) normalized by the total energy averaged over the nonlinearly saturated state, i.e. over the
time interval 285 ≤ Ωt ≤ 330; (b) injection and dissipation rates of Alfvénic and compressive
fluctuations normalized by the total injection power averaged over the nonlinearly saturated
state; (c) the compressive-to-Alfvénic ratio of injection power Icompr/IAW and dissipation rate
Dcompr/DAW. The solid, dashed, and dash-dotted lines correspond to the runs with the low-,
medium- and high-resolution grids, respectively. The shaded region indicates the interval used
for the time averaging.

any net nonlinear energy exchange between the two components of the turbulence – even
at larger scales, where they are not formally decoupled. We have confirmed that this is
also the case for β = 0.1 and 10. As we will see later, this may be due to the fact that the
critical scale at which the Alfvénic and compressive fluctuations decouple is located close
to the injection scale (see figures 6 and 7). Panel (c) shows the evolution of Icompr/IAW and
Dcompr/DAW. One finds that both ratios are 	2–2.5 in the nonlinear state. These values are
almost the same for the runs with low-resolution grids (solid lines), medium-resolution
grids (dashed lines) and high-resolution grids (dash-dotted lines).

Figure 4 shows snapshots of the turbulent fields. Structures are elongated in the x
direction, corresponding to the remnants of ‘channel flows’ driven by MRI, also seen
in other shearing-box simulations of full MHD (e.g. Hawley & Balbus 1992; Hirai et al.
2018). Note that our ŷ direction is almost vertical within the accretion disc, ŷ 	 −Ω/Ω
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(a)

(b)

(c)

(d )

FIGURE 4. Snapshots of (a–d) |u⊥|, |δB⊥|, |u‖| and |δB‖|, each normalized by its own
root-mean-square value. These snapshots are taken at Ωt = 395, z = 0 and for β = 1.

(see figure 1). For the Alfvénic fields, one finds that u⊥ has smaller-scale filamentary
structures than δB⊥. In contrast, for the compressive fields, the level of filamentation is
the same between u‖ and δB‖. We have found this tendency also for the β = 0.1 and 10
cases.

The difference of filamentation levels is more transparent in figure 5, which shows the
energy spectra of all fields vs k⊥, compensated by k3/2

⊥ . Here, the energy spectrum of
each integrand in (2.4a) and (2.4b) is denoted by E with the corresponding subscript.
We find that, for the compressive fields, both Eu‖ and EδB‖ have 	 −3/2 slope, while the
slopes of the Alfvénic fields are not identifiable with the current numerical resolution5

. Independently of β, Eu⊥ is subdominant compared with EδB⊥ at the injection scales,
whereas Eu‖ and EδB‖ have almost the same amplitudes throughout the whole k⊥ range. It is
well known that full-MHD simulations of MRI turbulence yield magnetically dominated
spectra at large scales (e.g. Lesur & Longaretti 2011; Kimura et al. 2016; Walker, Lesur &
Boldyrev 2016; Sun & Bai 2021), due to generation of azimuthal magnetic field through
the shear-flow effect. However, this mechanism cannot explain EδB⊥ � Eu⊥ in RRMHD
because the shear flow does not directly produce δB⊥, as one can see in (2.3a). Instead
we can explain the dominance of EδB⊥ by the linear relation Ψ/Φ = k‖vA/γ given by
(2.3a), where γ is the growth rate of MRI. For the fastest-growing mode, k‖vA/Ω 	 1
and γ /Ω < 1 (see figure 2), meaning that the linear MRI in RRMHD excites δB⊥
preferentially over u⊥. One also finds from figure 5 that the disparity between δB⊥ and
u⊥ gets smaller as β increases. More specifically, at k⊥L⊥ = 1, EδB⊥/Eu⊥ 	 27, 12 and

5Currently, −3/2 spectral slope is considered to be more likely for the Alfvénic cascade based on theoretical
arguments and observational evidence (see Schekochihin (2020) and references therein).
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(a) (b) (c)

FIGURE 5. Magnetic and kinetic spectra compensated by k3/2
⊥ and averaged over the time

interval shown by the shaded area in figure 3 for high-resolution runs with (a) β = 0.1, (b)
β = 1 and (c) β = 10. The dashed lines indicate the −3/2 and −5/3 slopes.

