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On the quaternion `-isogeny path problem
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Abstract
Let O be a maximal order in a definite quaternion algebra over Q of prime discriminant p, and
` a small prime. We describe a probabilistic algorithm which, for a given left O-ideal, computes
a representative in its left ideal class of `-power norm. In practice the algorithm is efficient
and, subject to heuristics on expected distributions of primes, runs in expected polynomial
time. This solves the underlying problem for a quaternion analog of the Charles–Goren–Lauter
hash function, and has security implications for the original CGL construction in terms of
supersingular elliptic curves.

1. Introduction

In this paper we provide a probabilistic algorithm to solve a quaternion ideal analog of the path
problem in supersingular `-isogeny graphs. The main result is an algorithm for the following.
Let Bp,∞ be a quaternion algebra over Q ramified at p and ∞. Let ` be a ‘small’ prime,
typically 2 or 3, or any small constant prime. Given a maximal quaternion order O in Bp,∞
and a left O-ideal I, compute an equivalent left O-ideal J = Iβ with norm `k for some k. This
algorithm runs in practice in probabilistic polynomial time, and this effective runtime follows
from heuristic assumptions on expected distributions of primes. With minimal adaptation, the
algorithm can also be applied to output an ideal with smooth (or power-smooth) norm. The
algorithm is described in terms of a special maximal order, but extends to any maximal order
by passing through such a special order.

The motivation for this problem is an explicit equivalence of categories between left O-ideals
and supersingular elliptic curves (over F̄p). The Deuring correspondence gives a bijection
between such curves, up to Galois conjugacy, and isomorphism classes of maximal orders
in Bp,∞. This bijection can be turned into an equivalence of categories by the following
construction. Let E0/K be a fixed elliptic curve with endomorphism ring O = End(E0) a
quaternion order in Bp,∞ = O ⊗ Q (we may take the base field K = Fp2 and E0 such that
|E0(K)| = (p+1)2). Associated to any pair (E1, ϕ) where ϕ : E0 → E1 is an isogeny, we obtain
a left O-ideal I = Hom(E1, E0)ϕ of norm n = deg(ϕ), and conversely every left O-ideal arises
in this way (see Kohel [8, § 5.3]). In particular, given any isogeny ψ : E0 → E1 of degree m,

the left O-ideal J = Iϕ̂ψ/n is an equivalent ideal of norm m, where ψ̂ is the dual of ψ.
The problem we address in this work is to solve the quaternion version of the supersingular

`-isogeny path problem: given E0, E1 and a small prime `, find an `-power isogeny from E0

to E1. Under this equivalence of categories, the analogous problem is the determination of an
`-power norm left O-ideal in the class of a given left O-ideal I. After introducing the necessary
background on quaternion orders and ideals in § 2 and addressing some preliminary algorithmic
problems in § 3, we solve the `-power norm problem in § 4. Subject to reasonable heuristics
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on the probability of finding suitable primes, we obtain a probabilistic algorithm which solves
this problem in expected polynomial time. The experimental runtime agrees with the most
optimistic predictions for the distribution of primes.

The algorithm gives a clear distinction between the efficiency of the `-isogeny problem in
the equivalent category of quaternion ideals, whereas the analogous problem in the category
of supersingular elliptic curves, on which the security of the Charles–Goren–Lauter hash
function [4] is based, has to date resisted attack. This dichotomy poses several questions
on the extent to which the information from the algebraic category can be transported to the
geometric one. In particular, one expects an algorithm for computing the endomorphism ring
of a given elliptic curve to provide an effective reduction to the algebraic setting, making the
hardness of this problem critical to the underlying security.

2. The quaternion `-isogeny path problem

In this section we first motivate and define the quaternion `-isogeny path problem. We then
recall basic facts on quaternion algebras. We introduce p-extremal maximal orders, which will
play an important role in our solution of the quaternion `-isogeny problem. We finally discuss
properties of reduced norms and ideal morphisms.

2.1. ‘Hard’ isogeny problems

The motivation for studying the quaternion `-isogeny problem is based on the analogous
(indeed categorically equivalent) problem for supersingular elliptic curves. The difficulty of
this problem for elliptic curves underlies the security of the Charles–Goren–Lauter hash
function [4].

As an example, finding a preimage (inverting the function) amounts to solving the following
path problem in the supersingular `-isogeny graph.

Problem 1. Let p and ` be prime numbers, p 6= `. Let E0 and E1 be two supersingular
elliptic curves over Fp2 with |E0(Fp2)| = |E1(Fp2)| = (p + 1)2. Find k ∈ N and an isogeny of
degree `k from E0 to E1.

Similarly, finding collisions requires a solution to the following multiple path problem in the
supersingular `-isogeny graph.

Problem 2. Let p and ` be prime numbers, p 6= `. Let E0 be a supersingular elliptic curve
over Fp2 . Find k1, k2 ∈ N, a supersingular elliptic curve E1 and two distinct isogenies (i.e. with
distinct kernels) of degrees respectively `k1 and `k2 from E0 to E1.

