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Summary

A simple regression strategy for mapping multiple linked quantitative trait loci (QTLs) in inbred

populations is proposed and applied to data from a non-obese diabetic (NOD) mouse backcross.

The method involves adding and deleting markers from a linear model in a stepwise manner,

allowing the association with a particular marker to be examined once associations with other (in

particular neighbouring) markers have been taken into account. This approach has the advantage

of using programs available in standard statistical packages while still allowing adequate

separation of possible multiple linked effects. For the mouse backcross, using these methods, at

least two and possibly three diabetogenic loci are detected on each of chromosomes 1 and 3. Some

evidence for epistasis is seen between the loci on chromosome 1, with a possible additional

epistatic interaction between the loci on chromosome 3. Congenic strain analysis of the

chromosome regions in NOD diabetes suggests that although the true type I error rate may be

larger than that suggested by the nominal P values, our results nevertheless correspond well with

those disease loci and interactions detected using a congenic approach, indicating that the

regression method may be a powerful strategy for the detection and characterization of QTLs in

inbred populations.

1. Introduction

An important aim in genetics and breeding is the

identification of those genes that contribute signifi-

cantly to quantitative variation within and between

populations or species. With the recent rapid de-

velopment of molecular markers, detection and

mapping of quantitative trait loci (QTLs) in ex-

perimental organisms has been greatly facilitated

(Paterson et al., 1988; O’Brien, 1993; Wang et al.,

1994), and interest has now focussed on the de-

velopment of appropriate statistical methodology for

the analysis and interpretation of experimental data.

In response to the shortcomings of traditional QTL

analysis (Soller et al., 1976), Lander & Botstein (1989)

proposed an interval mapping method in which the

strength of evidence for QTLs at various positions

along the genome is assessed. The same techniques
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have been used in outbred populations (Lathrop et al.,

1985). Recently Kruglyak & Lander (1995) proposed

a non-parametric version of the interval method.

There are still problems with this method, however,

particularly in distinguishing multiple linked QTL

effects. Zeng (1993,1994) has addressed these prob-

lems by proposing a method that combines interval

mapping with multiple regression, producing test

statistics in an interval that are independent of the

effects of QTLs at other regions of the chromosome.

Moreno-Gonzalez (1992) and Jansen (1994) have also

proposed using regression methods, which have some

similarities and also some differences compared with

the method proposed by Zeng (1993) (see Zeng (1993)

for a comparison of the methods).

The method proposed by Zeng (1993, 1994) involves

fitting a model of the form

y¯β
!
­β*x*­ 3

j1i,i+"

β
j
x
j
­ε (1)

to test for a QTL in a marker interval (i, i­1), where

y is the phenotypic value of the trait, x
i
is a binary

variable corresponding to the genotype (homozygous
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or heterozygous for a backcross) at a given marker i,

β* is the effect of the putative QTL expressed as the

difference in effects between the homozygote and

heterozygote, x* is an indicator variable taking a

value 0 or 1 depending on the genotypes of the

markers i and i­1 and the testing position of the

putative QTL, and ε is assumed to be normally

distributed with mean 0. Maximization of the like-

lihood requires specific programming via the ECM

algorithm (Meng & Rubin, 1993), although recently

a suite of programs (QTL Cartographer) has been

developed (Basten et al., 1994) to fit the model in the

case of specific crosses. This model contrasts with the

standard model for multiple regression analysis, which

is of the form

y¯β
!
­3

i

β
i
x
i
­ε (2)

and which in the case where only one marker x
i
is

included corresponds to traditional QTL methods

(Soller et al., 1976). The main reason suggested for not

using this model given by Zeng (1993) is the fact that

the partial regression coefficient for a marker will be a

biased estimate of the true QTL effect. However, since

the bias is downwards, this problem is less serious if

an effect is detected, as we are more (rather than less)

confident that it reflects a true effect. While there are

still implications for the power of the method to detect

linkage, we would not expect to inflate the type I error

using this approach. We therefore propose using (2) as

the basis of a genetic-model-free method for assessing

the effect and position of QTLs, while making no

assumptions as to the underlying genetic mechanism

behind the disease. By including different com-

binations of markers in the regression equation, we

can examine the effects associated with a particular

marker once effects at other regions of the genome

have been taken into account. This allows the

identification and positioning of putative disease loci

(see Section 2 for details). The regression method

effectively becomes a genetic-model-free method for

inferring the location of disease loci in relation to a

fixed set of markers, since although the specific models

fitted are parametric in terms of the error distribution

and linear predictors, the genetic inference we shall

make from them is not. This approach has the

advantage of allowing detection and separation of

possible multiple linked QTLs using a simple yet

flexible model whose properties are well understood

and which is available in any standard statistical

analysis package.

2. Methods

The advantage of the regression approach that we will

exploit is that we are not limited to including a single

marker at a time in the model, nor to including all

A B C D E F G H I J
XX

Fig. 1. Example of positions of marker and disease loci
on a typical chromosome that might be analysed using
stepwise regression methods.

available markers, but rather may include any number

of linked and unlinked loci simultaneously. Com-

paring the fit of different models, including different

combinations of markers, allows us to examine the

effect associated with a particular marker once

associations at other markers have already been taken

into account. The idea is to fit linear models of the

form y¯β
!
­Σ

i
β
i
x
i
­ε, where the linear predictors x

i

may be interaction terms (in a statistical sense) as well

as factors referring to the genotype at the markers

typed. By including predictors x
i
in a stepwise manner,

adding or deleting them once other (in particular

neighbouring marker) predictors have already been

included and noting the increase or decrease in residual

deviance, some indication of the position of potential

QTLs may be obtained.