10 for β = 0.1, 1 and 10, respectively, being consistent with the fact that γmax/Ω is an
increasing function of β. Nonetheless, the absolute values of the ratio are somewhat
different from the linear estimate (Ψ/Φ)2 	 14, 3 and 2 for β = 0.1, 1 and 10, respectively,
for the fastest-growing mode. This indicates that the nonlinear effect is important and,
indeed, as we will see in figure 8, the partition of energy flux between Alfvénic
and compressive fluctuations is different between the linear calculation and nonlinear
simulations.

It is worthwhile to compare our spectra with the incompressible MRI simulation by
Walker et al. (2016), which is the highest-resolution shearing-box turbulence to date. They
found that the slope of the magnetic field spectrum was close to −3/2 when the azimuthal
component BY was subtracted. They also found nearly −3/2 spectral slope for the velocity
field as well. These spectra bear a resemblance to our spectra (figure 5). Note, however, that
BY is not necessarily the true mean magnetic field B0, and thus, their magnetic spectrum
B2

X + B2
Z is presumably a mixture of parallel and perpendicular fluctuations.

In order to investigate the decoupling of Alfvénic and compressive fluctuations, we
compare the spectra of energy injection via MRI (IMRI), the energy exchange between
the Alfvénic and compressive fluctuations (IAW) and the nonlinear energy transfer, defined
below. Since the coupling between the Alfvénic and compressive fluctuations exists only
through the linear terms, the two types of fluctuations are decoupled when the nonlinear
energy transfer overwhelms IAW. The nonlinear energy transfer from all modes with
wavenumber magnitudes smaller than k⊥ are defined by (Alexakis, Mininni & Pouquet
2005; Grete et al. 2017; St-Onge et al. 2020)

N<k⊥
AW ≡

∑
|q⊥|=k⊥

[−u∗
⊥q · (u⊥ · ∇⊥u[<k⊥]

⊥ )q + u∗
⊥q · (b⊥ · ∇⊥b[<k⊥]

⊥ )q (4.2)

− b∗
⊥q · (u⊥ · ∇⊥b[<k⊥]

⊥ )q + b∗
⊥q · (b⊥ · ∇⊥u[<k⊥]

⊥ )q] (4.3)

N<k⊥
compr ≡

∑
|q⊥|=k⊥

[−u∗
‖q · (u⊥ · ∇⊥u[<k⊥]

‖ )q + u∗
‖q · (b⊥ · ∇⊥b[<k⊥]

‖ )q (4.4)

− b∗
‖q · (u⊥ · ∇⊥b[<k⊥]

‖ )q + b∗
‖q · (b⊥ · ∇⊥u[<k⊥]

‖ )q], (4.5)

where f [<k⊥](r) ≡ ∑
qz

∑
q⊥<k⊥ fq eiq·r, b ≡ vAδB/B0. We also define the spectra of MRI

injection IMRI = ∑
k IMRI(k) and energy exchange IAW = ∑

k IAW(k). The top panels of
figure 6 show the perpendicular spectra of injection, exchange and nonlinear energy
transfer. Both the injection and exchange peak near the box scale and drop quickly
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(a) (b) (c)

(d) (e) ( f )

FIGURE 6. The spectra of energy injection via MRI, energy exchange between Alfvénic and
compressive fluctuations, dissipation of Alfvénic and compressive fluctuations and nonlinear
transfer vs (a–c) k⊥ and (d–f ) kz for (a,d) β = 0.1, (b,e) β = 1 and (c, f ) β = 10. The spectra are
normalized by 〈IMRI〉, integrated over (a–c) kz and (d–f ) k⊥, and averaged over the time interval
shown by the shaded area in figure 3.