Setting O = End(E0), we have a category of left O-ideals, with morphisms I → Iα ⊆ J ,
for α in B = O ⊗ Q, which is equivalent to the category of supersingular elliptic curves and
isogenies. The analog of the path problem in supersingular `-isogeny graphs is that of finding
a representative ideal J for given I of norm `k. We call this problem the quaternion `-isogeny
path problem, and focus on its effective solution in this paper.

2.2. Quaternion algebras

In this work we consider the structure of left ideals of a maximal order in the quaternion
algebra Bp,∞ ramified only at p and ∞. Such an algebra is isomorphic to End(E) ⊗ Q for
any supersingular elliptic curve E/Fp2 . Here we denote End(E) = EndF̄p

(E) and if we assume

#E(Fp2) = (p+1)2, then the full endomorphism ring End(E) is defined over Fp2 . Any definite
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quaternion algebra over Q has a presentation of the form Q〈i, j〉, where i2 = a, j2 = b,
k = ij = −ji for negative integers a, b. The canonical involution on Bp,∞ is given by

α = x0 + x1i+ x2j + x3k 7−→ ᾱ = x0 − x1i− x2j − x3k

from which the reduced trace and norm take the form

Trd(α) = α+ ᾱ = 2x0 and Nrd(α) = αᾱ = x2
0 − ax2

1 − bx2
2 + abx2

3.

The integral basis {1, i, j, k} has the nice property of being an orthogonal basis with respect
to the bilinear form 〈x, y〉 = Nrd(x + y) − Nrd(x) − Nrd(y) associated to the reduced norm.
Nevertheless, the order O = Z〈i, j〉 is never maximal.

2.3. Extremal orders

In this work we first place the focus on the p-extremal maximal orders O containing π such
that π2 = −p. For a general order there exists a unique maximal two-sided ideal P over p,
and this ideal is principal if and only if there exists such an element π. The maximal ideal
P is a generator of the two-sided class group, and p-extremal orders are precisely those of
trivial two-sided class number. In the context of supersingular elliptic curves, these are the
maximal orders which are endomorphism rings of elliptic curves defined over Fp with Frobenius
endomorphism π.

Secondly, we focus on orders with distinguished quadratic subring R. For a maximal order
O we define d(O) = min{disc(R) : Z 6= R ( O}. Among all p-extremal maximal quaternion
orders, we define a special p-extremal maximal order O to be a p-extremal maximal order such
that d(O) is minimal.

The following lemma establishes the main properties we need for such an order, after which
Lemmas 2–4 provide for their existence by explicit construction.

Lemma 1. Let O be a maximal order in Bp,∞ containing a subring Z〈i, j〉 with i2 = −q,
j2 = −p, and ij = −ji, for q coprime to p. Set R = O ∩Q[i] and let D be its discriminant. If
R is the ring of integers of Q[i], then R⊥ = Rj and R+Rj is a suborder of index |D| in O. If
ω is a generator of R, then

Nrd(x1 + y1ω + (x2 + y2ω)j) = f(x1, y1) + pf(x2, y2),

where f(x, y) is a principal quadratic form of discriminant D.

Proof. The triviality of the trace of j and the anti-commuting relation ij = −ji imply
that Q(i) has orthogonal complement Q(i)j in Bp,∞. Consequently R⊥ ⊂ O is a lattice in
Q(i)j containing Rj, hence of the form aj for a fractional ideal a of R which contains R. The
prime p is inert in R, since p is ramified in Bp,∞ but not in R. Since the norm is integral
on aj, and Nrd(j) = p, it follows that a is integral, hence equals R. The orthogonality of
R and Rj implies that jβ = β̄j for all β in R, so jR = Rj and R + Rj is closed under
multiplication. The form of the norm follows from orthogonality and multiplicativity of the
norm: Nrd(β1 + β2j) = Nrd(β1) + pNrd(β2). Consequently the discriminant of the norm form
is D2p2, from which we conclude that R+Rj has index |D| in any maximal order.

By convention, for our special p-extremal order O, we fix Z[i] ⊆ R with i2 = −q and
D = disc(R) = −d(O), and j2 = −p (i.e. j = π above). Being of smallest discriminant, R is
necessarily a maximal order whose discriminant is the first of the sequence

−3,−4,−7,−8,−q for prime q ≡ 3 mod 4,
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such that p is ramified or inert in R. The next three lemmas establish existence for q = 1, q = 2,
and q ≡ 3 mod 4 prime. These lemmas incorporate and expand on Pizer [10, Propositions 5.1
and 5.2]. We recall that an order in a quaternion algebra is Eichler if it is the intersection of
two maximal orders.