As an example, suppose we have disease loci

positioned as shown (marked X) in Fig. 1 in relation

to markers A–J, assuming a marker spacing of about

10 cM. Using single-locus methods we are quite likely

to see a broad spread of significance, with the effects

from the two disease loci combining to give the

strongest association at marker E, which in fact

corresponds to a ‘ghost ’ QTL lying between the two

disease loci (Martinez & Curnow, 1992). If markers

are entered in a stepwise manner, however, then we

may move across the chromosome testing whether,

for instance, marker B gives a significantly better fit

(in terms of the reduction in deviance) when added to

the model including just marker A, whether C gives a

significantly better fit when added to the model

including just B, and so on. In this case, we would

expect that B will be significant when added to the

model including just A, since B is closer to the first

disease locus. Similarly we would expect C to be

significant when added to the model including A and

B, or in fact including just B, since C is on the other

side of the disease locus from B, and so information

about the genotype at C should increase the in-

formation about the genotype at the disease locus. We

would not expect to see a significant improvement in

fit when adding marker D to models including C, or E

to models including D, since in this case the disease

locus is separated from the marker by another marker

that has already been included in the model and, as

Zeng (1993) has shown, the partial regression co-

efficient of a marker in a multiple regression analysis

will be independent of any QTLs located outside the

two adjacent markers, assuming there is no epistasis.

If F is added to the model just E or markers to the left
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of E, however, we would hope to see a significant

improvement in fit since we are beginning to gain

information about the second disease locus. Similarly

if G is added after F we expect significance whereas if

H is added to G we expect no significance.

This reasoning forms the basis for a regression

strategy where we move back and forth across a

chromosome fitting models where one marker or two

adjacent markers are included at a time. Consider the

region B–C–D. If C is significant after B (i.e. the

model including both B and C fits significantly better

than the model including B only) but D not significant

after C, this suggests that a QTL lies between B and

the midpoint of C–D: to the right of B since C adds

information when added to B, but closer to C than to

D since D does not improve the fit when added to C.

Similarly if C is significant when added to D but B not

significant when added to C, a QTL between D and

the midpoint of B–C is suggested. If all are significant

once the neighbour has been included, or all are non-

significant, we cannot position a QTL in relation to

the three markers : it is the pattern of significance

followed by non-significance that allows us to position

the QTL in this way.

Clearly the power of such a strategy will depend

critically on the marker spacing and position of any

QTLs in relation to the marker map, as well as on the

magnitude and relative magnitudes of any QTL effects.

Also this strategy makes no use of the inter-marker

distances in the modelling process. Under the situation

shown in Fig. 1, if distances are small, it may be that

all stepwise tests (B after A, C after B, etc.) will show

significance, although assuming a reasonable marker

spacing in relation to the sample size (so that both

recombinants and non-recombinants will occur be-

tween any two markers) we would still expect to swap

from significance to non-significance when testing H

after G as opposed to G after F, and similarly for A

after B as opposed to B after C. This strategy would

therefore still allow us to hypothesize the existence of

two separate effects in the F–G– and –B–C region. If

the QTLs are closely linked to particular markers, it

may be that a simpler strategy such as forward

selection or backward deletion of these individual

markers is sufficient to deduce the existence of the

QTLs or model the data. To detect a QTL in a region

while allowing for epistasis between the QTL and

QTLs in the same or neighbouring regions, a forward

selection strategy where two neighbouring markers

together with their interaction term are entered

simultaneously into the model (i.e. three new terms)

may be adopted (see Section 5). Having deduced the

position of the QTLs by whichever strategy or

combination of strategies is preferred, epistatic inter-

actions between the disease loci can be assessed by

fitting interaction terms between the closest linked

marker or markers to each QTL.

3. Experimental details

The experimental data to be analysed were generated

from the mouse backcross between the non-obese

diabetic (NOD) strain and the diabetes-resistant strain

C57BL}10-NOD.H2g( (B10.H2g(), described in Todd

et al. (1991). The NOD mouse is a widely used genetic

model for type 1 (insulin-dependent) diabetes melitus

(IDDM) because of its spontaneous development of

the disease, which shares many immunopathological

and genetic features with the human disorder. Fol-

lowing this previous report (in which 61 marker loci

were analysed on 97 spontaneous diabetic and non-

diabetic BC1 progeny) up to 106 diabetic and 190

non-diabetic BC1 progeny were typed using a total of

123 marker loci throughout the mouse genome. The

markers and phenotypes measured are described in

Ghosh et al. (1993). Animals in the first backcross

generation were classified as homozygous (1) or

heterozygous (0) at each locus typed, and were

monitored for the development of diabetes and

insulitis. Spontaneous diabetics had ages of onset

from 94 to 436 days. The histology of the pancreas in

terms of the extent of insulitis was assessed in the non-

diabetic progeny by grading histology into seven

categories of ascending severity : 0, no evidence of

lymphocytes in the pancreas ; 1, some periductal

lymphocyte infiltration; 2, peri-islet infiltration, no

insulitis ; 3, very mild insulitis in some islets with no

reduction in islet cell mass ; 4, extensive insulitis with

significant islet cell mass remaining; 5, extensive

insulitis with significant reduction in islet cell mass ; 6,

as for 5 but only residual islets remaining.

From previous studies (Ghosh et al., 1993; Wicker

et al., 1995; McAleer et al., 1995) at least 14 loci in

addition to the major locus Idd1 on chromosome 17

have been shown to contribute to the development of

diabetes or insulitis. For the regression analyses

performed here we focussed on those regions on

chromosomes 1 and 3 that were of particular interest

because of their linkage to insulitis as well as diabetes,

and because of the spread of significance across a wide

region, suggesting that they may each contain more

than one disease locus. The regions of interest on

chromosomes 1 and 3 are shown in Fig. 2. Data were

not available at D1Nds2 (marker G on chromosome

1) or D3Mit19 (marker J on chromosome 3) for a

substantial number of animals ; therefore these

markers were excluded from the analyses. Strictly

speaking this is not necessary as any standard method

(e.g. the EM algorithm; Dempster et al., 1977) for

dealing with missing values in a regression problem

could be used. However, we wanted to keep the

simplicity of analysing the data using standard

procedures available in any statistical programming

package, and therefore opted for exclusion. This left

available for analysis a total of 296 animals typed
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Fig. 2. Positions of loci typed on chromosomes 1 and 3 in the NOD backcross. Inter-marker distances are given in
centiMorgans.

at the chromosome 1 markers and 287 animals

typed at the chromosome 3 markers.

