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PERTURBATIONS OF A HAMILTONIAN FAMILY
OF CUBIC VECTOR FIELDS

A.M. URBINA, M. CANAS, G. LEON DE LA BARRA, M. LEON DE LA BARRA

This paper is related with the configurations of limit cycles for cubic polynomial
vector fields in two variables (xa)-

It is an open question to decide whether every limit cycle configuration in X3
can be obtained by perturbation of a corresponding Hamiltonian configuration of
centres and graphs.

In this work, by considering perturbations of the Hamiltonian vector field
XH = {Hv, -Hx), where # ( 3 , y) = [a(x + h)2 + by2 - l][a(as - h)2 + by2 - 1], we
make a global analysis of the possible cases.

The vector field Xa has three centres (C~, C+ and the origin) and two
saddles. By means of quadratic perturbations the centres become fine foci where
C~ and C+ have the same type of stability but opposed to that one of the origin
and infinity. Further introducing cubic perturbations changes the stability of C~ ,
C+ and the cycle at infinity and generates limit cycles. Lastly extra linear terms
change the stability of the origin and generate another limit cycle.

Finally, we analyse the rupture of saddle connection of the Hamiltonian field
under perturbation, via Melnikov's integral, in order to complete the study of the
global phase portrait and to consider the possibility of new limit cycles emerging
from the Hamiltonian graph.

1. INTRODUCTION

Hilbert's sixteenth problem asks for the maximum number and position of limit
cycles for a differential system of the form

x = P(x, y), y = Q(x, y)

where P and Q are polynomials and at least one of them is of degree n i n z and y. For
n = 2 the distribution of limit cycles is already known and Bamon [2] has established
that there are only a finite number. (See also survey papers [4, 5]).

The corresponding study for cubic vector fields is far from complete but we can
mention, in connection with the possible configurations of limit cycles, the works of
Holmes and Rand [6] dealing with the case of two limit cycles surrounded by a third
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one. Then Li Ji-bin [7] found a configuration of five limit cycles consisting of the Rand
distribution plus two other separate limit cycles. In 1987, Li Ji-bin and Quiming [8] gave
several new configurations obtained by perturbing of Hamiltonian systems, including
one with 11 limit cycles.

A very important contribution is also given by Lloyd, Blows and Kalenge [3, 9,
10]. They give detailed versions of the techniques employed and obtain a family of
cubic fields with a fine focus of order 6 and then they generate 6 small-amplitude
limit cycles. They use a particular family of cubic vector fields with non zero quadratic
part. They also analised the coexistence of fine foci for cubic fields without quadratic
part and established some compatibilities for the order of weakness of the foci. Finally,
they obtain a family with five limit cycles, four generated from the origin and one from
infinity.

In connection with the bifurcation of limit cycles at infinity, for general polynomial
vector fields, there is a work by Rousseau [11]. This author establishes a duality between
the above mentioned bifurcation and the Hopf bifurcation and gives examples of cubic
systems with at least seven limit cycles: three around one singular point, one around
another singular point and three limit cycles surrounding the four first limit cycles.

The purpose of this paper is to initiate a systematic approach to obtain new con-
figurations of limit cycles for cubic vector fields in two variables. For this we consider
quartic functions H(x, y) and the associated Hamiltonian vector field X = (P, Q)
defined by

Q TT

p ( O ( )

Q { x , y ) = - { x , y ) .

The vector field (P, Q) is tangent to the level curves of H.

In the next sections we study a family of vector fields obtained in this manner, for

the case H(x, y) = (a{x + h)2 +by2-l) [a(x - h)2 + by2 - l ) .

By means of adequate perturbations of the Hamiltonian family we obtain different
and new configurations of limit cycles. Moreover, the global phase portrait is analysed
through the study of the behaviour at infinity and the determinations of the type of
ruptures of the Hamiltonian saddle connections.

2 . A FAMILY OF PERTURBED HAMILTONIAN VECTOR FIELDS

Let
. b
4 +
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with 0 < a < 6.
The Hamiltonian vector field X associated with H(x, y) is defined by

(1)
x = P(x, y) = - y + Ax*y + By*

y = Q(z, y) = x- Axy2 - Cxs

where A = (a + 6)/2, B = 6(o + 6)/2a and C = a{a + 6)/26.

