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A NOTE ON SOME ORDERED RING
MASAHIRO YASUMOTO

An ordered ring with the least positive element 1 is a “Z-ring” if
for each natural number =,

veayam(xr = ny + m) o=m<mn.

An element x #+ 0 of a Z-ring is “infinitely divisible” if for infinitely
many natural numbers n,

Iy (@ =ny) .

For example, Z (the set of integers) is a Z-ring with no infinitely
divisible element. Another example of Z-rings is R = {f(X) € Q[X]]| f(0)
e Z} where Q is the set of rationals and X is placed greater than all
rationals. Then R has infinitely divisible elements, X, X? etc. In this
paper we prove

THEOREM. There exists a Z-ring A (+£Z) which has no infinitely
divisible element.

Remark 1. The ring A which we construct has the following ad-
ditional properties.

1) vava>03y3b @=ay + b & 0 b < ).

2) A is a unique factorization domain, i.e. every element can be
uniquely factorized to a finite product of prime elements.

The existence of such Z-ring was suggested by R. Kurata. (see
Remark 2)

We introduce some notations. (refer to [1]). Let N be the set of
natural numbers. We say that F  P(N) (the power set of N) is “a
nonprincipal ultrafilter” if

1) acF & beF imply aNbekF.

2) acF & aC b imply bekF.

3) ae¢F implies N—ackF.
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4) If @ is finite then a¢F.
We introduce an equivalence relation by F into Z¥X =Z X Z X -
as follows.

Mgy Mgy Tgy =+ + ) (Mg, My, My, -+ +)

if and only if
{ieN|n,=m}ekF .

Since F is an ultrafilter, F' is the equivalence relation. We say that
zZN /F‘ is the ultrapower of Z and denote it by Z*. Let (n)* be the
equivalence class of (). We can well define

m)* + (m)* = (ny + my*
(m)*-(m)* = (n;-my)*

n)* < (my* if ieN|n,<mj}eF.

We may assume Z C Z* by identifying n with (n,n,n, --)*.

By Los’s theorem [1] Z* is the elementary extension of Z, in other
words, for any first-order formula ¢(v,, v, ---,v,) of the language of
the ordered ring and for any integers n,,n,, - - -, %y, (10, Ny, « - -, 1) holds
in Z*, if and only if it holds in Z. For example, “the axioms of the
ordered ring” and “vava >0 3y3b (x =ay + b), 0 < b < a” are first-
order formulae. So Z* is a Z-ring. But “there is no infinitely divisible
element” can not be a first-order formula. In fact, Z* has infinitely
divisible elements, (2,222 ...)*, (1!,2!1,3!,4!,...)*%, ete.

In the following we construct a subring 4 of Z* which satisfies the
theorem.

Proof of the theorem. Let p, be the n-th prime number,

Apn = (o2t + 508 + Dog p,1 b = 0, £1, £2, -}

where “[ 1’ denotes the integer part.

Obviously, m, < m, implies 4, ,, D A, »n,- Since p¥,py, ..., p are
mutually prime, B, = (M., 4;,, is not empty. Pick 0 < ¢, e B, and define
¢ = (01:02, ceey Cpy ce)

Let A’ = {f(c*) e Z*| f(X) € Z[X]} and

A={zeZ*|ameZ (n+0 & nzecA)}.
We prove that A satisfies the theorem.
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By the definition of A and by the fact that Z* is a Z-ring, it is
easily checked that A is a Z-ring. By the definition of ¢, ¢* is infinitely
large in Z* i.e. for each neZ (n < c¢*) in Z*. So A #* Z.

For each zc A’, we define f,(X)e Z[X] to be f,(c*) =x. We write
z|ly if 3z (y =zx). We prove that there is no infinitely divisible
element in A.

LEMMA 1. For each v €A, {ncZ|p,|x in Z*} is finite.
Proof. We may assume xc A’.
By the definition of c,

c* = [log p,] (mod p,)
(c*)* = [log p,l* (mod p,)
z = fy(logp,)) (modp,) .