4. Statistical analysis of IDDM data

For the statistical analysis, the binary disease response

was modelled using logistic regression, fitting a model

of the form

ln
p

1®p
¯α­βTx (3)

(where p is the probability of contracting the disease,

x is the vector of binary genotypes at the loci, and α

and the vector β coefficients to be estimated). Animals

were then classified into eight response categories

according to the degree of insulitis observed (diabetics

being placed in the highest category), and the response

modelled as a continuous variable assuming normal

errors, as in (2), and then using the polychotomous

logistic model (McCullagh & Nelder, 1989), which

allows for the ordinal nature of the response through

a series of parallel regressions that model the

probability of being placed higher than the jth category

as:

P(histology" j)¯
eα

j+
βTx

1­eα
j+

ΒTx
for j¯ 0,1,…, 6

P(histology" 7)¯ 0. (4)

Neither model is particularly proposed as the true

genetic basis for diabetes and insulitis, but rather

forms the parametric basis for a genetic-model-free

regression strategy as described earlier.

The strategy for detection and modelling of the

QTL effects was as follows: First the effect of including

a single marker in the regression equation was

investigated, for all markers (method 1). Next we

moved across a chromosome in both directions

looking at pairs of adjacent markers, and identifying

those regions where the second marker is significant

when added to the model including only the first

marker, but a third marker is not significant when

added to the model including only the second (i.e.

regions showing the pattern of significance followed

by non-significance described earlier). This we will

denote method 2. Next we used a stepwise forward

selection strategy (method 3) where at each stage three

terms were entered simultaneously, corresponding to

two neighbouring markers and their interaction,

denoted M$$
i

M
i+"

(equivalent to a model containing

M
i
­M

i+"
­M

i
nM

i+"
) for markers M

i
and M

i+"
. At

each stage all possible new models corresponding to

the previous model plus a term of the form M$$
i

M
i+"

were considered, and that model giving the most

significant reduction in deviance (i.e. the most sig-

nificant increase in fit to the data) was selected, the

interpretation being that inclusion of a term M$$
i

M
i+"

implied the existence of a disease locus in the –M
i
–

–M
i+"

– region. Finally, having determined the ap-

proximate locations of disease loci, the model with

single-marker terms giving the best overall fit to the

data was determined, and interactions between the

markers were tested to see whether there was

significant evidence for epistasis.

5. Results

The results for chromosome 1 were as follows. Using

a binary logistic regression model, (3), only weak

evidence (P value" 0±02, results not shown) was

obtained for the significance of any loci. The results

from using a normal errors model are given in Table

1. Adding single-locus terms to the mean gives a

broad region of strong significance from A to F, with

some positive evidence of linkage also seen at I and J.

Using a stepwise approach this situation is separated

into two effects on either side of locus H (i.e. in the

–F–H and H–I– regions), since F is very significant

when added to the model including H but E is much

less significant when added to F, and I is very

significant after H but J is not significant after I. There

is also a borderline effect at B–C–. No terms were
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Table 1. Chromosome 1 : significance of terms added

stepwise to the regression model

Normal errors
model

Polychotomous
model

Term F statistic P value χ # statistic P value

A 18±89 0±00002 16±89 0±00004
B 19±57 0±00001 17±28 0±00003
C 20±25 0±00001 17±68 0±00003
D 16±18 0±00007 14±02 0±0002
E 12±38 0±0005 10±09 0±0015
F 7±24 0±0075 5±83 0±0157
H 0±91 — 0±68 —
I 4±74 0±030 4±66 0±0308
J 4±58 0±033 4±42 0±0355
B after A 0±64 — 0±425 —
C after B 4±22 0±041 3±652 0±056
D after C 0±00 — 0±016 —
E after D 0±00 — 0±305 —
F after E 1±10 — 0±796 —
H after F 8±05 0±0050 7±351 0±007
I after H 12±54 0±0005 12±502 0±0004
J after I 0±00 — 0±002 —
I after J 0±15 — 0±242 —
H after I 8±62 0±0036 8±517 0±004
F after H 14±52 0±00017 12±507 0±0004
E after F 6±11 0±014 5±054 0±025
D after E 3±64 — 4±234 0±040
C after D 3±84 — 3±680 0±055
B after C 3±57 — 3±244 0±072
A after B 0±00 — 0±035 —

Results are given for the significance of including terms
either individually, or after neighbouring terms have already
been included, in a normal errors model (2) or a poly-
chotomous logistic model (4).

significant when deleted from the full main effects

model. Entering neighbouring terms and interactions

in a forward stepwise manner gave significance for

C**D (F¯ 8±64, P value 1±6¬10−&) followed by I**J

(F¯ 5±15, P values 0±0019). These results are almost

identical (in terms of significance) to those obtained

using the polychotomous logistic regression model

given by (4).

For chromosome 3, the significance of adding

individual markers to various models is shown in

Table 2. For the binary logistic model, adding terms

to the mean, a broad region of significance is seen

across the chromosome, most notably in the D–F

region. Taking a stepwise approach, there is evidence

for the presence of disease loci in the –H–I and D–E–

regions. When deleted from the full main effects

model locus E is significant (F¯14±01, P value

0±0017) with borderline significance at B and G (P

valuesE 0±07). Entering neighbouring terms and

interactions in a forward stepwise manner gave

significance for D**E (F¯13±69, P value 8±4¬10−')

followed by B**C (F¯ 4±22, P value 0±014). Using a

normal errors model, with histology as the dependent

variable, all loci are highly significant when added to

the mean. Using a stepwise approach we see significant

effects located at A–B–, D–E–, –H–I and –E–F, since

B is significant when added after A but C is not

significant when added after B, and similarly for E

after D, H after I and E after F. When deleted from

the full main effects model, loci B (F¯ 4±04, P value

0±045) and E (F¯ 4±96, P value 0±027) are significant.

