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A MULTIPLE EXPONENTIAL SUM TO MODULUS p2 

BY 
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Dedicated to the memory of Robert Arnold Smith 

ABSTRACT. For suitable polynomials f(x) E Z[x] in n variables, of 
total degree d, it is shown that 

I S^ ep2(f(x))\ ^(d- 1)>". 

This is, formally, a precise analogue of a theorem of Deligne [1] on 
exponential sums (mod p). However the proof uses no more than 
elementary algebraic geometry. 

It is well known that the estimation of exponential sums over finite fields is 
intimately related to the Weil Conjectures for the corresponding zeta-function. We shall 
be concerned with the following situation. Let/? be a prime, and let Kbe the field with 
p elements. Let x = (xu x2,. . . ,xn) and let F(x) E Z[x] be a form of degree d, with 
p)( d. Suppose F(x) = 0 defines a non-singular absolutely irreducible projective 
variety over K, the algebraic closure of K. (Here, by abuse of notation, we do not 
distinguish between F and its image in K.) Let E{x) E Z[x] be a polynomial of total 
degree <d. We shall write ed(y) = exp (iTriy/d). Then according to Deligne ([1], 
Theorem 8.4) we have 

2 ep(F(x) + E(x)) 
x(modp) 

(d- 1 ) V / 2 , 

where the summation condition means that each variable xt runs (mod p). 
For many purposes one wants analogous results for sums (mod pe), with a bound 

0(pen/2). This however is not possible in general. If n - 3, d = 3 and F = JCJ3 + 
*23 + *33, and E = 0, then 

2 ep*(F(x) + E(x)) = p\ (p Ï 3). 
x(modp3) 

However it turns out that a suitable bound is indeed possible for sums (mod p2). 
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THEOREM. Let p, F, E and d be as above. Then 

2 eXF(x) + E(x)) < (d - i) v. 

It is noteworthy that both the conditions of this result and the shape of the upper 
bound should be exactly the same as in Deligne's theorem. When this result was 
described to Professor Smith, he replied that "he thought he could prove something 
similar"; so it seems appropriate that the proof should be published in this volume. 

For the proof we denote the sum occuring in the theorem by S. We replace the vector 
x by y + pz, where y,z run (mod p). Then 

F(x) + E(x) = F(y) + E(y) + pz . (VF( j ) + VE(y)) (mod/72). 

Moreover 

_ \p\ p\VF(y) + VE(y), 
2 ep(z.(VF(y) + VE(y))) = \^ " 

z(modp) L 0, otherwise. 

Consequently 

|S| ^pn #{y (modp); p\VF(y) + VE(y)}. 

Now let x = (JC0,X\, • • •,xn) and let G(JC) E Z[JC] be the form given by 

G(x) = F(x) + x0
dE(x0

]x). 

We define G0(JC) = x0 and G;(JC) = dG/dxi for 1 < / < n. Then 

{JC E A^+1; Gf-(x) = 0, 0 < i < /i} = {JC = (0,jt,,.... ,*„) E Kn+l; 

VF(x) = 0} 

By the non-singularity condition on F, the latter set contains only the origin, so that the 
intersection of the projective hypersurfaces Gl; = 0, (0 < / < A) is empty. Now let V 
denote the intersection of the hypersurfaces Gl• = 0 for 1 < / < «. If any irreducible 
component of V were to have positive dimension, its intersection with the hyperplane 
G0 = 0 would be non-empty. Consequently V consists of finitely many points. Each 
form G/(l < / < n) has degree d — 1. Thus, by Bezout's Theorem (Shafarevich ([2], 
p. 198) we have #V < (d - 1)\ It follows that 

#{x EK"+l - {0}; Gt(x) = 0, 1 < i < /i} 

< ( p - l ) # V < ( p - l ) ( d - 1)". 

Finally we observe that 

#{x E AT"; VF(X) + VE(x) = 0} = #{* E A"*; Gf-(l,jc,,JC2, . . . ,xn) 

= 0,1 < i < « } < - \ # { j c e r ' ; G ( W = 0, 1 < / < / i} 
/? - 1 

^ w - ir, 
and the theorem follows. 
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