Lemma 2. Let p ≡ 3 mod 4 be a prime, and let B = Q〈i, j〉 be the quaternion algebra
given by the presentation i2 = −1, j2 = −p, and k = ij = −ji, and set R = Z[i]. Then B is
ramified only at p and ∞, and Z〈i, j〉 is contained in exactly two maximal orders with index
4, described by the inclusion chains

Z〈i, j〉 ( Z
〈
i,

1 + i+ j + k

2

〉
(


Z
〈
i,

1 + j

2

〉
,

Z
〈
i,

1 + k

2

〉
.

In particular, Z〈i, (1 + i+ j + k)/2〉 is an Eichler order, but Z〈i, j〉 is not.

Lemma 3. Let p ≡ 5 mod 8 be a prime, and let B = Q〈i, j〉 be the quaternion algebra given
by the presentation i2 = −2, j2 = −p, and k = ij = −ji, and set R = Z[i]. Then B is ramified
only at p and∞, and Z〈i, j〉 is contained in exactly two maximal orders with index 8, described
by the inclusion chains

Z〈i, j〉 ( Z
〈
i, j,

i+ k

2

〉
( Z

〈
i,
i+ k

2
,

1 + j + k

2

〉
(


Z
〈
i,

1 + j + k

2
,
i+ 2j + k

4

〉
,

Z
〈
i,

1 + j + k

2
,
i+ 2j − k

4

〉
·

In particular, Z〈i, j〉 is not an Eichler order.

Lemma 4. Let p and q be primes, with p ≡ 1 mod 4, q ≡ 3 mod 4, and(
−p
q

)
= 1.

Let B = Q〈i, j〉 be the quaternion algebra given by the relations i2 = −q, j2 = −p, and k =
ij = −ji, and set R = Z[(1 + i)/2]. Then B is ramified only at p and ∞, and Z〈(1 + i)/2, j〉 =
R + Rj is contained in exactly two maximal orders with index q, described by the inclusion
chains

Z〈(1 + i)/2, j〉 (


Z
〈

1 + i

2
, j,

ci+ k

q

〉
,

Z
〈

1 + i

2
, j,

ci− k
q

〉
,

where c is any root of x2 + p mod q. In particular, R+Rj is an Eichler order.

Under the generalized Riemann hypothesis, for p ≡ 1 mod 4, the smallest q satisfying the
conditions of the last lemma is O(log(p)2) by a result of Ankeny [1] (or explicitly q < 2 log(p)2

by Bach [2]). In the remainder of this paper, we will assume that Bp,∞, O, and R are suitably
constructed from these lemmas with disc(R) the minimal discriminant in which p is inert in
the sequence −3, −4, −7, −8, or −q for q ≡ 3 mod 4 prime.

https://doi.org/10.1112/S1461157014000151 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000151


422 d. kohel, k. lauter, c. petit and j.-p. tignol

2.4. Reduced norms and ideal morphisms

Now suppose that O is any maximal order. We recall that the reduced norm on Bp,∞ induces
a reduced norm on left ideals defined by any of the equivalent conditions

Nrd(I) :=
√
|O/I| = gcd({Nrd(α) : α ∈ I}),

or by IĪ = Nrd(I)O. It follows that the reduced norm on ideals is multiplicative and compatible
with the reduced norm on elements Nrd(α) = Nrd(αO) = Nrd(Oα). If I and J are leftO-ideals,
a homomorphism of I to J is a map given by α 7→ αγ for γ in B∗p,∞, which is an isomorphism if
J = Iγ. By the multiplicativity of the reduced norm, isomorphisms are similitudes of quadratic
modules (with respect to the reduced norm). In particular, an isomorphism sends a reduced
basis to a reduced basis. In fact the normalized norm map

qI =
Nrd

Nrd(I)
: I −→ Z

remains invariant under this isomorphism, in the sense that qI(α) = qJ(β) for α in I and
β = αγ in J . The normalized norm qI is a positive-definite integral quadratic map, whose
bilinear module given by 〈x, y〉 = qI(x + y) − qI(x) − qI(y) has determinant p2. This follows
from the same property for any maximal order (see Pizer [10, Proposition 1.1]), since |O/I| =
Nrd(I)2, and the fact that any submodule of index m in a quadratic module L has determinant
m2 det(L).

The following lemma serves to replace an ideal I with an isomorphic one of different reduced
norm.

Lemma 5. Let I be a left O-ideal of reduced norm N and α an element of I. Then Iγ, where
γ = ᾱ/N , is a left O-ideal of norm qI(α).

Proof. By the multiplicativity of the reduced norm, and Nrd(α) = Nrd(ᾱ), we have

Nrd(Iγ) = Nrd(I)Nrd(γ) = N
Nrd(α)

N2
=

Nrd(α)

N
= qI(α).

Clearly I is a fractional left O-ideal, so it remains to show that Iγ ⊆ O. Since Oα ⊆ I, we
have ᾱ ⊆ Ī, and hence Iᾱ ⊆ IĪ = NO, from which Iγ ⊆ O follows.

