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Summary

Markov chain Monte Carlo procedures allow the reconstruction of full-sibships using data from

genetic marker loci only. In this study, these techniques are extended to allow the reconstruction of

nested full- within half-sib families, and to present an efficient method for calculating the

likelihood of the observed marker data in a nested family. Simulation is used to examine the

properties of the reconstructed sibships, and of estimates of heritability and common

environmental variance of quantitative traits obtained from those populations. Accuracy of

reconstruction increases with increasing marker information and with increasing size of the nested

full-sibships, but decreases with increasing population size. Estimates of variance component are

biased, with the direction and magnitude of bias being dependent upon the underlying errors made

during pedigree reconstruction.

1. Introduction

Knowledge of the relationships in a population is

important in a number of areas of genetics. These

include studies of reproductive success, the estimation

of the parameters describing quantitative traits (Fal-

coner & Mackay, 1996), examination of population

dispersion, and in conservation through the reduction

of inbreeding (Storfer, 1996). In some populations,

however, the relationships are unknown and so study

is limited. Molecular markers provide a means to

estimate relationships and so provide a way to

circumvent the problems of limited information on

ancestry. A number of methods have been developed

that estimate relationships using information on

molecular markers. Broadly speaking these may be

divided into three categories :

1. Methods that estimate relatedness : a continuous

measure, describing the ‘genetic distance’ between

the individuals based on marker similarity. There

are several basic measures of relatedness, mostly

pair-wise in nature (e.g. Queller & Goodnight,

1989; Ritland, 1996; Lynch & Ritland, 1999),

although these may be extended for group analysis.
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2. Pair-wise likelihood approaches : these calculate the

likelihood for a pair falling into alternate re-

lationship classes, e.g. full-sib, half-sib or unrelated

(e.g. Thompson, 1975), and again these may be

extended to analyse groups.

3. Family construction using Marko� chain Monte

Carlo (MCMC ) approaches : these assign a series of

specific relationships to all the individuals, using

likelihood-based MCMC procedures (Hastings,

1970) to generate a plausible set of relationships

for the group (Thomas & Hill, 2000; Smith et al.,

2001). These methods were developed as a modifi-

cation to (2) above, specifically aimed at recon-

structing whole families rather than pairs, and

attempt to find the most likely set of relationships

without searching through the prohibitively large

number that could be assigned (as would happen if

(2) were extended to compute the likelihood of all

possible family assignments). An alternative ap-

proach to family reconstruction was outlined by

Almudevar & Field (1999), who generated plausible

sibships by excluding groups that were impossible

due to incompatible genotypes. The plausible

sibships were then partitioned into a putative

(single-generation) population based upon a score

function.

The MCMC approaches have mainly been investi-

https://doi.org/10.1017/S0016672302005669 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672302005669


S. C. Thomas and W. G. Hill 228

gated for use in populations comprised of full-sib

families, and are currently limited to such situations.

In this study the methods of reconstruction outlined

by Thomas & Hill (2000) are extended to hierarchical

(or half-sib) population structures (i.e. full-sibships

nested within half-sib families, e.g. polygamous males

and monogamous females). It is an unfortunate fact

that the more distant the relationship, the poorer the

estimated relationship information becomes and the

greater the requirement for more marker information

(Ritland, 1996). Moreover as the number of rela-

tionship classes increases it becomes harder to assign

individuals correctly. The introduction of more distant

categories of relationship may therefore destabilize

the reconstructed populations. The hierarchical struc-

ture seems the most tractable after the one-way

structure of solely full- or half-sib families, both of

which are limiting cases.

Incorporation of a half-sib category of relationship

into the reconstruction allows greater dissection of the

parameters underlying the trait of interest, with the

estimation of additive genetic variance (σ#
A
), environ-

mental variance of full-sibs (σ#
C
) and the environmental

variance (σ#
E
) being made possible, assuming there is

no confounding by dominance or epistasis, whereas in

the one-way structure only two components, σ#
A

and

σ#
E
, can be estimated. Inaccurate reconstruction of

sibships leads to bias in the estimates of variance

components. Thomas & Hill (2000) noted that, if full-

sibs are assigned as unrelated, trivial downwards bias

is introduced in estimates of σ#
A

(unless large numbers

are incorrectly assigned) while assigning relatedness to

unrelated individuals leads to much larger bias. The

direction and magnitude of bias introduced through

other forms of mis-assignment will depend on the

particular error made during reconstruction.