Entering neighbouring terms and interactions in a

forward stepwise manner gave high significance for

D**E (F¯ 23±67, P value! 5¬10−)) followed by

A**B (F¯ 3±53, P value 0±015). These results are

again extremely similar to those obtained using the

polychotomous logistic regression model, although

for the polychotomous model there is additional

borderline significance in the region –B–C.

As might be expected, the results of the analyses

above are considerably clearer (in terms of patterns

and degrees of significance) for models that consider

the phenotype as a quantitative variable rather than

as a binary trait. It may, however, not always be

possible to use the quantitative models, either because

quantitative data are not available or because the

quantitative measure may not be an appropriate

measure of disease status. It is interesting that the

normal error models and the polychotomous models

produce very similar results. This illustrates the fact

that we are not really attempting to parameterize the

disease model by the regression equation, but rather

hope to use the regression results as a non-parametric

or model-free method to identify and position disease

loci.

For chromosome 1, taking the analyses as a whole,

there are two regions of linkage detected. These are

difficult to localize precisely, but appear to be linked

to D1Mit5 and D1Nds1 (markers C and H re-

spectively). There is some evidence for the existence of

two effects, on either side of H (D1Nds1). When

entered in a forward stepwise manner, the markers

that produced the best fit to the data (assuming the

normal errors model) were C, I and E (D1Mit5,

D1Nds8 and D1Mit8), supporting the hypothesis of

two separate effects on either side of D1Nds1. This is

broadly supported by the results in Table 1, although

one might have expected to see significance of B after

C, F after E and I after J, if the effects are real.

However, non-significance is a less conclusive result

than significance (or a pattern of significance followed

by non-significance) as one would not necessarily see

significance of neighbouring terms included after C

and E if the QTLs are tightly linked to markers C and

E. In addition our data for markers I and J were

highly correlated, with only 4 of the 296 animals typed

being recombinant between these loci, which would

explain why neither I nor J is significant once the other

has been entered. Having fitted terms for loci C, I and

E, the interaction term C*E was also significant (F¯
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Table 2. Chromosome 3: significance of terms added stepwise to the regression model

Binomial errors model Normal errors model Polychotomous model

Term F statistic P value F statistic P value χ # statistic P value

A 5±63 0±024 26±43 5¬10−( 23±86 1¬10−'

B 10±04 0±0034 40±05 ! 5¬10−) 35±15 ! 5¬10−)

C 9±54 0±0041 40±43 ! 5¬10−) 34±58 ! 5¬10−)

D 13±52 0±00086 52±24 ! 5¬10−) 44±43 ! 5¬10−)

E 39±10 5¬10−( 65±60 ! 5¬10−) 56±96 ! 5¬10−)

F 18±45 0±00015 51±83 ! 5¬10−) 46±21 ! 5¬10−)

G 11±73 0±0017 46±03 ! 5¬10−) 40±28 ! 5¬10−)

H 13±53 0±00086 45±64 ! 5¬10−) 40±49 ! 5¬10−)

I 6±25 0±018 20±12 1¬10−& 19±57 9±7¬10−'

B after A 3±84 0±059 12±59 0±00045 11±333 0±001

C after B 0±54 — 3±01 0±09 3±030 0±082
D after C 3±00 0±093 10±49 0±0013 9±997 0±002
E after D 17±61 0±00021 14±25 0±0002 13±635 0±00022
F after E 0±29 — 3±07 0±08 2±557 —
G after F 0±70 — 0±17 — 0±082 —
H after G 1±30 0±08 0±85 — 1±186 —
I after H 0±22 — 0±00 — 0±098 —
H after I 6±16 0±019 23±75 1±8¬10−' 21±023 4±5¬10−'

G after H 0±03 — 1±18 — 0±972 —
F after G 5±57 0±025 5±15 0±024 6±011 0±014
E after F 13±10 0±001 14±80 0±00015 13±308 0±00026
D after E 0±11 — 2±89 — 1±104 —
C after D 0±03 — 0±17 — 0±147 —
B after C 0±92 — 2±68 — 3±605 0±058
A after B 0±18 — 0±17 — 0±046 —

Results are given for the significance of including terms either individually, or after neighbouring terms have already been
included, in a normal errors model (2) or a polychotomous logistic model (4).

Table 3. Coefficients of chromosome 1 interaction

model

Term Coefficient
Standard
error F to enter P value

Mean β
!
¯ 4±105 0±2343

C β
"
¯®0±1355 0±6829 20±25 9±8¬10−'

I β
#
¯®1±190 0±3111 12±49 4±75¬10−%

E β
$
¯®0±7713 0±5858 2±50 0±11

C*E β
%
¯1±987 0±8820 5±08 0±025

The coefficients are the estimated regression coefficients β
!
,

β
"
,β

#
,β

$
,β

%
obtained from fitting the model of (2) with

x
"
¯1 for a homozygote and 0 for a heterozygote at marker

C, x
#
¯1 for a homozygote and 0 for a heterozygote at

marker I, x
$
¯1 for a homozygote and 0 for a heterozygote

at marker E and x
%
¯1 for an animal homozygous at both

C and E, and 0 otherwise. Also given are the standard errors
of the regression coefficients and the significance in terms of
an F statistic (F to enter) for the significance of adding the
term to the regression equation in the order given.