3. Preliminary algorithmic results

In this section we provide two algorithmic tools that will be used to solve the quaternion
`-isogeny path problem in § 4. The first algorithm computes prime norm representatives in
ideal classes. The second computes representations of integers by the norm form of a p-extremal
order.

3.1. Computing prime norm representatives in ideal classes

Given a maximal order O and a left O-ideal I, we give a probabilistic algorithm that computes
another left O-ideal J = Iγ in the same class, but with prime norm. Using Lemma 5, this
problem reduces to the problem of finding a prime represented by qI .

Prime norm algorithm. Given a left O-ideal I of norm N , with a Minkowski-reduced basis
{α1, α2, α3, α4}. Generate random elements α =

∑
i xiαi with (x1, x2, x3, x4) in a box [−m,m]4

until finding an element α of I with qI(α) prime, and return I(ᾱ/N).

https://doi.org/10.1112/S1461157014000151 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157014000151


on the quaternion `-isogeny path problem 423

Assuming that numbers represented by qI behave like random numbers, it remains to ensure
that qI([−m,m]4) contains sufficiently many primes to have a high probability of finding one.
If {α1, α2, α3, α4} is a Minkowski-reduced basis, the qI(αi) attain the successive minima, and
we have the bounds

p2 6 16qI(α1)qI(α2)qI(α3)qI(α4) 6 4p2,

where qI(αi) 6 qI(αi+1). For a generic ideal I we expect qI(α4) to be in Õ(
√
p). In the worst

case, qI(α4) is in Õ(p) when I equals an order O containing a subring R with |disc(R)| in
O(log(p)n). Assuming I is generic, we expect to find α with qI(α) in Õ(m2√p). In practice,
we find sufficiently many primes qI(α) for m which grows polynomially in log(p). However to
provably terminate, even under the Generalized Riemann Hypothesis, it may be necessary to
allow m to exceed a function in O( 4

√
p), in which case the output may exceed O(p).

We implemented a prime norm algorithm in Magma [7]. We tested it on ideals of `-power
norms generated via a random walk from a given maximal order. All our computations with
primes of up to 200 bits and random ideals took seconds on an Intel Xeon CPU X5500 processor
with 24 GB RAM running at 2.67 GHz. The norms of the output ideals J were experimentally
only slightly larger than

√
p. The experimental results are given in §A.1.

3.2. Representing integers by special orders

We also consider the problem of representing a sufficiently large positive integer M by the norm
form ofO. Suppose thatO is a p-extremal order, with suborderR+Rj, and letD = disc(R). We
let Φ(x) be a monotone function such that a suitable interval [x, x+Φ(x)] contains sufficiently
many primes, and we assume that M > pΦ(M). If ω is a reduced generator of R (of trace 0
or ±1), then the norm form on R+Rj is of the form

Nrd(α+ βj) = f(x1, y1) + pf(x2, y2),

where α = x1 + y1ω and β = x2 + y2ω, and f(x, y) is a principal form. For (x, y) in [−m,m]2

with m = b
√

Φ(M)/|D|c, we have f(x, y) < Φ(M) and Nrd(βj) < pΦ(M) < M . This gives
the following algorithm on which we build our strong approximation algorithm.

Integer representation. Given an integer M > pΦ(M). Set m = b
√

Φ(M)/|D|c, and choose
(x2, y2) at random in [−m,m]2 until finding a prime r = M−pf(x2, y2) which is split in R and
for which a prime r over r is principal. Let α = x1 +y1ω be a generator for r, set β = x2 +y2ω,
and return α+ βj.

Clearly the output has norm M . We assume that primes have density 1/ log(M) in
the arithmetic progression M − p [0,Φ(M)]. Moreover, we assume that such primes are
equidistributed among primes which are non-split and split in R and, in the latter case, among
each of the h(R) ideal classes of R. Finally, we must assume that elements β = x2 + y2ω give
rise to integers r = M − pNrd(β) with the same primality probabilities as random integers in
the range M −p [0,Φ(M)]. Under such heuristic assumptions, the expected number of random
β to be tested is 2h(R) log(M). Detecting a prime r, solving for a representative prime r over
r, and determination of a principal generator can be done in expected polynomial time by
Cornaccia’s algorithm [5].

Under the heuristic assumptions made above, we can appeal to average distributions among
all arithmetic progressions a− p [0,Φ(M)], for representatives a of (Z/pZ)∗. In the application
that follows, M will be of the form `e or N`e, and we can adapt to failure to find primes in a
particular arithmetic progression sparsely populated with primes by changing e.
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4. Main algorithm

In this section we provide an algorithm to solve the quaternion `-isogeny path problem. We also
sketch a generalization of our approach to build ideal class representatives with powersmooth
norms.

