
107

Sixth Meeting, April 14, 1893.

JOHN ALISON, Esq., M.A., F.R.S.E., President, in the Chair.

Action at a distance, and the transmission of stress by
isotropic elastic solid media.

By 0. CHREE, M.A.

INTRODUCTION.

§ 1. The mutual action of two electrified bodies was regarded by
Maxwell as transmitted by a medium. According to him the stress
in the medium* consists of a " tension like a rope " along the lines
of electrical force whose intensity per unit of area is R2/8jr, where R is
the resultant electric intensity, and of a pressure numerically equal
to this in all orthogonal directions. Maxwell's remarks are some-
what vague but his notation is strongly suggestive of an elastic solid
medium. I f has, however, been pointed out by Minchinf that
Maxwell's stress system would not in an ordinary elastic solid give
origin to strains consistent with the " equations of compatibility "
which the theory of elastic solids supplies. Considerable interest
still attaches to the theory of an elastic solid medium propagating
stresses equivalent to the action between distant bodies of forces
varying inversely as the square of the distance. For in the first
place, it has been pointed out that the stress system given by Max-
well does not constitute a unique solution} of his equations; and, in
the second place, it has been suggested that some medium must
exist for the transmission of gravitational forces. The statical
problem of the propagation of gravitational forces by an isotropic
elastic medium has been treated by Minchin.g His treatment how-

* Electricity and Magnetism, 3rd edition, Art. 106.

t Treatise on Statics, vol. II . , 3rd edition, pp. 451-3.

X Minchin I.e., or Maxwell's Electricity and Magnetism, 3rd edition, Art. 110
footnote.

§ Minchin I.e., pp. 454-8.
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ever neglects a certain surface condition. I have thus thought it
worth while to consider the problem independently, employing the
ordinary surface conditions. The first part of the paper is devoted
more especially to the electrostatic problem, but the elastic solid
problem is essentially the same throughout.

§ 2. The ordinary "action at a distance" theory regards a charge
of electricity as a very thin superficial layer which repels a charge
of the same sign and attracts one of opposite sign with a force
varying inversely as the square of the distance. In interpreting this
as an elastic solid problem the most obvious plan is to regard the
layer as a thin shell of elastic material containing and surrounded
by other elastic material, the layer being the only material exercis-
ing what we may term " gravitational forces ". Supposing initially
there are no gravitational forces and no strains anywhere in the
medium, the endowment of the layer with the gravitational forces
gives origin to a system of stresses required to keep the medium in
equilibrium.- These stresses reversed in sign would be those which
a theory such as Maxwell's would substitute for the action at a dis-
tance of the thin layer. In the electrostatic problem the layer
must be supposed extremely thin while at the same time the surface
density is finite. In order to avoid the risk of unduly limiting the
problem the layer is regarded here as of a different elastic material
from that either inside or outside it. It is assumed, however, that
the material of the layer is not wholly incompressible but satisfies
the ordinary elastic solid equations, and that its elastic constants
are neither infinitely great nor infinitely small compared to those of
an adjacent medium. The assumption is also made that all the
media are isotropic.

§ 3. In all the cases treated here the applied forces, and so the
strains and stresses, are functions only of the distance r from a fixed
point. The displacement u at every point is along the radius vector,
and the dilatation A is given by

A = ̂  + ?!l (1).
dr r

In an isotropic medium whose density is p and elastic constants
m, n, in the notation of Thomson and Tait's Natural Philosophy, the
bodily equations of equilibrium reduce in such a case to the one
equation

https://doi.org/10.1017/S001309150003128X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150003128X


109

^ - + P*l = 0 (2),
ar clr

where V, supposed a function of r only, is the potential of the
bodily forces.

In the most general case considered here V is of the type

where V and V are constants, and the complete solution of (2) is

A = A - _ ^ — f W + VV-1) (3),
m + n'

where A is an arbitrary constant.
Substituting for A in (1) we deduce as the complete value of u

P (4),
m + n

where B is a second arbitrary constant.
The stress system consists of a principal stress along r and two

other principal stresses perpendicular to r. The latter two are equal
and may be supposed to act along any two mutually orthogonal
directions in the plane perpendicular to r. Employing the notation
introduced by Professor Pearson,* we shall denote the stress along
the radius by rr, and employ 66 for the stress in any perpendicular
direction, or what we may call the transverse stress.