The objectives of this study are to: (i) develop a

method for family reconstruction in the hierarchical

case and, as a necessary component, provide an

efficient method for calculating the likelihood of the

observed marker information for hierarchical family

structures (see Appendix) ; (ii) examine the effects of

population size, population structure and the amount

of marker data available on the accuracy of re-

construction of half-sib and hierarchical structures ;

and (iii) use reconstructed pedigrees to estimate the

variance parameters underlying a quantitative trait.

2. Statistical techniques

The basic methods are given by Thomas & Hill (2000),

and only the relevant modifications are presented

here. In the algorithm presented previously, indivi-

duals were mixed in a sib}non-sib structure, thus a

method to mix individuals between nested families

was included. Individuals were mixed in order (rather

than randomly), and the candidate individual was

either moved with probability one-half to a randomly

selected half-sib family or remained in the same

family. It was then either moved to an existing full-sib

family within the chosen half-sibship or formed a new

full-sib family, with an equal chance of assignment to

each existing full-sib family or a new one.

Because full-sib families have greater resolving

power, they were found to be generated in preference

to half-sib families, so half-sib families were often split

into their component full-sib families. In order to

minimize this problem, periodically (e.g. every 200

cycles) an entire half-sib family was joined to another

randomly selected half-sib family (with component

full-sib families remaining separate). The same condi-

tions for accepting and rejecting a change (see Thomas

& Hill, 2000) as for single individual mixing were used

for this type of mixing. Other rules for accepting or

rejecting a change, based upon standard Metropolis–

Hastings procedures, and allowing the inclusion of

‘ temperature parameters ’ controlling the probability

a step is made, are outlined by Smith et al. (2001).

Theoretically there is no difference between the final

structure obtained under the different rules.

The likelihood (L
g
) of the observed genotypes is

calculated as:
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for a given putative family. bF is the number of alleles

at locus F ; w and x index the paternal alleles and p
wx

is the ordered genotype frequency of the father ; n
f
is

the number of full-sibships within the half-sibship; y
m

and z
m

index the maternal alleles of full-sib family m

and p
ymzm

is the ordered genotype frequency of the

mother ; n
m

is the number of individuals in full-sib

family m ; and c indexes the individuals in that full-sib

family. P(g
cF
) is the probability of observing the

genotype of c at F given that one of its alleles is from

the father and one is from the mother, and is derived

from simple Mendelian sampling. Equation (1) re-

duces to the likelihood of observing these genotypes in

a single full-sib family if n
f
¯1 and in a half-sib family

if n
m

¯1 for all m. Calculations using (1) are slow, but

are speeded up by fixing parental alleles using the

offspring genotypes (see Appendix).

Variance components can then be estimated from

the reconstructed pedigrees using standard REML

methodology on the assumption that the pedigree is

correct (see Thomas & Hill, 2000). In this study

ASREML was used to estimate the components

(Gilmour et al., 1997).

Genotype data were generated for a number of

different hierarchical populations, using standard rules
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of Mendelian inheritance and assuming that all alleles

were co-dominant. Allele frequencies for reconstruc-

tion were estimated from the sample, and not updated

during reconstruction (see Thomas & Hill, 2000). A

number of different structures were simulated to

investigate the inclusion of half-sibs into the sample,

with the population size, family structure and amount

of marker information each being varied. Each

parameter set was replicated 100 times. Uninformative

prior distributions were placed on constructed sibship

sizes, so that every family size had equal probability.

The accuracy of reconstruction was examined and is

presented in the form P(arb), where P(arb) is the

proportion of pairs assigned relationship a when their

actual relationship is b. Comparison of these propor-

tions and direct observation of the reconstruction

allows inferences to be made about the splitting of

families. For example, if P(fsrfs) is high, but P(hsrhs),

P(fsrhs) and P(hsrfs) are low, then it can be inferred

that half-sib families are being split into their

component full-sib families.

Phenotypic data were generated using the infinitesi-

mal model (Bulmer, 1980) as :

Y
ijk

¯ "

#
a
i
­"

#
a
ij
­c

ij
­a

wijk
­e

ijk
(2)

where Y
ijk

is the phenotypic value of individual k in

dam family j nested in sire family i, a
i
and a

ij
are the

breeding values of the sire and dam, sampled from

N(0, σ#
A
), c

ij
is the family common environmental

effect, sampled from N(0, σ#
C
), a

wijk
is the within-

family deviation in breeding value of the individual,

sampled from N(0, σ#
A
}2), and e

ijk
is the individual

environmental deviation, sampled from N(0, σ#
E
).