4.1. Overview of the algorithm

We reduce the quaternion `-isogeny problem to a restricted version of the same problem, where
we assume that O is a special p-extremal maximal order with suborder R + Rj as defined in
§ 2.2. We also assume that I is a left O-ideal with reduced norm N , where N is a (large)
prime coprime to `, |disc(R)| and p. A reduction from generic left O-ideals to left O-ideals
with the required norms can be effectively performed with the algorithm of § 3.1. A reduction
from general maximal orders to special p-extremal orders will be provided in § 4.6.

Using Lemma 5, the quaternion `-isogeny path problem is also reduced to an effective strong
approximation theorem in § 4.2. In particular, if the ideal is given by a pair of generators
I = O(N,α), the quaternion `-isogeny path problem is reduced to finding λ ∈ Z coprime to
N and

β ≡ λα mod NO

with Nrd(β) = N`e for some positive integer e.
Sections 4.3–4.5 describe the core of our approach to solve this problem. Since the index of

R+Rj in O is coprime to N , we have an isomorphism

R+Rj

N(R+Rj)
∼=
O
NO

.

We can therefore choose representative elements in R + Rj as convenient to simplify the
algorithm. Since the index [O : R + Rj] = |disc(R)| is assumed to be small (in O(log(p)2)
under the Generalized Riemann Hypothesis), the size of the output might be slightly larger, but
the distinction is asymptotically insignificant. A direct approach to the strong approximation
problem to solve for β seems daunting, so instead we reduce to the following steps:

(1) solve for a random γ ∈ O of reduced norm N`e0 ;
(2) solve for [µ] in (O/NO)∗ such that (Oγ/NO)[µ] = I/NO;
(3) solve for the strong approximation of [µ] (modulo N) by µ in O of reduced norm `e1 .

Here we denote the element µ+NO of O/NO by [µ] to distinguish it from the conjugate µ̄ of
µ. The output β = γµ is then an element of I with reduced norm N`e where e = e0 + e1. The
element γ can be constructed with the algorithm of § 3.2. We solve for [µ] by linear algebra
in § 4.3, showing that we can take [µ] in (R/NR)∗[j] ⊆ (O/NO)∗. The core of the algorithm
is the final specialized strong approximation algorithm of § 4.4, taking [µ] in (R/NR)∗[j] and
constructing the lifting µ of norm `e. The whole algorithm for p-extremal orders is analyzed
in § 4.5.

As mentioned above, we finally remove the p-extremal condition in § 4.6 by providing a
reduction from the general case to the case of p-extremal orders, and we generalize our approach
to compute ideal representatives of smooth or powersmooth norms in § 4.7.

4.2. Effective strong approximation

Let B := Bp,∞ be the quaternion algebra ramified at p and ∞. Let AQ be the rational adèle
ring, defined as the restricted product of Qv with respect to Zv, let ` 6= p be a ‘small’ prime,
and let AQ,` be the restricted product over all v 6= `. Let AB = B ⊗Q AQ be the adèle
ring of B, and AB,` = B ⊗ AQ,`. Then B embeds diagonally in AB and is discrete in AB

(see [3, § 14]). The strong approximation theorem (see [3, § 15]) asserts that B is dense in AB,`

(see also Vignéras [11, Théorème Fondamental 1.4, p. 61]).
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The strong approximation theorem can be viewed as a strong version of the Chinese
remainder theorem. We apply this to find an element of a left O-ideal I which generates
I almost everywhere. Each such ideal is known to be generated by two elements N and α,
where we may take N = Nrd(I) for the first generator. This follows since locally Ov = O⊗Zv

is a left principal ideal ring, hence so is the quotient O/NO.
If I = O(N,α) := ON + Oα, the approximation theorem implies that we can find β in I

such that
β ≡ α mod NO

and Nrd(β) = N`e for some positive integer e, from which I = O(N,α) = O(N, β). By
Lemma 5, an effective version of this strong approximation theorem is sufficient to solve
the quaternion `-isogeny path problem. In particular, since β is in I, the ideal Iβ̄/N is an
isomorphic ideal of norm `e.

Similarly, solving for
β ≡ λα mod NO,

with λ ∈ Z coprime to N such that we still have I = O(N, β), is also sufficient to solve the
quaternion `-isogeny path problem. We will focus on this relaxed effective strong approximation
theorem in the next subsections.

4.3. Isomorphism of O/NO-ideals

In this section let I be a left O-ideal of prime norm N 6= p, and let γ be an arbitrary element
of O of norm NM , where gcd(N,M) = 1. Since N is large, we can assume that it does not
divide the index [O : R+Rj], hence we have equalities of rings

O/NO = (R+Rj)/N(R+Rj) ∼= M2(Z/NZ).

We denote by [α] the class of an element α in O/NO (as distinct from its conjugate ᾱ).
We note that Oγ/NO and I/NO are proper non-zero left O/NO-ideals. The following

explicit classification of such ideals, in M2(Z/NZ), will let us construct an explicit isomorphism
between these ideals.