The relations between the stresses and strains are

r7=(m-n)A + 2n~, )

i \ <«>•
66 = (in - w)A + 1n~ )

The ordinary three surface conditions satisfied by the stresses
reduce to one, viz :

rr = radial surf ace force per unit of surf ace ... (6).

If the surface be " free ", or acted on by no forces, then rr must
vanish over it. At a common surface of two media rr must be
continuous. This condition appears to be considered unnecessary by
Prof. Minchin. In place of it he omits what is equivalent to the con-
stant A in (4), on the ground that the corresponding term contributes

* Todhunter and Pearson's " History of Elasticity ", Vol. I., p. 321.

8 Vol. 11
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nothing to the "gravitative action" on the element of the medium
(I.e., p. 454). A further obvious condition at a common surface of
two media is the continuity of the displacements, in this case of the
radial displacement.

§ 4. When we attempt to picture to ourselves the state of
matters close to the interface of two different media we encounter
a difficulty which has occurred to several writers. Regarding the
media as composed of molecules, the molecules of one of the media
when close to the interface may be acted on by the molecules of the
other medium, even supposing there is no mixing of the media.
Thus it seems not unlikely there may be a narrow debateable
ground wherein the relations between stress and strain show a
gradual transition from the equations that hold inside the one
medium to those that hold inside the other. The thickness of this
transition zone must probably be a very small quantity, and in
ordinary elastic solid problems its existence or nonexistence may
be of little importance. In such applications, however, as to a
hypothetical electrostatic medium, in which the gravitating layer
is supposed extremely thin, the possibility of such a " modified
action" ought to be present to the mind of the reader. The
modified action, if appreciable, might affect the entire nature of
the solution, so far at least as concerns the strains and stresses
in the layer itself. While such a possibility may affect our attitude
towards the solution it does not justify our dispensing with elastic
solid surface conditions while applying elastic solid internal equa-
tions. As Professor Minchin employs the same elastic constants
for space outside and inside the gravitating body there would appear
no reason for supposing any modified action in the cases he treats,
and thus his neglect of the continuity in the value of the radial
stress must have some other explanation. This neglect leads
Professor Minchin to the conclusion that " the stress of the ether
is discontinuous at the surface of the body " (I.e., p. 455). This may
be true though it presents serious difficulties, but it does not flow
from the ordinary elastic solid theory.

§ 5. Before passing to our special problems we may employ the
fundamental equations already given to show, in an elementary
way, that Maxwell's stresses can not exist in any ordinary isotropic
elastic medium.
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The electrostatic force R in the air outside a spherical surface,
over which a charge Q is uniformly distributed, is given by R = Q/r2,
and so Maxwell's radial stress would be Q-/(8irr4). But supposing
no bodily forces to act we find from (3), (4), and (5),

rr = (in — J») A — 4wr~3B.

If the medium extend to infinity A vanishes, but in any case
the term involving the negative power of r depends on r~s and not
on r~* as Maxwell's theory requires.

ELECTROSTATIC MEDIUM, SINGLE LAYER.

§ 6. Our first problem deals with three isotropic media, the
surfaces separating which are concentric spheres. The inmost
material is a core of radius e whose elastic constants are m, n;
while the outmost material extends from r = c to r = oo and has
elastic constants m2, «2. Between these is a layer of material whose
elastic constants are mlt % and density p, the particles of which repel
one another with a force varying inversely as the square of the
distance. The media are supposed in an unstrained state before
the gravitational force commences to aot, and our object is to find
the strains and stresses in the state of final equilibrium under the
action of the gravitational forces.

No bodily forces exist except in the layer where they answer to
a potential

V = ̂ ^ + 2^ - ' ) (7).

The expressions for the dilatation and displacement may be
derived from (3) and (4). Thus, employing A, A,, B,, 11 as
arbitrary constants, we have

in the core

in the layer

«i=-5*-- '• (ir' + ^ + lrA. + r-^

outside the layer
A = 0 [ (10).
•«., = ?•—B.,
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The suffixes v 2 distinguish quantities referring to the layer
and external medium respectively from those referring to the core.