at smaller scales, while the nonlinear energy transfer is relatively constant throughout
the k⊥-range. Consequently, the nonlinear energy transfer overwhelms the injection and
coupling immediately below the box scale. The bottom panels of figure 6 show the z
spectra of the same quantities. The peak of the injection is located around kzvA/Ω 	 1
and, thus, the injection scale corresponds to the fastest-growing modes. In the same way
as the perpendicular spectra, the injection and exchange drop quickly at scales smaller than
that of the fastest-growing mode and are overwhelmed by the nonlinear energy transfer.
Therefore, in the small scales of our simulations, the coupling between Alfvénic and
compressive fluctuations is negligible.

While the spectral comparison shown in figure 6 is the most direct proof of the
decoupling of Alfvénic and compressive fluctuations, we expect that the ratio between
the eddy turnover rate and the angular velocity of the accretion disc can also be a
proxy for the measurement of the decoupling6 . In figure 7, we plot the eddy turnover
rate ωnl ∼ |u⊥ · ∇⊥| ∼ k⊥u⊥ ∼ k3/2

⊥ E1/2
u⊥ normalized by Ω . One finds that this value is

an increasing function of k⊥L⊥ and exceeds unity at some scale. As mentioned above,
when ωnl/Ω is much larger than unity, the effect of differential rotation is expected to
be negligible, and the turbulence obeys the standard RMHD where the Alfvénic and
compressive fluctuations are decoupled (Schekochihin et al. 2009). The scale at which

6Note that Walker et al. (2016) used a quantity similar to ωnl/Ω to identify the energy-injection range in
incompressible MHD simulations. More specifically, they found that the outer scale λ0 and the spatial average of
turbulence intensity v0 satisfy v0/λ0 ∼ dΩ/d ln r, where dΩ/d ln r is the local shear rate. Since full MHD has a coupling
between the Alfvénic and compressive fluctuations through the nonlinear terms, ωnl/Ω cannot be used formally as a
measurement of decoupling between the two types of fluctuations. In RRMHD, on the other hand, the decoupling is
guaranteed when ωnl/Ω � 1 as demonstrated in figures 6 and 7. As an accretion disc tends to produce near-azimuthal
mean field, we expect that ωnl/Ω � 1 can still be a proxy for the measurement of the decoupling.
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FIGURE 7. Normalized eddy turnover frequency ωnl/Ω vs k⊥L⊥ averaged over the time interval
shown by the shaded area in figure 3 for higher-resolution runs. The effect of differential rotation
is negligible where the value is greater than unity.

ωnl/Ω 	 1 is not much smaller than the injection scale, which is consistent with the fact
that the nonlinear energy transfer overwhelms the MRI injection immediately below the
injection scale, as shown in figure 6. In general, ωnl/Ω is easier to use as an indicator of
decoupling because computing the nonlinear energy transfer is numerically cumbersome.

As the decoupling of Alfvénic and compressive fluctuations in our simulations has been
demonstrated in figures 6 and 7, we now calculate the partition of energy flux carried
by these two types of fluctuations. Figure 8 shows the dependence of 〈Dcompr〉/〈DAW〉 on
β. We find that 〈Dcompr〉/〈DAW〉 is between 2 and 2.5 for all values of β that we studied,
without an obvious trend. Since Alfvénic and compressive fluctuations are decoupled,
the result in figure 8 would not be changed for a finer-resolution simulation. Indeed, we
have found almost identical values of 〈Dcompr〉/〈DAW〉 in our simulations conducted at all
resolutions, from low to high. This is because, as seen in figure 6, even the low-resolution
grid runs resolve the critical scale where the nonlinear energy transfer dominates the linear
coupling.