Since variance component estimation is independent

of sibship reconstruction, values of σ#
A
¯σ#

C
¯ 0±25

and σ#
E
¯ 0±5 were used for all analyses. For each

sample, variance components were estimated by

REML using both the actual pedigree and the

reconstructed pedigree. These were compared in terms

of the bias and mean squared error of the estimates of

heritability (h#¯σ#
A
}(σ#

A
­σ#

C
­σ#

E
)) and environmen-

tal correlation of full-sibs (c#¯σ#
C
}(σ#

A
­σ#

C
­σ#

E
)).

3. Results

(i) Marker data and population size

The accuracy of sibship reconstruction at different

levels of marker data and at different population (i.e.

sample) sizes is summarized in Fig. 1. Unsurprisingly,

the accuracy of reconstruction increases with in-

creasing marker data. In addition there is a clear

interaction with respect to the accuracy of recon-

struction between the amount of marker data and the

size of the population that is sampled. At low levels of

marker information (5 loci) and at small population

sizes (50) about 50% of full-sib and half-sib pairs are

correctly identified, with half-sib families often being

split into their component full-sib families. As

population size increases, the proportion of pairs

assigned any relationship falls, and hence the per-

centage of related pairs assigned as unrelated increases,

becoming close to 100% for P(urrhs) when population

size is large (400). In addition, there is a larger

probability of unrelated pairs having similar genotypes

when there are low levels of marker data, leading to

greater numbers of incorrectly assigned relationships.

The reconstruction of larger families would therefore

become restricted due to an increased chance of

incompatible genotype combinations. Similar trends

are noted at higher levels of marker information,

although P(fsrfs) and P(hsrhs) start at a higher level

with low population sizes and fall at a slower rate with

increasing family size. P(hsrhs) falls more rapidly than

P(fsrfs) because it is harder to elucidate information

about more distant relationships than close ones for a

given amount of marker data. For P(fsrfs) there is a

diminishing return to increasing marker information

for a given population size: there is a larger increase

between 5 and 10 loci than between 10 and 20 loci,

although the increase in correct assignment with more

loci becomes greater at larger population sizes. The

returns for P(hsrhs) are much greater with each

increment in locus number, especially with larger

population sizes, reflecting the difficulty in correctly

inferring more distant relationships. Therefore when

there is little marker information, the reconstructed

population is comprised of full-sibships rather than

nested families.

At all levels of marker data and population size

P(urrur) is close to 1 (not shown), with the lowest

value being 0±978 for population size 50 with 5 marker

loci. Thus P(fsrur) and P(hsrur) are low. Overall, the

MCMC procedures are conservative in nature, with

inaccuracies tending towards the assignment of a

lower relationship than the true one: P(hsrfs)(
P(fsrhs), P(urrfs)"P(fsrur) and P(urrhs)"P(hsrur).

Although not immediately obvious from Fig. 1, there

is a slight increase in P(hsrfs) with increasing marker

data. This reflects the larger (correct) half-sib families

being reconstructed, so that any splitting of genuine

full-sib families increases the proportion of P(hsrfs)
rather than P(urrfs) as occurs at lower levels of marker

data.

(ii) Population structure

The accuracy of sibship reconstruction for different

population structures, each of size 200, based on

genotypes of 10 independent marker loci each with 5

equally frequent alleles is summarized in Fig. 2. Again

the breakdown for genuinely unrelated pairs is not
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Fig. 1. Summary of the relationship assignment for different population sizes (simulated by changing the number of
families, with each family comprising 2 dams per sire, and each dam having 5 offspring) and at different levels of marker
data (5, 10 and 20 loci each with 5 equally frequent loci). Top row: assignment for pairs that are actually full-sibs.
Bottom row: assignment for pairs that are actually half-sibs. Results for the same set of simulations appear in the same
column.
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Fig. 2. Summary of the relationship assignment for
different population structures. Population structure: no.
of sirescno. of dams within sirecno. of offspring within
dam. Upper chart : assignment for pairs that are actually
full-sibs. Lower chart : assignment for pairs that are
actually half-sibs. Results for the same set of simulations
appear in the same vertical column.

shown, since P(urrur) is close to 1 in all cases. For

specified full-sib family size, the breakdown of actual

full-sib pairs into the assigned relationship categories

is almost independent of the half-sib structure. P(fsrfs),
however, falls as the size of the full-sib families falls,

because the number of exclusions due to impossible

genotype combinations is reduced. P(hsrfs) is largely

unaffected by the change in the structure, whereas

P(urrfs) increases as no relationship rather than a half-

sib relationship is assigned. P(hsrhs) also falls with

decreasing full-sib family size (e.g. compare structure

20c2c5 with 20c5c2 and 10c4c5 with 10c5c4 in Fig.