The strains must not be infinite at the origin and should vanish
at infinity, so no negative powers of r are admitted in (8) and no
positive powers in (10). From (5) we find for the radial stresses
in the three media

^ = (m-jM)A ... ... ... ... (11),

+ (»»1-ln1)A]-4f-«n1B1, ... (12),

(13).

The surface conditions are the continuity of the displacement
and radial stress, The equations embodying these conditions are
easily written down, and their solution may be effected without
serious difficulty on the lines adopted in treating the more com-
plicated problem of § 8. I t is thus sufficient to record the results
we require without giving the algebraical work. Suppose then
for shortness that

c3

—(3OT - n + 4«1)(3m1 - rij + 4»2)

-l(n1-n2){3rn1-nl-(3m-n)} = T> ... (14),

and merely record the values of A and B2, viz.,

A.D = 2,np\c - e)2[c2e-3(c + 2e)(3»»1 - «, + 4?i2)+ 6ce2+3e:l)] ... (15),

' + 4c2e + 6ce2 + 3<?5)(3m - n + 4w,)

g 7. In the case which presents an analogy to the electrostatic
problem (c - e)je is very small. For it, retaining only lowest powers
of (c - e)/e, we find

A = 6w/>2(c - e)7(3w - n + 4?i2), ) , , - ,

B2 = 27iy)2(c-e)V/(3m-ra + 4w2) I '" K >'

Now suppose that, however small c - e may be,

p(e -e) = (r,

where cr is finite. Then putting
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so that h is the bulk modulus in the core, and substituting from
(17) in (8), (10), and (5) we find

in the core

and outside the layer

The resultant per unit of surface of the radial forces exerted by
the two media on the intervening layer being F, measured inwards,
we have to the present degree of approximation, for all values of
k or nv

F = («•).-(«-,)« = 2™* (21).*

The stresses in the medium on Maxwell's theory ought, as
already explained, to be numerically equal but of opposite sign to
those just found. Thus the action of the elastic medium is seen by
(21) to supply the well known value for the electric force exerted on
itself by a charged surface. The real fact is that both the transverse
and radial stresses in the layer are only of the same order of magni-
tude as the stresses outside it, and so, to the present degree of
approximation, F alone must suffice to balance the mutual repulsion
existing between the elements of the layer. Thus (21) ought to be
regarded rather as a partial verification of the accuracy of our work
than as affording any support to the theory of an elastic medium.

While, as we have just seen, there is a difference between the
values of the radial stresses at the two surfaces of the thin layer,
no discontinuity such as Professor Minchin's treatment leads to
is found at either surface. We shall not examine the stresses in the
layer at present, but shall do so in treating the gravitational pro-
blem, and shall then show how the radial stress varies in a contin-
uous way throughout the entire thickness.

It should be noticed that, to the present degree of approximation,
the strains and stresses in the core and outside the layer are inde-
pendent of the magnitude of the elastic constants in the layer,

* The suffixes c, c outside the brackets indicate the radii of the surfaces where
the respective stresses are measured.
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provided these constants be as originally assumed, neither very
great nor very small compared to those in the other media.

The radial stress outside the layer is numerically double the
transverse stress, and not equal to it as in Maxwell's theory. In
the core the principal stresses are all equal and their values are
everywhere the same. Not only are there in general stresses in the
core but their magnitude depends partly on the external medium.
Conversely by (20) the stresses in the external medium are partly
dependent on the elastic properties of the core. These results are
strikingly different from those observed in electrostatics, where the
electric force, and so Maxwell's stress, vanishes inside the charged
surface, and where the force outside does not depend on the internal
dielectric. The only obvious way of getting rid of these discre-
pancies is to assume h/n^ negligible.

Supposing the same media inside and outside the layer, this
would require the medium to offer very great resistance to torsion
but very small resistance to change of volume. Such properties, so
far as my knowledge goes, have never been observed in actual
experiments. The hypothesis is thus a very extreme one, but the
value it supplies for the stresses outside the layer, viz.

0dt= ir<j*(elr)* \

are so simple as to merit attention. These with their signs reversed
bear a certain resemblance to Maxwell's stresses, whose values for a
surface density <r are

radial tension = transverse pressure = 27rcr2(e/r)i ... (23),

but the law of force is of course different.