5±08, P value 0±025), suggesting that there may be an

epistatic interaction between C and E (D1Mit5 and

D1Mit8). The coefficients for this model are given in

Table 3. Here the data have been coded so that the

coefficients are given for homozygotes, so that a

positive coefficient indicates an NOD susceptibility, or

B10 protective, locus. We see that homozygosity at

either C or E produces a slight decrease in histology

score if an animal is heterozygous at the other locus,

but a stronger increase in histology score if the animal

is homozygous at the other locus, due to the

interaction. This resembles an epistatic model at C

and E (D1Mit5 and D1Mit8), where both disease loci

are required for disease expression. The coefficient for

I (D1Nds8) indicates a homozygous protective effect

at this locus. It is interesting to note that our results

for chromosome 1 correspond quite well to those

effects found at G and A (D1Nds2 and D1Nds4) by

Garchon et al. (1994). Our results are also consistent

with those of Cornall et al. (1991) in which the

susceptibility gene Idd5 was mapped to a broad region

of chromosome 1 distal to D1Nds4 (marker A).

For chromosome 3, the most significant effect is

seen in the D–F region, closely linked to D3Nds1

(marker E). There is also a strong effect linked to

D3Nds12 (marker B). Another strong effect, though

only seen using method 2, occurs in the H–I region. It

is interesting to compare these results with those

obtained using experiments in congenic mice (Wicker

et al., 1995). D3Nds1 is a microsatellite locus adjacent

to the Il2 gene which is a strong candidate for Idd3.

From congenic analysis, the Idd3 interval has now

been fine-mapped to only 0±35 cM and contains the
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Table 4. Coefficients of the chromosome 3 interaction

model

Term Coefficient
Standard
error F to enter P value

Mean β
!
¯ 2±315 0±2605

B β
"
¯1±547 0±4698 65±74 !1¬10−(

H β
#
¯1±472 0±4944 6±03 0±015

E β
$
¯1±068 0±4466 5±46 0±020

B*H β
%
¯®1±058 0±5778 3±36 0±068

The coefficients are the estimated regression coefficients β
!
,

β
"
,β

#
,β

$
,β

%
obtained from fitting the model of (4) with

x
"
¯1 for a homozygote and 0 for a heterozygote at marker

B, x
#
¯1 for a homozygote and 0 for a heterozygote at

marker H, x
$
¯1 for a homozygote and 0 for a heterozygote

at marker E and x
%
¯1 for an animal homozygous at both

B and H, and 0 otherwise. Also given are the standard errors
of the regression coefficients and the significance in terms of
an F statistic (F to enter) for the significance of adding the
term to the regression equation in the order given.

D3Nds12 locus and the Il2 gene (Denny et al., 1997).

In addition the disease locus Idd10 an be located at

D3Nds8, or marker H. These results locating Idd3 and

Idd10 at D3Nds12 and D3Nds8 (B and H) fit very well

with our results using the regression approach.

Homozygosity at markers B, E and H produced an

increase in histology score in each case. The only

interaction term found between markers B, E and H

was B*H (F¯ 3±36, P value 0±068), which suggests a

possible interaction between Idd3 and Idd10, although

this is not significant. The coefficients of the interaction

model are given in Table 4. We see that being

heterozygous at Idd3 and Idd10 gives an increase in

liability of zero (ignoring the mean and the effect at

E), being homozygous at Idd3 and heterozygous at

Idd10 gives an increase in liability of 1±547, being

heterozygous at Idd3 and homozygous at Idd10 gives

an increase in liability of 1±472, while being homo-

zygous at both Idd3 and Idd10 gives an increase in

liability of 1±547­1±472®1±058¯1±961. Taking

homozygosity at the two loci as the baseline, this

implies a reduction in liability of 0±414 for hetero-

Table 5. Contingency table analysis of markers B, H and E on chromosome 3

He at B Ho at B

He at H Ho at H He at H Ho at H

Status He at E Ho at E He at E Ho at E He at E Ho at E He at E Ho at E

DIAB 9 0 2 18 6 10 0 57
CON 68 2 17 16 19 12 1 50

Frequencies are given for numbers of animals heterozygous (He) and homozygous (Ho) at the three markers amongst
diabetics (DIAB) and controls (CON).

zygotes at Idd3, 0±489 for heterozygotes at Idd10 and

1±961 for heterozygotes at both loci. This is consistent

with the results described in Wicker et al. (1995), the

epistatic interaction resulting in a much greater

reduction in liability when resistant alleles are present

at both Idd3 and Idd10 than that expected if the loci

were acting independently.

The effect linked to E that we detected on

chromosome 3 did not appear to correspond to any

previously defined IDDM locus. However, the step-

wise regression approach of method 2 should imply

that this marker is showing a true effect even after the

effects of Idd3 and Idd10 have been accounted for. In

order to examine the effect of marker E on disease,

while taking account of any effects at Idd3 and Idd10,

the relationship between genotype (homozygous or

heterozygous) at locus E and disease status (diabetic

or control) for animals whose genotype at markers B

and H was fixed in advance was examined. The results

are shown in Table 5. For animals heterozygous at

both B and H, almost all are also heterozygous at E

(as would be expected from the proximity of these

markers), and there is no relationship between

genotype at E and disease status. Similarly for animals

homozygous at B and H, most are homozygous at E

with no relationship between genotype at E and

disease. For animals homozygous at B and het-

erozygous at H, there is some increase in the

proportion of controls amongst the heterozygotes at

E, but this is not statistically significant (P value 0±076,

Fisher’s exact test). But for animals heterozygous at B

and homozygous at H, there is seen to be a significant

relationship between genotype at E and disease status

(P value 0±0019, Fisher’s exact test), with homozygotes

at E having a much greater probability of developing

diabetes than heterozygotes. This is the effect that is

being detected by our stepwise regression procedure.