Since f,(X) e Z[X],

lim S=(1og D) _ o

oo Y2

Therefore, for all but finitely many =,
|fz(log D] < p, .
Since {ne Z| f,([log p,)) = 0} is finite, for all but finitely many =,
z=£0 (mod p,) .
The result follows.
LEMMA 2. For each xe A and each ne N,
{meZ|pr|z in Z*} is finite .
Proof. Similar to the proof of Lemma 1. We may assume xe A’.

By the definition of c,
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Since f,(X) e Z[X],

M (m-1)1
< lim Kp ™ _

moe PRt

m-—1
h(Z pi + [log pn])
Iim =1

mesco y

where K and M are some constant numbers depending only on f,(X).
Therefore for all but finitely many m,

fﬂ”(zlpf.’ + [logpn]>‘< o

Since {m e Z| f,C ' p¥ + [log p,]) = 0} is finite, for all but finitely
many m,

m=1
o= 7.(3 vt + logp,])  (modprY
and

0<

szgll i + [log pn])‘ <pm .

This proves Lemma 2.

By lemma 1 and lemma 2, every x e A is not infinitely divisible in
Z*, and therefore so is in A. So our theorem is proved.

Remark. Our original motivation is to construct a model which
resembles the set of natural numbers, but is not the same. The positive
part of A above constructed resembles the set of natural numbers
in the following sence. (It is easily checked.)

1) The positive part of A satisfies mathematical induction for any
formula ¢(x) of the language L = {4+, =, <.

2) The positive part of A satisfies mathematical induction of the
product form. Namely, for any formula ¢(x) of the language L =
{+, =, -+, <>, if ¢(1), ¢(p) for any prime p, and

ve < a(z|a — ¢(x) — ¢(a) , then vzg(z) .

On the other hand, the theorem of Lagrange does not hold. For
example, ¢* can not be a sum of squares.
Further results about A above constructed.

In the following, we prove that A cannot be an Euclidean ring
(Lemma 8), but admits Euclidean algorithm (Lemma 4).

Let @ and b be elements of A. We define ¢ € b iff b —a > n for
any neZ.
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LEMMA 3. A cannot be an Euclidean ring.

Proof. If not, there exist a well-ordered set W and a map p from
A onto W such that

(*) vavaayab z =ay + b and o) < p(@).

Let B = {p(x)|x € A — Z}. Then there is an element a,€ 4 — Z such
that p(a,) is the least element of B. We may assume that a, > 0. We
take an x, such that 0 € z, € a,.

By (%), there exist ¥y and b such that

Xo=0ay +b and pb) < play) .

Then by the definition of a, beZ.
Since 1 is the least positive element, ¥y = 1. So z, — b = a,. This
is contrary to xz, € a,.

Let a be an element of A, then there exist f(X)eZ[X] and neZ
such that ¢ = f(c*)/n. We can well define deg (@) = deg (f(X)).
We notice that a < b implies deg () < deg (b).

LEMMA 4. A admits Euclidean algorithm.
Proof. Let a and b be elements of A and assume a > b > 0.

We prove by induction on deg ().
1) If deg(a) =0, then a,beZ. This case is obvious.
(2a) Let deg (a) = n and deg (b) < n.
There exist ¥ and d such that

a=by+d and 0<d<bD.
Then deg(d) < deg(b) <n. By the induction hypothesis, Euclidean
algorithm for b and d exists.
(2b) Let deg () = deg (b) = n.
We can write
1 *n
o= —(a,c* + --+ + a,)
m

b=-L (e 4 e + D)
m

where m, ay, « -+, by, - -+, b, are elements of Z and 0 < b, < a,.

https://doi.org/10.1017/5S0027763000021851 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021851

172 MASAHIRO YASUMOTO

Since a,, b, € Z, there is a system of equations
a4y = ¢,by + 1,
b= :‘127”1 T (‘IU Qos ** 5 gy 1572 = 5 T2 € Z)
= .qk+27.k+1 by >r>r,> e >re >0
Then
o =qb+ R, fl<isk+1,
b= ‘Q2R1 + R, R, = —1—(7’i0*" 4 )
. m
Ry = @psoRpin + Ry, deg (R, < n.

So case (2b) is reduced to (2a).
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