ELECTROSTATIC MEDIUM, TWO LAYERS.

§ 8. In the electrostatic problem lines of force run from a charged
surface to an oppositely charged. Thus there may seem a radical
difference between the elastic problem last treated and that of a
charged spherical surface. A closer approach to the conditions of
the electrical problem would seem to be the elastic problem of two
thin layers with properties such as those of the single layer of our
last problem.

Let us suppose then that a spherical layer whose surfaces are of
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radii OE = e and OC = e has a density + plt while an outer layer
whose surfaces are of radii OB = b and OA = a has a density — p.a
and let the densities elsewhere be negligible. We shall for simplicity
suppose the elastic constants of both layers to be inlt n1} while
everywhere else the elastic constants are m, n. It is assumed that
mu Wj are neither very great nor very small compared to m, n, so
that the ordinary surface conditions may apply. The medium
outside the outer layer extends to infinity. Positive matter is
supposed to repel positive and attract negative and conversely.

In the inner layer at a distance r from the centre the bodily force
is directed outwards and answers to the potential

V1=. | rP l ( r ' + 2«V-') (24),

while in the outer layer the resultant outwardly directed bodily force
answers to the potential

')} ... (25).

The solution of the bodily equations in terms of arbitrary con-
stants is as follows, quantities referring to the several media being
distinguished by suffixes,

from centre O to E
A = A , \

u = JrA, y (26),

from E to C

w, = - \TT — 1
! + «!

wI = - STT—^i {irHotii! + M,) + 2«V-I(m1 - n,)}

from C to B

(27),

1 2 I

M2 = §rAa + r~2B2, V ... (28),
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- 4r~3w1B.!

outside A

(30).

The continuity of the radial displacement and stress at the
common surfaces leads to the following equations :

over r = e

A = - 2rr p (\e2 + e2) + A, + 3 ^ ... (31),
my + nY

(3m - n)A = - 2ir-£l—{\e\6m1 + w,) + 2e8(m1 - «,)}

+ (3m, - «,)A, - 12e V B , ... (32),
over r = c

A2 + Sc-'B, = - 2TT P (h1 + <?c-^ + A, + Sc-'B, ... (33),
mi + %

(3m - n)A2 - 12c~3nB2 = - 2 P 2

+ (3w1-n1)A,-12c-3w1B1 (34),

over r = b

A ft2 { p 2 ( |

+ A3 + 36-3B3 (35),

(3m - n)Aa - 126-3wB2 = - 2TT—Pi^-[PAib\bm1 + n.)
m, 4- w, '

1 - w,)}

(36),
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over r = a

3a~3B3 (37),

- 12a-3nBt = - 2TT PZ [ft{K(gw»i + wi) + War^ - n,)}

ft (c3 - <?>-'(»», - n,)] + (3m, - Ml)A3 - 12arin1B3 ... (38).

The above eight equations suffice to determine the eight arbitrary
constants of the solution.

Prom (31) and (32)

(3m - n + 4wj)A = - 6wy>,V 4- Z^ + »i1)A1 ... ... (39),

{3»i, - n, - (3m - rc)}A = - Utfe* + ̂ e^^ + ni)Bx ... (40) j

from (33) and (34)

(3m - n + 4m,) A2 + 12c-3(n1 - n)B2 = - 2TT/31
2(C3 + 2es)c~1

+ 3(m1 + «1)A1 (41),

{3m! -n1- (3m - n)} A2 + Sc^Sm! - n^ + 4n)Bs

= |TTPI
2(2C3 - be3)^1 + Q ^ m , + n ^ B , . . . (42);

from (35) and (36)

(3m - n + 4M,)A2 + m - ^ n , - n)B2

= - 2vp,{Zpjir + 2ft(c3 - e3)6-]}+3(nh + n1)A3 ... (43),

{3m, - n, - (3m - w)}A2 + 36-3(3m, - TO, + 4w)B2

- (44);

from (37) and (38)