The singularities of X are: centres at (0, 0) and C± = (±y/2b/(a(a + 6)), o) ,

saddles at S1* = (0, ±-^/2o/((o + 6)6) J . The phase portrait is shown in Figure 1.

Figure 1

The saddle separatrices are determined by H(x, y) = — a/2b(a + 6) and they are
located on the ellipses a(x — h)2 + by2 = 1 and a(x + h)2 + by2 = 1 where h2 =
(b-a)/a(a + b).

Next, we consider the vector field

(2) Xe, M, x = X

where Z^x, y) = (Fxy + Gy2, Ky2) , Z2(x, y) = (xy2, -x2y) and Z,(x, y) = (0, y).
These perturbations preserve the singularities of (1) on the axis y = 0. Moreover,

the divergence of -X^o.o is e(F + 2K)y so that the singularities 0 and C ± are fine
foci.

PROPOSITION 1. Tie vector Held XeiO,o witi e ^ 0 has at the origin and at
the points C*, centres or weak foci of order at most one.

PROOF: The values of the Poincare derivatives [1] at the origin are

ire2

ai(0) = 1, o2(2ir) - 0, as(27r) = —G(F + 2K).
4

If the order of the fine focus were greater than one, then G(F + 2K) — 0, that
is G = 0 or F + 2K = 0. In both cases we have a centre according to the symmetry
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principle or the divergence criterion, respectively. So, the order of the fine focus (0, 0)
is at most one.

In order to study C+ — (ci, 0) let z = x - c\; then

i = (-1 + Ac2 + eFCl)y + (2ACl + eF)zy + eGy2 + Az2y + By3,
2 + (eK - Aa)y2 - Cz3 - Azy2.

Since — 1 + Ac\ + eFc\ > 0, for e <C 1, we scale the variables so that the linear part of
the vector field is in the standard form for a centre.

Let r = 2crt, u - ay and v = z where a = [ ( -1 + Ac\ + e F c i ) / 2 ] 1 / 2 .

Then the system becomes

3 _ 2 eK - Aci 2 C , A
CciV + ~^r-u V

2Aci +eF eG , A 2v = u+ ^ u V + — « +—uv

and the values of the first three Poincare derivatives at C+ are

ai{0) = 1, a2(27r) = 0 and er,(2ir) = ~^iG{F + 2K).

For C~ = (—ci, 0) we have a similar procedure and we obtain the same results. D

Observe that the fine foci C* and the origin have opposite stabihties.

3. BEHAVIOUR AT INFINITY

The Hamiltonian vector field X has no singularities at infinity, because

*2y + By3) + x(-Axy2 - Cx3)

(a*2 + V ) 2 < 0 V(«, y) * (0, 0).

The same is true for the vector field Xe,o,o since Z\ is quadratic.

Let u = x/y/A, v = y/\/C, in order to have Xeio,o(«j v) in normal form at

infinity. So the Poincare derivatives at infinity are

8

where A = y/afb and B = y/(a + b)/2.

So infinity is a non hyperbolic periodic orbit with the same type of stability as the

origin.
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4. GENERATION OF LIMIT CYCLES

In order to generate simultaneously limit cycles from the fine foci and from infinity,
we consider the vector field Xe<lit\, that is,

x = -y + Ax2y + By* + ey(Fx + Gy) + (izy2,

y = x- Axy2 - Cx* + eKy2 - fix2y + Ay.

PROPOSITION 2 . If o < |A| < |/i| < |e|, G(F + 2K)n< o and G(F + 2K)X<
0 tien t ie vector Held Xgllitx has the configuration (1, 1, 1) of infinitesimal limit cycles
surrounded by a big amplitude one, obtained by bifurcating the infinity.