Lemma 6. Let N be a prime and A = M2(Z/NZ). There exists a bijection

S : P1(Z/NZ)× P1(Z/NZ) −→ {γ ∈ A\{0} : det(γ) = 0}
(Z/NZ)∗

,

given by

S((u : v), (x : y)) =

(
ux uy

vx vy

)
.

Under this correspondence, the set of proper non-trivial left A-ideals is in bijection with the
set

{P1(Z/NZ)× (x : y) : (x : y) ∈ P1(Z/NZ)},

and the right action of A∗/(Z/NZ)∗ = PGL2(Z/NZ) on left A-ideals is transitive and induced
by the natural (transpose) action on P1(Z/NZ).

Proof. The non-zero matrices of determinant zero, modulo (Z/NZ)∗, determine a
hypersurface ad = bc, which is the image of P1 × P1 by the Segre embedding in P3

(= (A\{0})/(Z/NZ)∗). It is easily verified that left and right multiplication induce the standard
and transpose multiplication on the first and second factors of P1 × P1, respectively, under
this isomorphism, from which the result follows.
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Using an explicit isomorphism O/NO ∼= M2(Z/NZ), by this lemma we can find [µ] in
(O/NO)∗ such that (Oγ/NO)[µ] = I/NO, using linear algebra over Z/NZ.

In § 4.4 we require an input [µ] which is a unit in Rj/NO. Observing that [j] is a unit, we
see that such units form a coset of (R/NR)∗:

(O/NO)∗ ∩Rj/NO = (R/NR)∗[j].

We note that (R/NR)∗ acts on the N+1 proper non-trivial left O-ideals, with kernel (Z/NZ)∗.
By hypothesis, R is a subring of small discriminant in which N is not ramified. If N is inert
in R, then the N + 1 ideals form one orbit. Otherwise, if N is split, there is one orbit of size
N − 1 and two fixed points Op1/NO and Op2/NO, where p1 and p2 are the prime ideals of
R over N . With overwhelming probability, I/NO and Oγ/NO will not be such fixed points,
and so we can solve for [µ] in (R/NR)∗[j]. In the event of failure, we can select a new γ or N .

4.4. Approximating elements of (R/NR)∗[j] by `-power norm representatives

In this section we assume that ` is a quadratic non-residue modulo N . Let also ω be a generator
of R of minimal norm, either 1, 2, or (1 + q)/4, for q a prime congruent to 3 modulo 4. We
now motivate the restriction to elements of (R/NR)∗[j] in the previous section.

We suppose that we are given as input a lift µ0 = x0 + y0ω + (z0 + w0ω)j of an arbitrary
element of O/NO to R+Rj. The relaxed approximation problem is to search for λ in Z and
µ1 = x1 + y1ω + (z1 + w1ω)j such that µ = λµ0 +Nµ1 satisfies the norm equation

Nrd(µ) = f(λx0 +Nx1, λy0 +Ny1) + p f(λz0 +Nz1, λw0 +Nw1) = `e,

for some e ∈ N, where f(x, y) = Nrd(x+ yω) is a principal binary quadratic form of
discriminant D as in Lemma 1. The key idea to solve this norm equation, as used in [9]
to cryptanalyze the other hash function of Charles, Goren and Lauter, is that it simplifies
considerably when x0 = y0 = 0:

Nrd(µ) = N2f(x1, y1) + p f(λz0 +Nz1, λw0 +Nw1) = `e. (4.1)

The simple algorithm we now describe to solve this equation justifies the choice of [µ] ∈
(R/NR)∗[j] in § 4.3.

To construct µ, given [µ] ∈ (R/NR)∗[j], we consider a first lift µ0 = (z0 + w0ω)j to Rj as
above, and find λ in Z and µ1 = (x1 + y1ω) + (z1 +w1ω)j in R+Rj satisfying the simplified
equation (4.1). This equation modulo N gives λ2p f(z0, w0) = `e mod N, and, since ` is a
quadratic non-residue modulo N , we choose the parity of e depending on whether p f(z0, w0)
is a quadratic residue modulo N or not, and solve for a square root modulo N to find λ, in
0 < λ < N .

Now for fixed z0, w0, and λ, equation (4.1) implies a linear equation in z1 and w1:

2λpL((z0, w0), (z1, w1)) =
`e − λ2pf(z0, w0)

N
mod N, (4.2)

where L is the bilinear polynomial

L((z0, w0), (z1, w1)) = 〈z0 + w0ω, z1 + w1ω〉 = 2z0z1 + Trd(ω)(z0w1 + w0z1) + 2Nrd(ω)w0w1.