2). This is probably because the combined set of

marker data for groups of full-sibs yields more

information about the distant relationship between

the groups than the marker data used at an individual

level. Thus accurate half-sib assignment would in-

crease with P(fsrfs). When no full-sibs are simulated

(e.g. structure 40c5c1 in Fig. 2) reconstruction is

particularly poor, although further simulations show

that accuracy does increase with more marker data

(e.g. 20 to 30 loci ; results not shown). P(fsrhs) is again

low (! 5%) for all population structures.

(iii) Variance component estimation

Estimates of heritability tended to show greater bias

and larger MSE than estimates of the environmental

correlation of sibs (Table 1). This was expected: the
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Table 1. Summary of the bias (upper figure) and

MSE (lower figure, italicized ) of the estimates of

heritability (hW 2) and en�ironment correlation of full-

sibs (cW 2) for different population structures

Sample Sample
Known Inferred

structure size h# # c# # h# # c# #

10c2c5c10 100 0±080 ®0±064 0±130 ®0±087
0±092 0±031 0±140 0±029

20c2c5c10 200 0±053 ®0±045 0±164 ®0±106
0±081 0±023 0±127 0±031

40c2c5c10 400 0±015 ®0±012 0±114 ®0±101

0±058 0±008 0±076 0±022
10c4c5c10 200 0±057 ®0±009 0±176 ®0±040

0±060 0±019 0±090 0±056
10c5c4c10 200 0±002 ®0±014 0±017 ®0±028

0±040 0±014 0±040 0±024
20c5c2c5 200 0±035 0±007 ®0±149 ®0±189

0±050 0±019 0±041 0±043
20c5c2c10 200 ®0±026 0±010 ®0±014 ®0±130

0±042 0±017 0±047 0±029
20c5c2c20 200 0±008 0±001 0±046 ®0±024

0±055 0±024 0±057 0±025

Sample structure: no. of sirescno. of dams within sirecno. of
offspring within damcno. of loci (each with 5 equally
frequent alleles), in each case with h#¯ c#¯ 0±25. Known:
actual relationships used in the REML analysis. Inferred:
constructed relationships used.

estimate of h# (4¬estimated correlation of half-sibs)

has a high sampling error even when pedigrees are

known because of the fourfold scaling of the estimate

based on the component with least degrees of freedom.

The estimate of c# (estimated correlation of full-sibs

within half-sibs minus correlation of half-sibs) is not

so scaled. Further, with reconstructed pedigrees the

resolution of half-sib families is relatively poor, which

exacerbates the errors of estimation of the half-sib

correlation. Inspection of the reconstructed pedigrees

showed that half-sib groups were often split into their

component full-sib families (especially when full-sib

family sizes are smaller : see above). With larger

amounts of marker information and thus larger

numbers of accurately reconstructed half-sibs, par-

ameter estimates based on the MCMC approached

the estimates derived from the known pedigrees. This

was because, with higher levels of marker information,

both half- and full-sib groups are reasonably ac-

curately reconstructed. Paradoxically, when larger

full-sib families are simulated biases tend to increase,

even though smaller families are better reconstructed,

as discussed above. This is probably because of the

unpredictable nature of the biases introduced by

incorrect relationship assignment. For example, with

a population structure of 20c2c5 the assignment of

genuinely full-sib pairs as half-sibs will result in an

overestimate of h# and an underestimate of c#, while

with population structure 20c5c2 a larger proportion

of full-sibs are assigned as unrelated and a larger

proportion of half-sibs are assigned as either full-sibs

or unrelated, which overall introduces negative bias to

h# and c#.

With smaller population sizes, but the same level of

marker information, the populations are reconstructed

more accurately, and thus MCMC-based estimates

are closer to the estimates derived from the known

pedigrees. At larger sample sizes the estimates deviate

further from those of the known pedigrees, but this

trend is superimposed upon an increase in the accuracy

of estimates due to larger amounts of data available.

There is therefore a trade-off between the sample size

and the level of marker data required for optimal

estimates of the underlying variance components.