12a-3(n, - n)B4 = - 27r/)2{p2(a
2 + 26sa~1) + 2Pl(c? - e3)^1}

+ 3(«j1 + ni)A3 (45),

1 - «, + 4n)B4 = 2;rf>2a-1{Jp2(2a3 - 563) - Pl{cs - e3)}

(46);

from (39) and (41) eliminating A,

(3m - n + 4n,)(Aj - A) + 12C-3(w, - n)B2

= - 27rft
2c-1(c - e)\c + 2e) (47) ;
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from (40) and (42) eliminating B,
{3J»J - rij - (3m - w)}(c3A2 - e3A) + 3(3/n, - nx + 4w)B,

= f7rft
2(c-(?)5(2c3 + 4cI!e + 6ce2+3e:)) (48);

from (43) and (45) eliminating A3

(3m - n + 4 * 1 ^ + 12(Wl - n)(6-»B3 - a^B,)

... (40);

from (44) and (46) eliminating B3

i '^m, - n, - (3w - w)} At + 3(3m! - n, + 4w)(B2 - B4)
= 2irPl(a -b){- |/)2(a - b)(2a? + 4o26 + 6ai2 + W)

+ Pl(c-e)(* + b)(c- + c<; + r)} (50).

The equations (47)-(50) are true whatever be the thickness of
the layers, and the determination from them of A, A ,̂ B2, B4 presents
no difficulty apart from the length of the expressions. When these
four constants are determined the other four, A,, Bj, A3, B3 may
easily be found by means of (39), (40), (45), (46).

§ 9. For the electrostatic problem we shall confine our attention
to the case when the layers are very thin, i,e., when (c - e)/e and
(n — b)/a are very small. For this case putting

p,(c-e) = o-1, p2(a-6) = o-2 (51),

we easily find from (47)-(50), retaining only lowest powers of <r.
and (T2,

(52),

f
m + n (55).

Substituting these values, and denoting the bulk modulus outside
the layers by k as before, we find :

from O to E
M _ l ' - - _ f l -
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m + n' ' - - • ' - v - - '• ••• \ h

m + n
outside A

dr in m + n
... (58).

All these expressions are independent of the elastic constants
of the material in the thin layers.

The inwardly directed resultant of the forces exerted by the
two adjacent media on the inner layer per unit of surface is to the
present degree of approximation

- (59)

while that on the outer layer is

fa* ~ fa. = 2 T K - So-̂ c/ft)*} ... (60).
These values supply a partial verification of the accuracy of our

work, for the transverse stress in either layer is only of the same
order of magnitude as the radial stress, and to the present degree
of approximation the resultant action of the adjacent media must
balance the gravitational force.

This is obviously true of the inner layer on which no gravita-
tional force is exerted by the other. Again, the outer layer exerts
on itself a force 2ir<rf outwards per unit of surface, while the inner
layer contributes a force (47r<r1c

2)(r2/6
2 inwards.

§ 10. In the problem analogous to the electrostatic problem,
where the charges on the two surfaces are equal and opposite, we
are to put

47rcV1 = 47r6V2 = Q (61),

so that Q answers to the charge on the positively electrified surface.
Making this substitution and using (18), we get

from 0 to E
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from 0 to B

Q2 i | ™ _,_*»! v ^63^

8̂ - 3& + 4rc\64 cr3,

outside A ^ _^
M4 _ /r4 _ 0#4 _ Q2 1 6 - c

In this case the right hand side of (60) equals - lircr?; or the
resultant of the actions of the adjacent media on the outer layer is
numerically the same as if the inner layer did not exist, but is
directed outwards.

The strains and stresses in the core will not vanish even
approximately unless either (b - c)/c be very small, i.e., the layers
very close together, or else k/n be negligible. While outside the
outer layer the strains and stresses will be negligible only if (b - c)/c
be very small.

In the medium between the two layers the radial stress is
always a pressure, but the transverse stress may be a pressure or
a tension according to circumstances. It will be everywhere a
tension if

«>p(c/6) (65),
and everywhere a pressure if

n<U(o/by (66).
The former case includes that in which k/n is negligible. When

this is so we have between the layers

outside the outer layer

- rrt = 2004 = Q\b - c)/(87r6cri) ... (68).