Since N is a large prime, such that gcd(x0w0|D|p,N) = 1, there are exactly N solutions
(z1, w1) to the linear equation (4.2). We choose a random solution satisfying

|λz0 +Nz1| < N2 and |λw0 +Nw1| < N2,

and equation (4.1) now leads to a problem of representation of an integer by a binary quadratic
form:

f(x1, y1) = r :=
`e − pf(λz0 +Nz1, λw0 +Nw1)

N2
. (4.3)
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We assume that e was chosen sufficiently large so that r is positive. If r (or rq), modulo a
smooth square integer factor, is prime, splits and is a norm in R, Cornaccia’s algorithm [5]
can efficiently solve this equation, or determine that no solution exists. In the latter case, we
repeat with a new value of (z1, w1). Assuming the values of r behave as random values around
N4|D|p, we expect to choose log(N4|D|p)h(D) values before finding a solution.

In practice, we begin with e the minimal possible value having the correct parity, then we
progressively increase it if no solution has been found. For N in the range Õ(

√
p), we expect

the size of e to satisfy e ∼ log`(N
4|D|p) ∼ 3 log`(p).

4.5. Algorithm analysis and experimental results

We summarize our algorithm to compute an `-power norm representative of a left O-ideal,
where O is a special p-extremal maximal order.

Theorem 7. Let O be a maximal order in a quaternion algebra Bp,∞ and let ` be a small
prime. There exists a probabilistic algorithm, which takes as input a left O-ideal and outputs
an isomorphic left O-ideal of `-power reduced norm.

Under the most optimistic heuristic assumptions on randomness of representations of integers
by quadratic forms and uniform distributions of primes, this algorithm is expected to run in
polynomial time and to produce ideals of norm `e, where

e ∼ log`(NpΦ(p)|D|) + log`(N
4|D|p)− log`N

2,

where the three terms respectively account for the norms of γ, µ and N−1. Assuming that
log`(N) ∼ 1

2 log`(p) and that in practice Φ(p) ∼ log(p)n suffices, this leads to

e ∼ 7
2 log`(p).

We implemented the algorithms of this paper in Magma [7]. We first tested the algorithm
of § 3.2 to compute N times `-power norm elements in O with ` ∈ {2, 3}, for random primes
p of sizes up to 200 bits and for N values obtained after applying the algorithm of § 3.1 on an
ideal generated via a random walk from O. The norm of the outputs was close to the expected
values.

We then tested the algorithm of § 4.4 for ` ∈ {2, 3}, for random p values of sizes up to 200
bits, for N values obtained after applying the algorithm of § 3.1 on an ideal generated via a
random walk from O, and for µ0 = (z0 + w0ω)j with randomly chosen z0, w0 ∈ Z/NZ not
both equal to zero. The exponents of the norms of the quaternions computed were close to the
expected value 3 log` p.

We finally tested the overall algorithm of § 4 for ` ∈ {2, 3}, for random p values of sizes up
to 200 bits, and for ideals I generated via a random walk from O. The `-valuation of the norm
of the ideals computed was close to the expected value 7

2 log` p.
All computations were carried out on an Intel Xeon CPU X5500 processor with 24 GB

RAM running at 2.67 GHz. The algorithm of § 4.4 succeeded in less than 100 s for all 200 bit
primes, and the overall algorithm of § 4 terminated in less than 250 s for primes in this range.
Additional experimental results are provided in the Appendix.

4.6. Generalization to arbitrary orders

We now describe how to remove the condition that O is one of the special orders defined in
§ 2.2. First we encode the relation between two maximal orders embedded in Bp,∞ in terms of
an associated ideal.
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Lemma 8. Suppose that O1 and O2 are given maximal orders in Bp,∞. Then the Eichler
order O1 ∩ O2 has the same index in each of O1 and O2, which we denote M , and the set

I(O1,O2) = {α ∈ Bp,∞ | αO2ᾱ ⊆MO1}

is a left O1-ideal and right O2-ideal of reduced norm M . Conversely, if I is a left O1-ideal with
right order O2, such that I 6⊆ nO1 for any n > 1, then I = I(O1,O2).

Proof. The determinant of the norm form of any maximal order O is p2, and for any sub-
lattice L ⊂ O of index M , the reduced norm form on L has determinant M2 det(O). This
establishes the well-known result that the index of an Eichler order in any maximal order is
an invariant, called its level.

It is clear by construction that I(O1,O2) is a left O1-module and a right O2-module. Locally
at any prime q, we may assume O1 and O2 are Zq-orders such that O2 = α−1O1α, for some α
in O1 hence also in O2. It follows that we have an inclusion αO2 = O1α ⊆ I(O1,O2). However,
removing any integer factors (in the center), the reduced norm of a minimal α must equal the
level MZq, which implies equality. The global result follows from the local–global principle.

Conversely, since any left O1-ideal I is locally principal at each prime q, one can find locally α
such that I = O1α; the right order of I is then O2 = α−1O1α. By hypothesis α is not divisible
by any integer and we conclude that the Eichler order has level Nrd(α) = Nrd(I) = MZq.
From the above construction in terms of a local generator, we conclude I = I(O1,O2).

