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Abstract

Using an elementary counting procedure on biquadratic polynomials over Zp it is shown that the
probability distribution of odd, unramified rational primes according to decomposition type in a fixed
dihedral numberfield is identical to the probability distribution of separable quartic polynomials
(modp) whose roots generate numberfields with normal closure having Galois group isomorphic to
D4, as p -» oo. This verifies a conjecture about a converse to the Tschebotarev density theorem.
Further evidence in support of this conjecture is provided in quadratic and cubic numberfields.

1980 Mathematics subject classification (Amer. Math. Soc): 12 A 30.

Let P be the set of prime ideals in a numberfield F which are unramified in a
fixed extension K of F. That is, p e P if the ideal (p) generated by p has no
repeated factors in K. The factorization of (p) can be represented by a partition
of n, the degree of K over F, in the following way: we write

if (p) factorizes into a product of ex prime ideals of degree one, e2 prime ideals of
degree two,..., en prime ideals of degree n in K. Clearly

n

L ie, = n.
/ = i

We may also associate a partition of n with each element of G, the Galois
group of the normal closure of K over F: regard G as a permutation group on the
roots of the minimal polynomial of K over F, that is, G < Sn. Then for g e G we
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288 C. E. van der Ploeg

write

if g is a product of ex unit cycles, e2 transpositions,..., en cycles of length n in
lowest terms.

For a given partition d0 of n let m be the number of permutations in G such
that dG{g) = d0 and let S be the set of prime ideals in P such that dK(p) = d0

(that is, with 'decomposition type' d0). Then the Tschebotarev generalization of
the Frobenius density theorem states that

lim

where N(p) denotes the norm of p in F and g(t) remains bounded when t -» 1 + .
That is, 5 has 'Dirichlet density' m/n. See Hasse (1930).

Now suppose that F = Q and that K is a non-normal quartic field generated
by a root of an irreducible biquadratic polynomial

That is, K is a 'dihedral numberfield', and G is isomorphic to Z)4, the dihedral
group of order 8. So in this case Tschebotarev's result takes the form

if rfo = (4,0 ,0 ,0) ,

i if do = (2 ,1 ,0 ,0) ,

if rfo = (0 ,2 ,0 ,0) ,

if dQ = (0 ,0 ,0 ,1) ,

0 otherwise.

The notion of decomposition type being represented by a partition of n can
also be applied to irreducible polynomials of degree n over Q in the following
way: suppose that p is a rational prime which is unramified in the numberfield K
and let / be the minimal polynomial of K over Q. Then we write

dp(f) = (e1,e2,...,en)

if / factors (mod p) into ex linear factors, e2 irreducible quadratic factors, and so
on.

It is well known that if p is odd then dp(t) = dK(p), see Mann (1955). This
motivates the following conjecture:

The probability distribution of odd rational primes which are unramified
in a fixed numberfield K of degree n over Q is identical to the probability
distribution of separable polynomials of degree n (mod/)) whose roots
generate numberfields with normal closure having Galois group isomorphic
to the Galois group of the normal closure of K over Q, as p -* oo. In both
cases the distribution is classified according to decomposition type.
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The difficulty in proving this result lies with the classification of polynomials
which generate numberfields with fixed Galois group. However, it is shown in van
der Ploeg (1987) that all quartic fields whose normal closure has Galois group
isomorphic to D4 are generated by roots of irreducible biquadratic polynomials of
the form x 4 + ax2 + b, a, b e Z, and that all polynomials of this type generate
fields whose normal closure has Galois group isomorphic to Z>4. So in the case
that G = Z>4 the conjecture becomes

THEOREM. Let K be a fixed dihedral numberfield and consider the probability
distribution according to decomposition type of odd rational primes which are
unramified in K. Then this is identical to the probability distribution of separable
quartic polynomials (mod p) whose roots generate numberfields with normal closure
having Galois group isomorphic to Z>4, asp -* oo.

PROOF. In view of the remarks preceding the theorem it is sufficient to consider
only separable biquadratic polynomials (modp). In order to prove the theorem
we need the following lemma.