Note that the values of 〈Dcompr〉/〈DAW〉 obtained from our nonlinear simulations
are different from the values of Icompr/IAW (see (B3) for the definition) computed
‘quasilinearly’ for the fastest-growing linear MRI modes (black dashed line in figure 8),
the latter value being close to unity. This indicates that, even though the decoupling
of Alfvénic and compressive fluctuations starts relatively near the injection scale, the
preferential excitation of compressive fluctuations in MRI turbulence is the consequence
of nonlinear effects, i.e. of the way in which the nonlinearity removes the energy injected
by the MRI from the injection scale and transfers it into the two turbulent cascade.

5. Application to ion-to-electron heating prescription in hot accretion flows

In this section, we discuss the application of our findings to hot accretion flows, such
as M87 and Sgr A*, together with some important caveats. Numerical simulations of
gyrokinetic turbulence have revealed that the partition between ion and electron heating
is crucially sensitive to the compressive-to-Alfvénic injection power ratio Pcompr/PAW at
the ion Larmor scale (Kawazura et al. 2020)7 . Since the compressive and Alfvénic
energy fluxes computed in our simulations are supposed to cascade down to the ion
Larmor scale independently, it is straightforward to infer that Pcompr/PAW is equal to

7Particle-in-cell simulations of relativistic turbulence have found a similar dependence of ion-to-electron heating
ratio on the compressibility of energy injection (Zhdankin 2021).
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FIGURE 8. Partition of energy flux between Alfvénic and compressive fluctuations vs β:
(black) Icompr/IAW calculated by the eigenfunctions of linear dispersion relation (3.2) and
Dcompr/DAW calculated by the nonlinear simulation with (blue) low-resolution grids, (orange)
medium-resolution grids, (green) high-resolution grids. Error bars for the nonlinear simulations
are estimated by calculating the standard deviation over the averaging interval.

Dcompr/DAW 	 2–2.5, as we found in figure 8. Therefore, we can combine the results of this
paper with our previous study of gyrokinetic turbulence to formulate the ion-to-electron
heating prescription that incorporates both driving of turbulence via MRI at MHD scales
and the dissipation at kinetic scales. Substituting Pcompr/PAW = 2 in (14) of Kawazura et al.
(2020), one obtains

Qi

Qe
(βi, Ti/Te) = 35

1 + (βi/15)−1.4 exp(−0.1/(Ti/Te))
+ 2, (5.1)

where Ti/Te is the ion-to-electron background temperature ratio, and βi is the ion beta.
This prescription is a step forward from the currently used heating prescription and may

help improve the quality of hot accretion flow modelling (e.g. Chael et al. 2018; Chael,
Narayan & Johnson 2019). However, one must bear in mind that a number of heating
channels are missing in (5.1). First, we do not consider spiral density waves (Heinemann &
Papaloizou 2009) which are outside the RMHD ordering as they have no vertical structure,
i.e. kZ 	 0. The excitation of these waves may change the partition between Alfvénic
and compressive fluctuations. Note that these waves form weak shocks and dissipate into
thermal energy, but the amount of heating due to this dissipation is very little.

Second, while we have only considered collisional MRI in this study, the mean free
path of hot accretion flows is almost equal to, or longer than, the scale height of the disc,
meaning that MRI is supposed to be collisionless8 . When MRI is collisionless, the viscous
stress due to pressure anisotropy gives rise to a new heating channel. Approximately
50 % of total injected power may be directly converted into heat at large scales by this

8Nonetheless, most of the extant general-relativistic global simulations have solved collisional MHD, except for only
a few studies using general relativistic Braginskii model (Chandra et al. 2015; Foucart et al. 2016; Chandra, Foucart &
Gammie 2017; Foucart et al. 2017) that takes into account weakly collisional effects.
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viscous stress, which would not cascade down to the ion Larmor scale (Sharma et al.
2007; Kempski et al. 2019)9 .

Third, even if these additional heating channels at large scales are absent, there are other
heating channels at the ion Larmor scale that are not captured by standard gyrokinetics
(see § II A in Kawazura et al. (2020), for a detailed discussion), e.g. cyclotron heating
(Cranmer, Field & Kohl 1999), stochastic heating (Chandran et al. 2010) and background
pressure anisotropy (Kunz et al. 2018).