Theorem 9. Let O1 and O2 be maximal orders in a quaternion algebra Bp,∞ and let ` be a
small prime. Given an algorithm which takes as input a left O1-ideal and outputs an equivalent
left O1-ideal of `-power reduced norm, there exists an algorithm with the same complexity, up
to a constant of size polynomial in the input size of O1 and O2, which takes as input a left
O2-ideal and outputs an equivalent left O2-ideal of `-power reduced norm.

Proof. Assume we are given two orders O1, O2 and a left O2-ideal J , and set I = I(O1,O2)
as in Lemma 8. The ideal I may be of arbitrarily large norm, but is bounded by something
polynomial in the specification of O1 and O2 in terms of a basis for Bp,∞.

Supposing that we have an algorithm for O1, we find representative left O1-ideals for I and
IJ such that I1 = Iγ̄1/Nrd(I) with γ1 in I, and I2 = IJγ̄2/Nrd(IJ) with γ2 in IJ , where

Nrd(γ1) = Nrd(I)`e1 and Nrd(γ2) = Nrd(IJ)`e2 .

It follows that γ = γ̄1γ2/Nrd(I) is an element of J with reduced norm Nrd(γ) = Nrd(J)`e1+e2 ,
and hence Jγ̄/Nrd(J) is of reduced norm `e1+e2 .

This provides a reduction of the general case to the case of special p-extremal orders, at the
cost of two applications of the algorithm of § 4, and a larger power of `.

4.7. Generalization to powersmooth norms

We recall that a number s =
∏
`eii is S-powersmooth if `eii < S. Our algorithms can be easily

modified to construct ideal representatives of powersmooth norms. Using the approximations
as before, the norm should be of size close to p7/2. Since the product of all maximal powers of
a prime lower than S can be approximated by SS/ log S , an adaptation of our algorithms will
allow us to compute S-powersmooth representatives of left ideal classes of O, with S ≈ 7

2 log p.

5. Conclusion and future work

In this paper we have provided a probabilistic algorithm to solve a quaternion ideal analog
of the path problem in supersingular `-isogeny graphs. The algorithm runs in expected
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polynomial time subject to heuristics on expected distributions of primes, and it is efficient in
practice.

Following Deuring [6], there is a one-to-one correspondence between supersingular elliptic
curves modulo p, up to Galois conjugacy, and isomorphism classes of maximal orders in
the quaternion algebra Bp,∞. By identifying isogeny kernels with powersmooth ideals in
the quaternion algebra graphs, we expect our techniques to lead to both partial attacks
on Charles, Goren and Lauter’s isogeny based hash function (when the initial curve has
extremal endomorphism ring), and to security reductions to the problem of computing the
endomorphism ring of a supersingular elliptic curve. Similarly, we expect our results to lead
to a constructive version of Deuring’s correspondence from maximal orders in Bp,∞ to their
corresponding elements in the category of supersingular elliptic curves.

Appendix. Experimental results

In our experiments, the value of m and the function Φ appearing in the specification of our
algorithms were fixed to a priori minimal values based on probabilistic arguments on the
distribution of primes, then increased when needed.
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Figure A.1. Experimental results for the algorithm of § 3.1 (with m of the expected size): logarithm
of the output norm qI(α) and cubic root of running time with respect to log p.
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Figure A.2. Experimental results for computing elements of norms N`e with the algorithm of § 3.2,
for various p values with ` = 2 (left) and ` = 3 (right): difference between the minimal exponent e
needed and a prediction based on probabilistic arguments.
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Figure A.3. Experimental results for computing elements of norms `e with the algorithm of § 3.2,
for ` ∈ {2, 3, 5, 7} and various p values: difference between the minimal exponent e needed and a
prediction based on probabilistic arguments.
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Figure A.4. Size of `-power norm quaternions obtained with the algorithm of § 4.4 for various p
values with ` = 2 (left) and ` = 3 (right). The green line corresponds to the approximated values
3 log` p.

A.1. Prime norm ideals

We show experimental results on the prime norm algorithm of § 3.1 in Figure A.1. The norms
of the ideals constructed seem to be slightly larger than p1/2 and the computation time cubic
in log(p).
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Figure A.5. Time taken by the algorithm of § 4.4 for various p values, with ` = 2 (left) and
` = 3 (right).
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Figure A.7. Time taken by the algorithm of § 4 for various p values with ` = 2 (left) and
` = 3 (right).
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A.2. Quaternion elements with particular norms

Experimental results on the algorithm of § 3.2 are shown in Figures A.2 and A.3, for computing
elements of norms N`e or `e respectively, for some e. The results show the difference between
the minimal exponent e needed and a prediction based on probabilistic arguments. All
computations took less than 1 second.

A.3. Ideals with `-power norms

Experimental results on the algorithms of § 4 are shown in Figures A.4–A.7.
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