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A NOTE ON SOME ORDERED RING

MASAHIRO YASUMOTO

An ordered ring with the least positive element 1 is a "Z-ring" if

for each natural number n,

yxlyim(x — ny + m) 0 <; m < n .

An element x Φ 0 of a Z-ring is "infinitely divisible" if for infinitely

many natural numbers n,

32/ (x = ny) .

For example, Z (the set of integers) is a Z-ring with no infinitely

divisible element. Another example of Z-rings is R = {f(X) e Q[X] \ /(0)

eZ} where Q is the set of rationale and X is placed greater than all

rationale. Then R has infinitely divisible elements, X, X2, etc. In this

paper we prove

THEOREM. There exists a Z-ring A (ΦZ) which has no infinitely

divisible element.

Remark 1. The ring A which we construct has the following ad-

ditional properties.

1) v#vα > 0 3T/3& (x = ay + b & 0 ^ b < α).

2) A is a unique factorization domain, i.e. every element can be

uniquely factorized to a finite product of prime elements.

The existence of such Z-ring was suggested by R. Kurata. (see

Remark 2)

We introduce some notations, (refer to [1]). Let N be the set of

natural numbers. We say that F c P(N) (the power set of Λ0 is "a

nonprincipal ultrafilter" if

1) aeF & beF imply a f) beF.

2) aeF & a c b imply b eF.

3) a & F implies N — aeF.
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4) If a is finite then α g F .
We introduce an equivalence relation by F into ZN = Z x Z x

as follows.

Ov %!, n2, - )/ (w0, mx, m2, 0
if and only if

Since F is an ultrafilter, F is the equivalence relation. We say that
ZNjF is the ultrapower of Z and denote it by Z*. Let (w<)* be the
equivalence class of (nt). We can well define

(w<)* + W * = (Ui +

(yii)*-(mi)* = (jii-Tn^)*

(rii)* :g (m )̂* if .{i e

We may assume Z c Z * by identifying n with (n,n,n, •••)*-
By Los's theorem [1] Z* is the elementary extension of Z, in other

words, for any first-order formula φ(vlf v2, , vk) of the language of
the ordered ring and for any integers nu n2, , nk, φ(nlf n2, , nk) holds
in Z*, if and only if it holds in Z. For example, "the axioms of the
ordered ring" and "yxya > 0 lylb (x = ay + b), 0 ̂  b < a" are first-
order formulae. So Z* is a Z-ring. But "there is no infinitely divisible
element" can not be a first-order formula. In fact, Z* has infinitely
divisible elements, (2,22,23, . . . ) * , (1!, 2!,3!, 4!, .. .)*, etc.

In the following we construct a subring A of Z* which satisfies the
theorem.

Proof of the theorem. Let pn be the w-th prime number,

where "[ ]" denotes the integer part.
Obviously, mx ̂  m2 implies An,TOl 3 ATO,m2. Since p?1,p?1, ,p? are

mutually prime, BTO = Π?-i A<,n is not empty. Pick 0 <. cneBn and define

Let A' = {/(c*) e Z* | /(Z) e Z[X]} and

A = {̂  e Z* I aw e Z (n ̂  0 & nze A')} .

We prove that A satisfies the theorem.
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By the definition of A and by the fact that Z* is a Z-ring, it is
easily checked that A is a Z-ring. By the definition of c, c* is infinitely
large in Z* i.e. for each neZ in < c*) in Z*. So A Φ Z.

For each x e A', we define fx(X)eZ[X] to be Λ(c*) = x. We write
x\y if 32 (1/ = zx). We prove that there is no infinitely divisible
element in A.

LEMMA 1. For each xeA, {neZ\pn\x in Z*} is finite.

Proof. We may assume x e A''.

By the definition of c,

c* ΞΞ [log pn] (mod pn)

(c*)fc ΞΞ [logpj* (moάpn)

x ΞΞ fx([logpn]) (moάpn) .