For the strain and stress in a medium propagating electrostatic
action the signs of all the above expressions are to be reversed.
According to Maxwell's theory the stresses should vanish except
between the two charged surfaces, and there we should have a radial
tension Q2/(87ir4) and an equal pressure in all orthogonal directions.
The nearest approach to coincidence with his theory is thus when
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the distance apart of the two layers is very small compared to the
radius of either surface.

For the case when the radius of the outer surface becomes
infinite, while the total distribution over it remains numerically
equal to that on the inner surface, we put (c/b) = 0 in (62) and (63)
while regarding r as finite. The results so obtained agree with
those already found in (19) and (20) for a single layer when n2 = n,
so that the existence of the layer at infinity is of no consequence.

GRAVITATIONAL MEDIUM, SINGLE LAYER.

§11. We now pass to the gravitational problem and consider
first a single layer of radii e, c, density p, and elastic constants m1} nlt

containing and surrounded by elastic media. To shorten the expres-
sions we shall suppose the external and internal media the same
and possessed of elastic constants m, n. In this case the layer being
self-attractive we must change the sign of all terms containing p2 or
(r in equations (9)—(23). Putting

c3

—(3m -n + 4w1)(3m1 -n1 + 4w) - Ifa - «){3?», - %
6

- ( 3 T O - J I ) } = D . . . (69),

we easily find from the surface conditions

A.D = - 2irp\c - e)-e-3[c\c + 2e)(3m1 -nx + in)
+ !(«.,-M)(2c3-t-4c-e + 6ce2-)-3e3)] . . . (70),

B2.D = - §jrp*(c - e)2[c2(c + 2e){3?W! - nx - (3m - n)}

2cs + 4c2« + 6 c e 2 + 3 « 3 ) ( 3 w - w + 4 w i ) ] ••• (71),

2(c3 + 2e3)(3m -n + 4wj)

- n) - 5vh + Sn,]
I

}] (72),

BrD = - §TpV| i c* + 2e3 ~ Kc3 + 5<j3)—2—— H 3 w i - «i - (3m - M) j

{2(3m-w)-5}n, + 3ri1}l ... (73).
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Substituting the value of A in (8) and that of B2 in (10) we have
the displacements in the core and outside the layer. Again substi-
tuting for Aj and B, in (9) and changing the sign of p* in the
particular solutions we have the displacement in the thin layer.
The solution so obtained is in all respects complete.

Assuming the bulk modulus and rigidity positive quantities, we
may easily prove that D is essentially positive and A essentially
negative. Thus by (5) and (8) the three principal stresses at every
point in the core consist of three equal pressures of constant value.
If 3»t! - n^Zm-n the value of B2 is essentially negative, but if
(3m - M)/(3»W1 - »,) be large and c-e be not very small B2 may be
positive. We conclude from (5) and (10) that outside the layer the
radial stress is always opposite in sign to and numerically double
of the transverse stress; the radial stress is necessarily a tension
if the layer have a larger bulk modulus,—i.e., is less compressible—
than the other medium, but if the layer be considerably more
compressible than the other medium, and be neither of unusually
great rigidity nor extremely thin, the radial stress may be a pressure.

§ 12. To enter into details in the general case would involve
dealing with very cumbrous algebraical expressions. I shall thus
consider only a special case, which sufficiently illustrates the nature
of the results. Thus let

w, = n,

or suppose that the layer has the same rigidity as the other medium
and differs from it only in compressibility. In this case we find :

in the core

ujr — rrl(3m - n) = - j-ir—I—\c - e\- ... (74),
m + n ' c

in the layer

M] = 3 » . _ £ _ [ V + e3 - J(r/e)(e» + 2c3)
?«i + n

i {\ce\m + n) + J(c - e)\c + 2e)(»n, - m)}]... (75),

!f - c -
cr

+ 3e> + i—(c - e)\c + 2e)w(w'~w)] ... (7 6),
cr m + n J
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outside the layer

m + n

From (7C) we find for the radial stresses at the inner and outer
surfaces of the layer the respective values

wt, +11 e" (.

' " " ^ " ' " " " ' - (70).

Comparing (74) witli (78) and (77) witli (79) we see that our
solution gives, as it ought, complete continuity in the value of the
radial stress.