Estimates of variance components were also com-

pared with those obtained using a modified form of

the pair-wise likelihood approach (Mousseau et al.,

1998; Thomas et al., 2000). By altering the distribution

of the pair-wise phenotypic difference for each

relationship category to N(0, σ#
A
­2σ#

E
) for full-sibs,

N(0, (3}2)σ#
A
­2σ#

C
­2σ#

E
) for half-sibs and

N(0, σ#
A
­2σ#

E
) for unrelated pairs, maximum like-

lihood estimates for the three parameters may be

determined. The pair-wise likelihood approach is

more dependent upon the amount of marker in-

formation than the MCMC method and exhibits large

bias and MSE when marker information is lowered.

At higher levels of marker information bias is

sometimes smaller than with MCMC but the MSE

remains large, indicating that estimates are much less

reliable.

4. Discussion and conclusions

The reconstruction of hierarchical full-sib within half-

sib families is possible using MCMC approaches.

However, half-sib families tend to be split into their

component full-sib families unless the amount of

marker data used is large or full-sib families are large.

Caution must be adopted, therefore, in the use of

these reconstructed families in subsequent studies (e.g.

studies of lifetime reproductive success) since the sizes

of both full-sib and half-sib reconstructed families are

biased downwards. Thomas & Hill (2000) commented

that using reconstructed sibships to estimate variance

parameters describing a quantitative trait was feasible,

since the nature of the errors made in reconstruction

were conservative and introduced only a slight

(although definite) downwards bias in heritability

estimates, but they considered only one-way classifica-

tions with solely full-sibs or solely half-sibs present

and partitioned the variance into only two compo-

nents. In analyses of hierarchical structures when
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additional variance components are estimated, how-

ever, bias is introduced through other forms of

incorrect relationship assignment. The exact direction

and magnitude of the bias will depend on the nature

of the errormade during reconstruction. If hierarchical

structures are used to estimate only σ#
A

and σ#
E

(in

situations where σ#
C
is negligible) incorrect relationship

assignment often leads to greater bias than in non-

nested population structures.

Simulations indicated that a large amount of marker

information and samples containing large numbers of

related individuals (both half- and full-sib) are needed

before both the environmental correlation and heri-

tability can be estimated accurately. The MCMC

approach used in this study was the most basic form

of the approach, using an uninformative distribution

to describe the sibship sizes and not re-estimating

population allele frequencies during reconstruction.

Even so, variance component estimates were often

more reliable (i.e. had smaller MSE) than those

from the pair-wise likelihood technique, presumably

through more efficient weighting of half-sib and full-

sib data, but showed bias with low levels of marker

information.

In the analysis reported here several modifications

were used that made the MCMC mixing process more

efficient and speeded up the time to convergence.

Considering individuals sequentially rather than ran-

domly speeds up convergence time since all individuals

are mixed with equal frequency, resulting in better

mixing of the sample. In addition, a step was added

that periodically combined half-sib families together

allowing larger steps across the likelihood surface,

helping to prevent the chain becoming stranded on a

false peak. The same technique could be applied to

joining full-sib families within half sibships, further

improving mixing. There are a number of further

modifications that could be made that might improve

results. The routine could be written in a two tiered

form, with first full-sib and then half-sib groups being

constructed. This may help the accurate assignment

of half-sibs because more marker data are available at

a group level than at an individual level. Altering the

acceptance and rejection rules for a given step in the

chain, for example governing the probability of each

step using a ‘temperature’ that changes as the chain

progresses (Kirkpatrick et al., 1983; Smith et al.,

2001), may also improve results.

An added appeal of the MCMC approach is the

ease with which it can be modified to include further

information. For example, when maternal pedigrees

or genotypes are available they may be included,

thereby improving parameter estimation. Simulation

studies, not presented here, indicated that the inclusion

of maternal genotypes yields extremely accurate

sibship reconstruction, with estimates of variance

components almost identical to those using the actual

pedigree, regardless of the actual sibship structure.

When only some of the maternal genotypes are

known, or when maternal genotype is not coupled

with maternal identity, inclusion of maternal in-

formation in the MCMC approach becomes complex,

involving part maternity inference and part sibship

reconstruction. Mixing of individuals with unknown

mothers would be over candidate mothers as well as

full- and half-sibships (assuming hierarchical sample

structure). Mixing of individuals with known mothers

would be over half-sibships only, with other indivi-

duals assigned to that mother also being reassigned.

Equation (1) may be modified to accommodate known

maternal genotypes, with summation being made over

the known maternal genotypes, rather than every

maternal genotype combination.