Thus, our heating prescription (5.1) is only the simplest possible model that considers
both MRI injection and kinetic dissipation. Including the missing heating channels is an
important task for future work.

6. Conclusions

In this study, we have calculated the energy partition between Alfvénic and compressive
fluctuations in turbulence driven by MRI with near-azimuthal mean magnetic fields. The
fastest-growing MRI modes are correctly captured by RMHD with differential rotation
(RRMHD) because they satisfy |kZ/kY | ∼ |k⊥/k‖| � 1 when the background field is
nearly azimuthal (Balbus & Hawley 1992a). In RRMHD, the Alfvénic and compressive
fluctuations are coupled only through the linear terms that are proportional to the angular
velocity of the accretion disc. We have carried out nonlinear simulations of RRMHD and
showed that the nonlinear energy transfer overwhelms the linear coupling immediately
below the injection scale. Thus, the two kinds of fluctuations are decoupled at the small
scales in our simulations. This is because, below the injection scale, the eddy turnover
time is much shorter than the disc rotation time, i.e. ωnl/Ω � 1. Most importantly, the
energy flux carried by the compressive fluctuations is more than double that carried by the
Alfvénic fluctuations at the decoupled scales – a result reflecting the interaction between
MRI injection and nonlinearity at the injection scale and distinct from a ‘quasilinear’
estimate (which suggests near equipartition).

While these findings suggest that RRMHD is a useful model for studying MRI
turbulence, we would like to stress the following two limitations of the RMHD approach
for MRI-driven turbulence in accretion flows. First, we assume a near-azimuthal constant
mean magnetic field. This may be quite restrictive: e.g. global MHD simulations (e.g.
Suzuki & Inutsuka 2014) sometimes exhibit non-azimuthal components of magnetic field.
Secondly, we assume that k‖/k⊥ � 1 is already satisfied at a larger scale than the critical
scale where ωnl/Ω ∼ 1. If this were not to hold, the rotation effects in full MHD may
become negligible at scales larger than those where the RMHD approximation is already
satisfied, and our RRMHD model would not be a good model of MRI turbulence at the
decoupling scale. In such a case, the turbulence in the RMHD range would not be driven
by MRI, but by the cascade from the full-MHD scales. A simulation of full MHD with
extreme resolutions is necessary to explore this possibility.
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Appendix A. Derivation of RRMHD model

Here, we explicitly derive (2.3a)–(2.3d) from (2.1a)–(2.1d). The way we do it is mostly
the same as the derivation of (17), (18), (25) and (26) in Schekochihin et al. (2009), but
with account taken of the differential rotation of the disc. We start by considering the
following ordering:

u
vA

∼ δB
B0

∼ k‖
k⊥

∼ sin θ ∼ ε,
∂

∂t
∼ Ω ∼ k‖vA ≡ ω. (A1a,b)

Then, the order of each term in (2.1a) is estimated as follows:

∂

∂t
δρ

ρ0︸ ︷︷ ︸
ε1ω

+ u‖
∂

∂z
δρ

ρ0︸ ︷︷ ︸
ε2ω

+ u⊥ · ∇⊥
δρ

ρ0︸ ︷︷ ︸
ε1ω

− qΩx sin θ

(
∂

∂y
+ 1

tan θ

∂

∂z

)
︸ ︷︷ ︸

ε2ω

δρ

ρ0

= −

⎛
⎜⎜⎝ ∂u‖

∂z︸︷︷︸
ε1ω

+∇⊥ · u⊥︸ ︷︷ ︸
ε0ω

⎞
⎟⎟⎠− δρ

ρ0

⎛
⎜⎜⎝ ∂u‖

∂z︸︷︷︸
ε2ω

+∇⊥ · u⊥︸ ︷︷ ︸
ε1ω

⎞
⎟⎟⎠ . (A2)