§ 13. To examine in detail the solution for a layer of any
thickness would occupy too much space. When the layer is very
thin the first approximations to the displacements, strains, and
stresses in the core and outside the layer are given by (19) and (20),
when - a 2 is replaced by (ph)*. The results so obtained apply
whether the media outside and inside the layer are the same or
not, and so are in one way more general than the results (74)-(77).
Their degree of approximation is not however sufficiently close to
show the variation of the strains and stresses throughout the
layer. This variation may be satisfactorily illustrated by the
special case, Wj = n, so we shall confine our attention to it. Thus
taking (75) let

c — e = h, r — e = £,

so that h is the thickness of the layer and £ the distance of a point
in it from the inner surface, and expand in powers of the small
quantities hje and £/e to any required degree of approximation.
For our present purpose we may content ourselves with

e tr^ +
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As first approximations we find for the principal strains and
stresses throughout the layer :

/ 2 2 A2

ui/r = — jf "V >
m + n

du, du, „ s h? f, o m, — m Q £2 m + n\
i=*= -§uy>' \ I - 3_J - 3 - ^ _ V,

dr at m + nx. m, + n h m,+n I

Thus the transverse strain is always a compression and if ml > n,
as appears the case in all satisfactory experiments, the transverse
stress is always a pressure. The radial strain is a compression at
the inner surface if 3m - n > 2(m1 - n),

which will be the case unless the layer be much less compressible
than the adjacent media. The radial strain is algebraically greatest
at the outer surface where it is always an extension. The radial
stress is always a pressure at the inner surface, a tension at the
outer, and varies continuously throughout the thickness.

The maxima values s and S of the greatest strain* and the stress-
difference*—i.e., the difference between the algebraically greatest
and least stresses at a point—occur at the outer surface, and
we have

s = i irpV^Km + n), )
_ a \ (82).
S = 47r/)2AV/(m + n) )

It is easy to prove that the dilatation vanishes over the outer
surface and elsewhere is negative, so that the volume occupied by
the layer is reduced.

As first approximations for the increments in the radius e and
thickness h of the layer we have

Se/e = — §7rp2/i,2/(m + n),

Sh/h= h?

m + n m^ + n

(83).f

* The magnitude of one or other of these quantities is frequently regarded as
measuring the "tendency to rupture " in the material. See Philosophical Magazine,
September 1891, pp. 239-242.

+ The letter 6 denotes the increment of the quantity denoted by the following
letter.
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Thus the radius of the shell is always reduced. The thickness
is increased or diminished according as the shell is less or more
compressible than the adjacent media.

GRAVITATIONAL MEDIUM, TWO LAYERS.

§ 14. The case of two gravitating layers in which the elastic
constants have the values m^ «u while in the surrounding media
they have the values TO, n, may be deduced from the treatment of
the two electrostatic layers by changing the signs of pf, /v but not
of prfn where pt, p2 denote the densities of the inner and outer
layers, the radii of whose surfaces in ascending order of magnitude
are e, c, b, a. We shall only glance at the case when the thicknesses

c — e = hlt a-b — h2

are very small. Putting

we find from (56), (57), (58) as first approximations, empJjv'ag k as
before for the bulk modulus outside the layers,

in the core

- = S = " * -J— W+^McibT+<*?) • • • (84).
r OK m + n

between the layers
«, = - f -J!—[r {<r* + 2<rl(r2(C/6)2} + c'r'W] • • • (85),

m + n

P 4w(c/r)V] ... (86),

outside the outer layer

_-u, = rrj = g in-3 ^ y + ^ ^ b + <r*b3} ... (87).
r An m + n

To a first approximation we have

ujr = (M3/r)c, and (u2/r)b = (ujr)a.

Thus, since the radial displacement is continuous, we deduce that
the transverse strain in each layer has a nearly constant value, that
value being given for the inner layer by (84) and for the outer layer
by the value of «4/r in (87) when r = a. We also know the values
of the radial stress over the surfaces of the layers from the fact that

9 Vol. 11
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there is no discontinuity in that stress. All the strains and stresses
in the present case vary as the squares or products of the thick-
nesses of the layers.