The third putative diabetes locus is having an

important effect in those animals heterozygous at Idd3

and homozygous at Idd10. Indeed there is evidence

from a chromosome 3 congenic strain that a third

locus may exist between Idd3 and Idd10 (L. Wicker

and L. Peterson, unpublished data).

https://doi.org/10.1017/S0016672398003152 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672398003152


H. J. Cordell et al. 58

6. Analysis using the method of Zeng (1993)

It is of interest to compare the results from our

regression analyses with those obtained using the

method of Zeng (1993,1994). A suite of programs

(QTL Cartographer) to implement this method was

recently made available (Basten et al., 1994). We

therefore additionally analysed our backcross data

using these programs. Three analysis models were

considered for the specification of the markers to be

included as controls for the genetic background:

model 1 from Zeng (1993), which uses all markers to

control for the genetic background; model 3, which

uses no markers to control for the genetic background

and is thus equivalent to interval mapping as described

in Lander & Botstein (1989); and model 6, which
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Fig. 3. Likelihood profiles for QTL Cartographer analysis of chromosomes 1 and 3. Results are given for model 6 with
various values of the parameters ws (window size) and nmp (maximum number of markers controlling for genetic
background), and for models 1 and 3. Model 1 uses all markers to control for genetic background, model 3 uses no
markers to control for genetic background and model 6 chooses markers to control for genetic background using a
forward stepwise regression procedure.

performs a forward stepwise regression procedure to

choose the most important markers to control for the

genetic background, dependent on user-specified

parameters for the maximum number of such markers

(nmp) and the window size (ws) for blocking out a

region of the genome on either side of the markers

flanking the test site. The recommended analysis

models are models 3 and 6, although the optimum

choice of parameters for model 6 is not yet clear,

which is a problem. Also the QTL cartographer

method relies on knowing or estimating genetic map

distances between markers, which makes it more

restricted than the regression approach.

The results of these analyses, in terms of likelihood

profiles for likelihood ratio statistics, are shown in

Fig. 3. A question of some importance is the
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designation of the appropriate thresholds for declaring

the presence of a QTL in an interval. From theoretical

considerations and simulation, for model 1, Zeng

(1994) recommends using a critical value of χ #

#
(α}M )

to give an approximate overall type 1 error rate of α,

where M is the number of intervals tested. This would

correspond to a threshold of 10±15 (for α¯ 0±05) in

our analyses, with slightly smaller critical values

suggested by simulation (Zeng, 1994) for models 3

and 6. These thresholds are, however, calculated for

the hypothesis that no QTLs are present, and it is not

clear how they relate to the error rate for detecting

three QTLs when in fact only two are present, or to

other possible scenarios. (Such error rates can be

calculated with QTL Cartographer using bootstrap

techniques but only by assuming the specific number

of QTLs present and conditioning on their position.)

It is therefore important to use this threshold merely

as a guide to interpreting significance. We can gain

some useful information concerning the position of

possible QTLs simply by examining the shape of the

likelihood profile over a chromosome. Some dif-

ferences are seen between the various models, but

broadly speaking the results are very similar to those

from our non-parametric regression procedure. For

chromosome 1, the effects distal to marker H (D1Nds1

at a distance of 0±38) and at marker C (D1Mit5 at a

distance of 0±16) are seen quite clearly. The effect

proximal to H, linked to marker E (D1Mit8), is also

visible in some cases when a large number of markers

are included (e.g. model 6, nmp¯10, ws¯10). For

chromosome 3, although the effect at E (D3Nds1 at a

distance of 0±35) is clearly the most significant, the

profiles also indicate the presence of Idd3 and Idd10 at

distances 0±1 and 0±6. We can therefore conclude that

the model-free stepwise regression procedures and the

parametric models of Zeng (1993, 1994) produce very

similar results, as may be expected from the similarities

between the two approaches.

7. Simulation study

To investigate further the power and properties of the

regression strategies used here, we conducted a

simulation study using 1000 replicates. Four chrom-

osomes each with 16markers spaced at 10 cM intervals

were simulated for a backcross population of sample

size 300. The trait of an individual was assumed to be

affected by 10 QTLs with positions and effects as

given in Fig. 4. The trait value of an individual was

assumed to be the sum of the effects of the QTLs

possessed, plus a random environmental variable that

was normally distributed with mean zero and variance

scaled to give 0±7 heritability in the population. This

model was chosen to be identical to that simulated by

Zeng (1994), allowing easy comparison of the powers

of the two approaches.

QTL2 (0·75) QTL3 (0·58)QTL1 (0·42)

CHR 1
16 cM 48 cM 108 cM

QTL5 (–1·23) QTL6 (–1·26)

QTL4 (1·02)

CHR 2
3 cM

48 cM 77 cM

QTL7 (–0·46)

QTL8 (1·61)

CHR 3
68 cM

33 cM
QTL9 (0·88)

129 cM

CHR 4
26 cM

QTL10 (0·74)

Fig. 4. Positions of markers and QTLs on the four
simulated chromosomes, with marker spacing 10 cM.
Distances are given from the first marker on a
chromosome. The effect of a QTL is shown in brackets
and by its magnitude and direction.

Each chromosome was considered to be divided

into 17 chromosomal regions, with the distance

between each pair of markers being divided into two

‘half regions’ for the purposes of detecting a QTL at

that location. The data generated were analysed using

four stepwise regression strategies. First the effect of

including a single marker in the regression equation

was investigated, across all markers (method 1). If a

marker was significant we designated that as a

detection of a QTL in the immediate vicinity of that

marker (i.e. in the chromosomal region from halfway

between the marker and its distal neighbouring

marker, to halfway between the marker and its

proximal neighbour). This method is not an interval

method, but rather corresponds to traditional QTL

mapping in an experimental cross. Next we used a

stepwise strategy considering all pairs of adjacent

markers (method 2 as described in Section 3) and

moving across the chromosome looking at the pattern

of significance and non-significance. For the purposes

of the simulation study two versions of method 2 were

considered: for method 2 (EITH) a chromosomal

region was classified as containing a QTL if method 2

gave significance at that location when moving in

either direction (left to right or right to left) ; for

method 2 (BOTH) a region was only assumed to

contain a QTL if method 2 gave significance in both

directions. Method 3 corresponded to the stepwise

forward selection strategy described in Section 3,

where inclusion of a term M$$
i

M
i+"

implied the

existence of a disease locus in the –M
i
– –M

i+"
– region.
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Fig. 5. Graphs of the ‘genome-wide’ (for four simulated chromosomes) type I errors plotted against the nominal P value
for a single test in each of the different regression strategies. The horizontal from a type I error of 0±05 intersects the
graphs to give the nominal P values required to give a ‘ true’ P value of 0±05.