LEMMA. Of the p2 polynomials of the form

f(x) = x4 + ax2 + b (mod/?), U . J E Z ,

2/j — l are inseparable. The distribution of decomposition types amongst the remain-
ing (p — I ) 2 separable polynomials is given by:

Number of polynomials Decomposition type
(p - 1XP - 3)/8 (4,0,0,0)

( /> - l ) 2 /4 (2,1,0,0)
(p - l)(3/> - 5)/8 (0,2,0,0)
(/>-!)(/> + l ) / 4 (0,0,0,1)

PROOF. Inseparability occurs when b = 0 (modp) or when f(x) = (JC2 — c)2

(mod/>). So there are 2p - 1 distinct inseparable biquadratic polynomials
(modp). Assuming / to be separable, two cases arise.

Case 1. f(x) = (x2 - c ) (x 2 - d) (modp), c*d,c,d£0 (modp).

(i) If (c/p) = (d/p) = 1 then dp(f) = (4,0,0,0). Now if c = r2 (modp) and
d = s2 (mod p) we may assume without loss of generality 1 < r < (p — l) /2 and
1 < s < (p - l)/2 (for if 1 < X< (p - l) /2 then (p + l) /2 < -X < p - 1).
So the number of distinct / with decomposition type (4,0,0,0) is the number of
ways that two different integers can be chosen from the range [!,(/> — 1)/2J.
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That is

- 3)/8.

(ii) If (c/p) = 1 and (d/p) = -1 then dp(f) = (2,1,0,0). Since c and d may
each take (p - l ) /2 different values there are (p - l )2 /4 such polynomials in
this case.

(iii) If (c/p) = (d/p) = -1 then dp(f) = (0,2,0,0). The number of such
polynomials is the number of ways of choosing two different quadratic non-re-
sidues (mod p). That is(/> — l)(/> — 3)/8.

Case 2. f(x) = (x2 + ex + d)(x2 - ex + d) (modp), c,d&0 (modp). In

this case / must have an even number of irreducible factors because the roots of
each quadratic factor have the same modulus. So we cannot have decomposition
type (2,1,0,0). Furthermore, if / splits completely it has already been counted in
Case 1, so it only remains to enumerate the case that / has two irreducible
quadratic factors.

Let g(x) = x2 + ex + d and h(x) = x2 - ex + d. Denote by A the set of all
irreducible quadratic polynomials over Zp with non-zero coefficient of x and
divide A into two disjoint subsets G and H according as the coefficient of x lies
in the ranges [l,(p — l)/2] or [(p + l)/2, p — 1] respectively. Since we may
assume without loss of generality that g e G and h e H and since G and H
have the same cardinahty, the number of biquadratic polynomials which are the
product of two distinct irreducible quadratic factors is exactly one half of the
cardinality of A.

Now suppose that g(x) = (x - xo)(x — xx) (modp) where 0 < x0 < xl

</> - 1. There are p(p + l ) /2 quadratics of this form and so there are
p2 — p(p + l ) /2 = p(p — l ) /2 irreducible quadratics of the form

x2 + ex + d (modp), d£0(modp).

But this includes those where c = 0 (mod p), which have already been counted in
case 1. There are (p - l ) /2 of these, and so the cardinahty of A is p(p - l) /2
- (p - l ) /2 = (p - l)2/2. Hence we have (p - l )2 /4 to add to the number in
case 1 of biquadratic polynomials with decomposition type (0,2,0,0). Hence
there are (p - \\p - 3)/8 + (p - l )2 /4 = (p - l)(3/7 - 5)/8 biquadratic
polynomials which split into two distinct irreducible quadratic factors (mod p).

Finally we may calculate the number of irreducible biquadratic polynomials
(mod p) by subtraction, as

(p - \f-{p - \){p - 3)/8 -(p - l)2/4

- ( / > - l ) ( 3 / > - 5 ) / 8 = ( />-! ) ( />-
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Let us now define a probability distribution over the set Bp of separable
biquadratic polynomials (mod p) as p -* oo as

where | • | denotes cardinality. Then by the lemma

'I if do= (4,0,0,0),

i if do= (2,1,0,0),

= {l if do = (0,2,0,0),

i if rfo = (0,0,0,1),

10 otherwise.