To order O(ε0ω), we obtain ∇⊥ · u⊥ = 0. Likewise, to lowest order, ∇ · δB = 0 gives
∇⊥ · δB⊥ = 0. Therefore, we may write u⊥ and δB⊥ in terms of stream and flux functions

u⊥=ẑ × ∇⊥Φ,
δB⊥
B0

= ẑ × ∇⊥Ψ

vA
. (A3a,b)

Then, the O(ε1ω) terms in (A2) yield(
∂

∂t
+ u⊥ · ∇⊥

)
δρ

ρ0
= −∂u‖

∂z
. (A4)

Note that the shearing term, viz., the fourth term on the left-hand side of (A2), is ordered
out. As we will show shortly, the shearing terms in other equations are also ordered out.

Under the same ordering, terms in (2.1b) are ordered as follows:

∂u
∂t︸︷︷︸

ε1ωvA

+ u‖
∂u
∂z︸ ︷︷ ︸

ε2ωvA

+ u⊥ · ∇⊥u︸ ︷︷ ︸
ε1ωvA

− qΩx sin θ

(
∂

∂y
+ 1

tan θ

∂

∂z

)
︸ ︷︷ ︸

ε2ωvA

u

= −ẑ
∂

∂z

⎡
⎢⎢⎢⎣c2

S

Γ

δp
p0︸ ︷︷ ︸

ε1ωvA

+v2
A

⎛
⎜⎜⎜⎝1

2
|δB|2

B2
0︸ ︷︷ ︸

ε2ωvA

+ δB‖
B0︸︷︷︸

ε1ωvA

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦
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− ∇⊥

⎡
⎢⎢⎢⎣c2

S

Γ

δp
p0︸ ︷︷ ︸

ε0ωvA

+v2
A

⎛
⎜⎜⎜⎝1

2
|δB|2

B2
0︸ ︷︷ ︸

ε1ωvA

+ δB‖
B0︸︷︷︸

ε0ωvA

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

− δρ

ρ0
ẑ

∂

∂z

⎡
⎢⎢⎢⎣c2

S

Γ

δp
p0︸ ︷︷ ︸

ε2ωvA

+v2
A

⎛
⎜⎜⎜⎝1

2
|δB|2

B2
0︸ ︷︷ ︸

ε3ωvA

+ δB‖
B0︸︷︷︸

ε2ωvA

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

− δρ

ρ0
∇⊥

⎡
⎢⎢⎢⎣c2

S

Γ

δp
p0︸ ︷︷ ︸

ε1ωvA

+v2
A

⎛
⎜⎜⎜⎝1

2
|δB|2

B2
0︸ ︷︷ ︸

ε2ωvA

+ δB‖
B0︸︷︷︸

ε1ωvA

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

+ v2
A

⎛
⎜⎜⎜⎝ ∂

∂z
δB
B0︸ ︷︷ ︸

ε1ωvA

+ δB‖
B0

∂

∂z
δB
B0︸ ︷︷ ︸

ε2ωvA

+ δB⊥
B0

· ∇⊥
δB
B0︸ ︷︷ ︸

ε1ωvA

⎞
⎟⎟⎟⎠

− 2Ω(− cos θ ŷ︸ ︷︷ ︸
ε2ωvA

+ sin θ ẑ︸ ︷︷ ︸
ε1ωvA

) × u + qΩux(sin θ ŷ︸ ︷︷ ︸
ε2ωvA

+ cos θ ẑ︸ ︷︷ ︸
ε1ωvA

). (A5)

From the O(ε0ωvA) terms in (A5), one gets the pressure balance

c2
S

Γ

δp
p0

+ v2
A
δB‖
B0

= 0, (A6)

which, when combined with (2.1d), becomes

δρ

ρ0
+ v2

A

c2
S

δB‖
B0

= 0. (A7)