This model allows for epistasis between QTLs in a

region (Cordell, 1995). Since at each stage in this

strategy a large number of possible next models must

be considered, the computing burden for the simu-

lations was reduced by including a maximum of seven

such terms, allowing the possible detection of seven

major QTLs, but no more. Finally, method 4 was a

deletion strategy, similar to method 1 but with single

markers being deleted from the full model (2), and if

a marker was significant we considered that to be a

detection of a QTL in the immediate vicinity of the

marker.

To compare the powers of the various methods, it

was necessary to ensure that each method had the

same type I error rate or ‘ true’ P value. A nominal P

value for each test performed in a method is given by

the significance of entering or deleting the term in the

regression equation, but it is not clear how that relates

to the overall type I error rate for the different

methods. We therefore initially simulated backcross

data under the null hypothesis of no QTL effects, with

the marker data simulated as described above and the

quantitative trait simulated simply as a normal

random variable, with variance scaled to give the

same overall variance as in the QTL backcross

population. Fig. 5 shows the simulated P values or

type I errors for the different methods as a function of

the nominal P value used for each test. We see that

nominalP values of 0±001 (method 1), 0±00035 (method

2 (EITH)), 0±0019 (method 2 (BOTH)), 0±00085

(method 3) and 0±00075 (method 4) correspond to a

genome-wide (the ‘genome’ here being defined as the

four chromosomes simulated) type I error of about

0±05. These nominal P values were therefore used for

each test performed as part of the appropriate

regression method, when evaluating the power of the

different methods. In addition it was of interest to see

what effect different numbers of markers, or different

marker spacing, had on the type I error. To investigate

this and also to simulate situations more relevant to

our IDDM data, we also simulated data under the

null hypothesis of no QTL effects for a backcross of

300 individuals with a single chromosome consisting

of between 4 and 16 markers, and inter-marker

spacings of 5, 10, 15 and 20 cM. The results for

method 2 (EITH) and method 3 are shown in Fig. 6,

for a nominal P value of 0±01 for each test. As

expected, the overall type I error increases with

increasing numbers ofmarkers (and therefore numbers

of tests performed). There is no simple relationship

between type I error and marker spacing. The results

for all methods for a chromosome with 10 markers

spaced at 10 cM intervals are shown in Fig. 7. This

corresponds most closely to the chromosomes we

analysed for the IDDM data. We can see that,

depending on the method used, a nominal P value of

at most 0±0025 for an individual test will be sufficient

to give an overall chromosome-wide type I error of

0±05. Many of our tests in Section 3 met this criterion,

and so we can consider those tests to be truly

significant even taking into account the problem of

multiple (albeit not independent) tests.
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Fig. 6. Graphs of the simulated P values for a single chromosome with different numbers of markers and marker
spacings. Results are shown for method 2 (EITH) and method 3, using a nominal P value for each test of 0±01.
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Fig. 7. Graphs of the simulated P values for a single chromosome with 10 markers spaced at 10 cM intervals. A nominal
P value of 0±0025 is sufficient to ensure the simulated P value is less than 0±05 for all methods.

The results from the power simulations are shown

in Table 6. Also given are the results from Zeng (1994)

for the power of his interval method (model I) and

non-interval methods (models II and III) to detect the

same QTLs, although note that the methods of Zeng

produce a statistic at an exact location, rather than

our more imprecise positioning that locates a QTL

either in the correct half, or in either half, of an inter-

marker interval. We see that the traditional method

(method 1), like models II and III of Zeng (1994),

gives high power to detect the major QTLs, but, as

noted previously, none of these methods is an interval

method and so they do not necessarily have a high

probability of locating a given QTL accurately. Of our
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Table 6. Powers to detect QTLs using regression methods from 1000 replicates of simulation, and comparison

with powers from Zeng (1994) (based on 100 replicates)

Chromosome 1 Chromosome 2 Chromosome 3
Chromosome 4

QTL: 1 2 3 4 5 6 7 8 9 10
Position (cM): 16 48 108 3 43 77 33 68 129 26
Effect : 0±42 0±75 0±58 1±02 ®1±23 ®1±26 ®0±46 1±61 0±88 0±74

Powers for detection in correct half of inter-marker interval using regression strategy
Method 1 0±851 0±981 0±742 0±006 0±997 1±0 0±104 0±998 1±0 0±442
Method 2 (EITH) 0±077 0±222 0±112 0±065 0±884 0±845 0±083 0±946 0±164 0±052
Method 2 (BOTH) 0±004 0±099 0±021 0±035 0.027 0±0299 0±004 0±0 0±022 0±005
Method 3 0±116 0±761 0±221 0±701 0±638 0±809 0±031 0±409 0±464 0±552
Method 4 0±010 0±083 0±033 0±289 0±247 0±250 0±009 0±008 0±001 0±027

Powers for detection in either half of correct inter-marker interval using regression strategy
Method 1 0±879 0±989 0±810 0±009 1±0 1±0 0±440 1±0 1±0 0±525
Method 2 (EITH) 0±162 0±273 0±121 0±190 0±885 0±880 0±094 0±958 0±531 0±078
Method 2 (BOTH) 0±004 0±112 0±022 0±035 0±120 0±453 0±004 0±672 0±192 0±006
Method 3 0±125 0±851 0±259 0±809 0±754 0±967 0±041 0±986 0±847 0±687
Method 4 0±012 0±083 0±034 0±299 0±299 0±264 0±014 0±711 0±181 0±034

Powers for detection from Zeng (1994) (100 replicates)
Model I 0±0 0±22 0±0 0±87 0±83 0±80 0±0 0±99 0±58 0±17
Model II 0±0 1±0 0±0 0±0 1±0 1±0 0±0 1±0 1±0 0±99
Model III 0±0 1±0 0±0 0±0 1±0 1±0 0±0 1±0 1±0 0±58

interval methods, only method 2 (EITH) and method

3 provide powers comparable to those of model I of

Zeng (1994). Method 2 (EITH) is seen to be slightly

more powerful than model I of Zeng for the detection

of QTLs 1, 3, 5, 6 and 7, of comparable power for

QTLs 2 and 8, and less powerful for QTLs 4, 9 and 10.