The proof of the theorem now follows from Tschebotarev's result in dihedral
numberfields, on noting that the Dirichlet density may be interpreted as a
probability density. That is,

lim
_/ , , x , x .. \p e S:p < r |

= P(dK(p) = da) = Um f4- j - ^ 4 - 7
r^oo\p^IK:p<r\

where /^ denotes the set of odd rational primes which are unramified in K, see
Lagarias and Odlyzko (1977).

We conclude with a discussion of quadratic and cubic fields, whose Galois
groups are readily determined by their minimal polynomials. This provides
further evidence in support of the conjecture.

For quadratic fields the minimal polynomial is f(x) = x2 + ax + b where
D = a2 — 4b is not a square in Z. There are p such polynomials for which D = 0
(mod/*) since inseparability occurs only when f{x) = (x — c)2 (mod/?). So
consider the factorization of f{x) modulo odd primes p such that D # 0
(mod p). Since there are jp(p — 1) distinct polynomials such that

f(x) = (x-c)(x-d) (modp)
forced (modp), exactly one half of the separable polynomials are irreducible,
and the other half split into two distinct linear factors. Hence

n if j 0 = (2,0),

P(d,(f)-d0)- 1 if<fo=(0,l),
VO otherwise.

This verifies the conjecture for the quadratic case, since G — Z 2.
For cubic fields the minimal polynomial may be written in reduced form as

f(x) = x3 + ax + b with discriminant D = -21b2 — 4a3. It is well known that
G = Z3 or S3 according as D is or is not a square in Z. We verify the conjecture
in both cases.
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Results on the factorization of this type of polynomial have been known for
some time. Skolem (1941) shows that the number of cubics which split into a
given decomposition type (mod p) depends on the residue class of p (mod 3). He
assumes a # 0 (mod p) and his results are summarized in the following table:

Table 1

p = I(mod3)

p = 2 (mod 3)

Inseparable

p-l

p-l

dQ = (0,0,1)

3

(p + l)(p — 1)
3

4,-a.i.o)

P(P - 1)
2

(p - 2)(p - 1)
2

<*o = (3,0,0)

(/> - 4)(p - 1)
6

(p - 2)(p - 1)
6

These results provide all the information we need for the distribution of
decomposition types of cubics (modp), except for the case a = 0 (modp). For
p > 3 there are p - 1 separable f(x) such that f(x) = x3 + b (modp). If p = 2
(mod 3) there are p — 1 cubic residues (mod p), so all separable f(x) of this form
split completely. If p = 1 (mod3) there are j(p — 1) cubic residues (modp), so
only ^ of these separable cubics split completely. The other §(/> — 1) cubics
remain irreducible, since (D/p) = (-3/p) = 1 in this case.

Now suppose G - Z3, so that D is a square in Z. Then f(x) either remains
irreducible or splits completely (mod/?). By the results above it is clear that the
number of separable, normal cubics x3 + ax + b which fall into each category is
given by the following table:

P

P

Table 2

= I(mod3)

= 2 (mod 3)

d0

KP

KP

= (0,0,1)

- 1 ) ( ^ +1)

- 1 ) ( ^ +1)

d0

UP

UP

= (3,0,0)

- l)(/> - 2)

- !)(/> + 4)

It follows that

i if J o = (3,0,0),

[0 otherwise,

and the conjecture is verified for the case G ~ Z 3.
Finally suppose that G = 53. In this case the quadratic character of D can be

+ 1 or -1 and all decomposition types of f(x) (modp) can occur. Combining
Table 1 with the results for a = 0 (modp) and defining the distribution in the
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usual way yields our final verification of the conjecture, that is

i if do= (3,0,0),

1 if do = (1,1,0),

| ifdQ = (0,0,1),

0 otherwise.
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