PROOF: Div Xtill, A(*, y) = \ + e(F + 2K)y + [i(y2 - x2).
Let us suppose that G(F + 2K) < 0, /x > 0; then div Xeililo = 0 is a hyperbola

(see Figure 2).

e{F + 2K)>0 2K)<0

Figure 2
In this case, the fine foci C± have been hyperbolised and change stability and we

obtain two repelling hyperbolic limit cycles, one around C+ and the other around C~ .
If we take A > 0, small enough (A —/x(26/o(a + 6)) < 0), the origin becomes a

repelling hyperbolic focus, then we have an attracting hyperbolic limit cycle surrounding
the origin.

In relation to infinity, if we denote by 5f°(— 2ir) the Poincare quantities for the
field XCt(l>\ and by i?s(/i), and As(ii) the radial and angular components of its cubic
part, we have

(ax2 + by2)'

+ by2)= Rs(0) =
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Then as

we have

f-7.lt o

Jo As (0)

that is,

sign f 2* -?*
Jo A3

•= sign

Thus, as we choose \L > 0, we have that a f (-27r) = exp f - / R3(/J.)/A3(fi) do\

> 1 and then we have changed the stability of the infinity and an attracting hyperbolic
limit cycle is generated.

For G(F + 2K) > 0, /i < 0, the same configuration is obtained but with the
natural change in the stability of the critical elements.

The configuration of limit cycles is shown in Figure 3.

A > 0

Figure 3

5. RUPTURE OF SEPARATRICES

To obtain the global picture we have to study the rupture of the saddle connections
of -X"e,o,o-

We use the technique of the Melnikov's Integral [1].
First, we consider a general situation for X(x, y) = (P(x, y), Q(x, y)) and

Z(x,y) = {Z1(x,y),Z2{x,y)).
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q'(o,t) q(o)

Figure 4 Figure 5

Let us assume that there is a saddle connection 7 for the vector field X, such that
0(7) = sj and ^(7) = s2, (Figure 4).

We study the rupture of 7 when X is perturbed to X + eZ.
Let us consider p € 7, and q(t) the orbit of X such that q(0) = p and Ro = X(p).
Let £ be a transversal segment in q(0) to Ro. Let us denote by q'(t, e) and

qu(i, e) the orbits of X + eZ that parametrise the stable and unstable manifold of the
hyperbolic saddles s2(e) and si(e) respectively (see Figure 5).

The e-deviation of Melnikov in q(0) is the number

d(e) = det(Ro,q"(O,e)-q'{O,e)).

We also have that

F- j f div X(9(r))<ir] det[*(g(O), Z(q(t))]dtexp

(see [1]).

In our case, X is a Hamiltonian vector field, so

d'(0) = f°° det[X(q(t)), Z(q(t))]dt
J-00

= IZ2{x,y)dx-Z1{x,y)dy.

Let x — <p(s), y = </>(s) with a < s < b be another parametrisation of 7 .

Then

f b ) , y(8))<p'(s) - Z1{x(s), y(s))4,'(s)]ds.d'(0) = fb[
Ja

Let 7,-, i = 1, 2, 3, 4 be the saddle connection in the phase diagram of X (see Figure 6).

For i = l , 2 we parametrise 71 by

) cos 0 I b — a sin 0

V
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Figure 6

where a is such that cosa = (—1)*+1 -^(b — a)/(b + a) and sina = y/2a/(a + b).

For t = 3, 4, 7i is parametrised as follows:

x = ( " 1 b — a sin 9
—. rr; y = jr- w i t h — a < 0 < a
o\o. + 6) \/b

where a is such that cosa = (—1) -^{b — a)/(a + b) and sina = y/2a/(a + b).

Let di(e) be the e-deviation associated with 7<, i = 1, . . . , 4.

Then

and
3/2

If we take G > 0 the ruptures of the saddle separatrices are as shown in Figure 7.

Sf

If we apply the method of Melnikov to study the generation of limit cycles by the
rupture of the graphic, we find that the criterion fails in this case. So it remains as an
open problem to decide the existence of more limit cycles in the global phase portrait
of the family.

However, the possible distribution of limit cycles, besides C\ D ZC\, using Jibin
notation [8], are C\ D 2C\ U C\, C\ D 2C\ U C\ and C\ D 3(7?.
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