For QTL 4, in particular, the power is very low,

perhaps because this QTL is located at the end of a

chromosome, which makes the location strategy of

method 2 difficult to implement. For method 3, the

power is comparable and in some cases quite a bit

larger than that of model I of Zeng (1994), except for

detection of QTL 8.

The purpose of these comparisons is not to present

our regression approach as superior to the approaches

of Zeng (1994) and others (Moreno-Gonzalez, 1992;

Jansen, 1994), but rather to show that in many cases

the powers to detect a QTL in a correct location are

not reduced using this more naive strategy. Our

methods are unlikely to produce as accurate a map of

QTL position as the more complicated approaches,

but they do have the advantage of being computa-

tionally extremely simple and easily implemented in

any standard statistical package. Such methods may

therefore be useful as a first step in an analysis of data

from an experimental cross, before proceeding to a

more complicated analysis that may require careful

consideration of the likely numbers and positions

of QTLs in order to estimate significance levels

accurately. Clearly further investigation of the regres-

sion approach will be required to determine the

situations where it may be expected to be more, or

less, powerful than other methods. Current research is

being undertaken to investigate in more detail the

theoretical properties of these methods in both

experimental and human populations (Cordell, 1995)

and will form the topic of further communications.

8. Discussion

The regression methods described here use a model-

free approach to infer the vicinity of disease loci in

relation to a fixed set of markers (although the specific

models fitted are parametric in terms of the error

distribution and linear predictors, the inference made

from them is not). Depending on the marker spacing

this positioning may be less precise than in the

methods described by Zeng (1993) and by Jansen

(1994). Advantages of our approach are that it is

computationally extremely simple, is easily imple-

mented in any standard statistical package, and the

strategy is conceptually easier to understand than the

‘black box’ approach provided by some more com-

plicated methods. In addition, no specific assumptions

regarding interference are made, a straightforward

test of epistasis is provided, and the methods generalize

immediately to dichotomous or polychotomous traits

via logistic rather than least-squares regression.

One problem with the regression strategies described

here is that the non-parametric interpretation of the

results can make it difficult to assign appropriate

significance levels, other than by simulation. From the

simulations described here and elsewhere (Cordell,

1995) we found that the true error rate depends

critically on the number and magnitude of effects of

disease loci present, and on the exact regression
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method used. However, it is true to say that the

simulated error rates were in almost all cases larger

than the nominal P values. The difference between

nominal and simulated type I errors is likely to result

partly from the multiple testing problem, where many

significance tests, albeit not independent ones, are

performed, and partly from the lack of precise

correspondence between testing the hypothesis that a

coefficient in a regression equation is equal to zero,

and testing what is in some cases a somewhat complex

linkage hypothesis, e.g. whether three disease loci are

present when two have already been detected, or

whether there is a disease locus present but not in the

region where it was detected. Without knowing the

exact scheme of testing used, the form of the

phenotypic data, the number of markers available, the

number and severity of the disease loci and the degree

of epistasis, all of which affect the final type I error

rate, it is difficult to give a definitive recommendation

as to the significance level required to produce a

specific genome-wide type I error. We should therefore

be wary of placing too much emphasis on the nominal

P values achieved. Nevertheless our results correspond

well to those found using congenic strain analysis,

giving us some confidence that the effects we have

detected are true ones, and that there are at least two

and possibly three diabetogenic loci on each of

chromosomes 1 and 3, with significant epistasis.

The problem of assigning appropriate significance

levels is not new, nor limited to the regression methods

proposed here. For any non-parametric analyses, the

correspondence between the parametric P value and

the true false positive rate when declaring linkage, is

not exact. This provides some of the motivation for

the much more stringent requirements for declaring

genetic linkage than for most statistical tests. From

arguments based on an Orenstein–Uhlenbeck dif-

fusion process, P values as well as 2¬10−& have been

suggested (Lander & Botstein, 1989, 1994; Churchill

& Doerge, 1994; Lander & Schork, 1994) as giving

realistic false positive error rates for likelihood-based

methods in human data, but this is very conservative

because it assumes that all significant tests are type I

errors. Recently, Churchill & Doerge (1994) and

Doerge & Churchill (1996) presented a permutation

method for assigning empirical threshold values to

any given test of linkage to a QTL. However, their

method is not directly applicable to our analyses as it

relies on testing a null hypothesis of either no QTL

effects in a region, or of specific (known) QTL effects

according to which the data may be stratified. Also

the power to detect multiple linked QTLs is low.

It may seem unrealistic to expect to achieve P

values of such stringency when diseases are caused by

many loci, each with small effects : in our analyses

only one of our stepwise results (H after I on

chromosome 3) met this criterion. However, as in

human linkage studies, the most conclusive way of

determining true significance will be through rep-

lication. Results that occur in independent data sets,

and are subsequently confirmed through congenic

breeding experiments, will enable us to determine

which of our initial findings are in fact true genetic

effects. On this note, congenic strain analysis of mouse

chromosome 3 in NOD diabetes indicates that there

are indeed at least two, if not three, separate

susceptibility regions, with significant epistasis.
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