In this study, populations containing half- and full-

sibs were assumed to be in a hierarchical structure. In

practice, however, maternal half-sib families may be

present so that reconstruction using the MCMC

approach becomes complex and sibships could become

very extended, with individuals having both paternal

and maternal half-sibs and full-sibs. If maternal data

are known, this is less of a problem since summation

would be over the paternal data, otherwise mixing

would have to be between both fathers and mothers.

Calculation of the likelihood of the genotypes in a

sibship would become extremely slow, since sum-

mation would be across all possible parental geno-

types. Likelihood calculations could be restricted to

the immediate maternal and paternal half-sib families

of the candidate individual, rather than including (for

example) the maternal half-sib families of one of its

paternal half-sibs. However, valuable information

from excluded genotype patterns might then be lost.

In the present study, sires and dams (both between

and within families) were assumed to be unrelated,

but in natural populations such relationships are

likely to occur at some level. Several, as yet untested,

predictions may be made, however. For example, if

the sire and dam within a family are related (i.e. there

is inbreeding), the reconstruction of full-sibs is likely

to be improved due to an increase in the level of

homozygosity in the offspring. If the parents of

different families are related, there would probably be

little effect on the reconstruction of full-sibs provided

the levels of relationship are not too high. If full-sib

sizes are large then half-sibs are also likely to be

reconstructed reasonably accurately. However, if full-

sib family sizes are small, full cousins are likely to

interfere in the reconstruction process, although under

these conditions reconstruction is less reliable anyway.

In conclusion, if any of these methodologies are to

be adopted in practice certain restrictions must be

placed on the populations under scrutiny. There must

be large amounts of marker data available, with at

least 10 reasonably polymorphic marker loci, although
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the actual amount required depends strongly upon the

sample size. In addition the family sizes, especially

those of the full-sib families, should be large (e.g. fish

populations). A recent cautionary paper by Thomas

et al. (2002) clearly demonstrates the effects of not

fulfilling these requirements when using the MCMC

methodologies in the investigation of the heritability

of body weight in a natural population of Soay sheep.

These generally have small half-sib families, with very

few full-sibs, and marker data did not follow the

‘ idealized’ rectangular distribution simulated here. As

a result estimates of variance components using

markers to determine relationships compared poorly

with those made using a pedigree estimated mainly by

observation of the population at lambing.

S.C.T. was funded by a Biotechnology and Biological
Sciences Research Council PhD studentship. The authors
thank Victor Martinez for comments and discussion.

Appendix

Consider a paternal half-sib family, comprising n
f
full

sib families, indexed by m, nested within it. Each full-

sib family contains n
m

progeny which are indexed by

c. Individual 1 from family 1 is used to constrain the

paternal genotype, using each of that offspring’s

alleles in turn. Likelihoods must be weighted by "

#
,

since either allele in the offspring could have come

from the parent. The other offspring allele is used to

constrain the maternal genotype of that full-sib family.

The maternal genotypes for the remaining full-sib

families are constrained by using the first offspring in

each of those families. Again, since either allele could

come from the mother this must be repeated and the

likelihoods scaled by "

#
. a

mci
denotes allele i (of locus F)

of individual c of full-sib family m. S
vw

is an

indicator variable, with S
vw

¯1 when allele � is the

same as w and S
vw

¯ 0 otherwise. P
v
is the frequency

of allele �. The likelihood for a single locus, with nF

alleles, is :
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When j¯1 then h¯1 and when j¯ 2 then h¯
1®S

yam""

.

For equations (A2) and (A3)

b¯ 8¬2−(Sa
""i

x+Sa
m"j

y+S*)

f¯ 0±25(S
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­S
amc"a""i

S
amc#y

­S
amc"x

S
amc#am"j

­S
amc"x

S
amc#y

)

­0±25(1®S
amc"amc#

) (S
amc#a""i

S
amc"am"j

­S
amc#a""i

S
amc"y

­S
amc#x

S
amc"am"j
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)

S
*

is an indicator variable, with S
*
¯1 when the

unordered genotypes of the parents are the same and

S
*
¯ 0 otherwise. Multi-locus likelihoods are calcu-

lated by multiplying (A1) over loci. When n
f
¯1 the

constrained hierarchical equations are applicable to

the full-sib case. Likewise, when n
m

¯1 for all m, the

equations are applicable to the half-sib case. For

optimal speed each locus is ordered within families so

that homozygous individuals are considered before

heterozygous. This reduces the amount of summation

required thereby shortening calculation time.
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