Since fx(X)eZ[X],

Therefore, for all but finitely many

Since {n e Z| fx([\og pJ) = 0} is finite, for all but finitely many n,

x Ξ£ 0 (mod pn) .

The result follows.

LEMMA 2. For each xeA and each neN,

{meZ\p™ι\x in Z*} is finite .

Proof. Similar to the proof of Lemma 1. We may assume x e A\

By the definition of c,

TO-l

c* ΞΞ £ £# + [log pn] (mod p?1)
i = l

(c*)* s ( g 1 p;! + [log pj)* (mod 2?™!)

x = fJΣ Pit + [log pn]) (mod p?0 .
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Since fx{X) e Z[X],

lim —
Pnl

= 0

where ίC and M are some constant numbers depending only on fx(X).
Therefore for all but finitely many m,

Since {m e Z | /x(2Γ-ί Pί! + [logpj) = 0} is finite, for all but finitely
many m,

(m-l \

Σ rf + [logpjj (modp?1)and

0 < ( m-l

Σ rf

This proves Lemma 2.

By lemma 1 and lemma 2, every x e A is not infinitely divisible in
Z*, and therefore so is in A. So our theorem is proved.

Remark. Our original motivation is to construct a model which
resembles the set of natural numbers, but is not the same. The positive
part of A above constructed resembles the set of natural numbers
in the following sence. (It is easily checked.)

1) The positive part of A satisfies mathematical induction for any
formula φ(x) of the language L = < + , = , < > .

2) The positive part of A satisfies mathematical induction of the
product form. Namely, for any formula φ(x) of the language L —
< + , = , - , <>, if 0(1), Φ(p) for any prime p, and

yx < a(x I a -> φ(x)) -> φ(ά) , then yxφ(x) .

On the other hand, the theorem of Lagrange does not hold. For
example, c* can not be a sum of squares.
Further results about A above constructed.

In the following, we prove that A cannot be an Euclidean ring
(Lemma 3), but admits Euclidean algorithm (Lemma 4).

Let a and b be elements of A. We define α < & iff b — a> n for
any neZ.
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LEMMA 3. A cannot be an Euclidean ring.

Proof. If not, there exist a well-ordered set W and a map p from
A onto W such that

(*) yxyaiyib x = ay + b and p(b) < p(a).
Let B = {̂ 0*01 a? e A — Z}. Then there is an element aoeA — Z such

that p(a0) is the least element of B. We may assume that a0 > 0. We
take an x0 such that 0 < xQ < α0.

By (*), there exist y and 6 such that

x0 =z aoy + b and p(b) < p(a0) .

Then by the definition of a0, 6 e Z.
Since 1 is the least positive element, y *zl. So x0 — & ^ α0. This

is contrary to #0 < ô

Let a be an element of A, then there exist / ( I ) e Z [ I ] and neZ
such that α = f(c*)/n. We can well define deg(α) = deg(/(Z)).

We notice that a < b implies deg (α) <; deg (&).

LEMMA 4. A admits Euclidean algorithm.

Proof. Let α and δ be elements of A and assume α > b > 0.

We prove by induction on deg(α).
(1) If deg (a) = 0, then a,b eZ. This case is obvious.
(2α) Let deg (α) = n and deg (6) < n.
There exist y and d such that

a = by + d and 0 ^ cZ < b .

Then deg (d) <; deg (6) < n. By the induction hypothesis, Euclidean
algorithm for b and d exists.

(2&) Let deg (α) = deg (δ) = rc.
We can write

a = — ( α o c * w + + an)
m

( o + + j

m

where m,α 0 , , α n , δ0, •••,&« are elements of Z and 0 < δ0 <; a0.
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Since α0, bQ e Z, there is a system of equations

1? 0.29 # ' * 9 Qk+29 V\> ^29 ' ' ' 9 ^k + l ^ Z\

o > n > r2 > . . . > rfc+1 > 0 ^

Then

,If

6 =

m

So case (26) is reduced to (2α).
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