From the O(ε1ωvA) terms in (A5), we obtain

∂u
∂t

+ u⊥ · ∇⊥u = −∇⊥

(
v2

A

2
|δB|2

B2
0

)
+ v2

A

(
∂

∂z
δB
B0

+ δB⊥
B0

· ∇⊥
δB
B0

)
+ 2Ω ŷ × u + qΩuxẑ, (A8)

where we have used cos θ 	 1 and neglected all terms containing sin θ � 1. The desired
perpendicular and parallel momentum equations (2.3b) and (2.3c) are recovered as ẑ ·
[∇⊥×(A8)] and ẑ·(A8), respectively.
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Next, the ordering of terms in (2.1c) is as follows:

∂

∂t
δB
B0︸ ︷︷ ︸

ε1ω

+ u‖
∂

∂z
δB
B0︸ ︷︷ ︸

ε2ω

+ u⊥ · ∇⊥
δB
B0︸ ︷︷ ︸

ε1ω

− qΩx sin θ

(
∂

∂y
+ 1

tan θ

∂

∂z

)
︸ ︷︷ ︸

ε2ω

δB
B0

+

⎛
⎜⎜⎝ ẑ︸︷︷︸

ε1ω

+ δB
B0︸︷︷︸
ε2ω

⎞
⎟⎟⎠ ∂u‖

∂z

= ∂u
∂z︸︷︷︸
ε1ω

+ δB‖
B0

∂u
∂z︸ ︷︷ ︸

ε2ω

+ δB⊥
B0

· ∇⊥u︸ ︷︷ ︸
ε1ω

−qΩ
δBx

B0
(sin θ ŷ︸ ︷︷ ︸

ε2ω

+ cos θ ẑ︸ ︷︷ ︸
ε1ω

). (A9)

Together with (A4) and (A7), the O(ε1ω) terms in this equation yield

(
∂

∂t
+ u⊥ · ∇⊥

)(
δB
B0

+ ẑ
v2

A

c2
S

δB‖
B0

)
=
(

∂

∂z
+ δB

B0
· ∇⊥

)
u − qΩ

δBx

B0
ẑ. (A10)

Finally, we obtain the perpendicular and parallel magnetic field equations (2.3a) and (2.3d)
as ẑ · [curl−1(A10)] and ẑ·(A10), respectively.

Appendix B. Compressive-to-Alfvénic energy-injection ratio for a single linear MRI
mode in RRMHD

Substituting the solution to the dispersion relation (3.2) back into the linearized
RRMHD equations (2.3a)–(2.3d), one gets the linear relations

δB‖
B0

= λkyΨ

vA
, (B1a)

Φ = − ω

k‖vA
Ψ, (B1b)

u‖ = − Ω

k‖vA

[(
1 + v2

A

c2
S

)
λ

ω

Ω
+ q

]
kyΨ, (B1c)

where

λ = 5iβ

2
√

2(ky/k⊥)2(6 + 5β)3/2

[
−6k̄2

‖ + 7(ky/k⊥)2(6 + 5β)

−
√

36k̄4
‖ + (ky/k⊥)2(6 + 5β)2 + 4(ky/k⊥)2k̄2

‖(6 + 5β)(3 + 20β)

]

×
[

k̄2
‖(6 + 10β) + (ky/k⊥)2(6 + 5β)

−
√

36k̄4
‖ + (ky/k⊥)2(6 + 5β)2 + 4(ky/k⊥)2k̄2

‖(6 + 5β)(3 + 20β)

]−1

, (B2)
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with k̄‖ = k‖vA/Ω . For the fastest-growing mode, λ reduces to
√−5β/(5β + 6).

Substituting (B1a)–(B1c) into (2.5a) and (2.5b), one obtains

Icompr

IAW
= −qλ(k‖vA)

2/[(1 + v2
A/c2

S)λΩ/ω + q] + (2 − q)Ωω∗

2Ωω∗ , (B3)

where the superscript star denotes the complex conjugate. Note that, when the rotation is
not sheared, i.e. q = 0, this becomes the conservation of energy Icompr + IAW = 0, i.e. the
Alfvénic and compressive fluctuations exchange their energy via unsheared rotation.
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