In the previous gravitational problems the stresses we have
found are those which maintain equilibrium when forces at a
distance act. If we suppose the stresses reversed we get the stress
system required to propagate gravitational forces in a hypothetical
medium. These reversed stresses are to be regarded as residing in
the medium and it is this medium and not any sensible substance
to which the elastic constants of the solution belong. How such
stresses may be excited, or what connection there may exist between
the medium and sensible matter does not come within the scope of
the present enquiry.

SINGLE GRAVITATING SHELL.

§ 15. The problems previously considered are of a speculative
nature referring to the action of some medium to be classed under
the general title " ether". To prevent misconception we add the
solution of the corresponding problems in their relation to the actual
visible matter of which the spherical layers are composed.

The first problem then is that of a spherical shell of ordinary
isotropic material, say of density p and elastic constants m, n,
existing alone in space, acted on by no surface forces and no bodily
forces other than its own gravitation. The potential of the bodily
forces in the shell, supposing its radii e and c, is given by

V= - §n-/j(r2 + 2esr~1).

The solution in arbitrary constants is analogous to (27), but the
constants must now be determined from the conditions that the
radial stress vanishes over both surfaces. I t is unnecessary to
record the values found for the constants. The displacement is

ir3 + e3 - , Al{c* - es)(5m + n)
( c 3 e 3 ) ( 3 w « ) l o V A '

(88).

The strains and stresses may easily be deduced. The radial stress
it will be found vanishes, as it ought, over both surfaces.
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§ 16. The most interesting case for comparison with the previous
problems is that of a very thin shell. For it we find, with our
previous notation,

(89).

Comparing (89) with (81) we see that in both cases the radial stress
is of order A", but the radial displacement in (81) is also of order h2

whereas in (89) it is of order h and so enormously greater. In the
case of the " ether " media the contraction of the layer was opposed
by the contiguous media, and it was the action of the latter media
that sustained the gravitational forces. In the present case the
forces opposing the contraction of the shell are derived solely from
the elastic stresses in itself, and to produce transverse stresses of
sufficient intensity for this end requires a contraction of very much
greater magnitude than in the previous case. For purposes of
comparison it will suffice to confine our attention to the first
approximation in the present case. "We shall employ the same
notation as before, and in addition shall put

n(3m - n)/m = E,
(m - n)/2m — rj,

so that E is Young's modulus and i\ Poisson's ratio for the shell,
while g is the acceleration at its outer surface due to the gravitational
forces. We easily find

ujr = Se/e = -

> (90)-
^ ~ *\

eli

S =>-T0 =

Strictly S is the difference between the radial and the transverse
stresses, but the former is negligible compared to the latter. The
largeness of the transverse stress is perhaps the most striking
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feature of the solution. To show that to the present degree of
approximation it balances the gravitational forces, we employ the
known result that when a spherical membrane of radius e contains
a gas at pressure p the requisite tension T in the membrane is
given by

j , = 2T/«.

In other words the resultant of the tensions is a normal force 2T/e
directed inwards. Thus if instead of tensions in a membrane we
have transverse pressures in an elastic shell whose intensity is

- 66, or T', over unit area, and so for the entire thickness Th per
unit arc of surface, their resultant is an outwardly directed force
whose value is 2T'A/e or by (90) is 2ir(phy. But this is numerically
equal and oppositely directed to the gravitational action of the shell
on itself.

From (90) we see that the strains and the transverse stress are
all to a first approximation constant throughout the thickness.
Assuming Poisson's ratio positive, the radial strain is everywhere
an extension and the thickness of the shell is increased. The
transverse strain is always a compression and the radius of the shell
is diminished. The radial and transverse stresses are both pressures.
The former is to a first approximation a maximum at the mid
thickness and diminishes numerically as we approach either surface.

§ 17. As an idea of the actual magnitude of the stresses may be
of use, let us consider the approximate value of S in a shell of the
radius of the earth's outer surface, due to its own gravitation only.
Let g' be the value of " gravity " at the surface of a solid sphere of
the same radius e and density p as the shell, then

g'

At the earth's surface a cubic foot of water weighs about 62J lbs.,
and thus if the specific gravity of the shell be equal to the mean
value of the earth, say 5-5, we deduce for the approximate value of
the maximum stress-difference in a shell i miles thick, and 4000
miles radius,

S = (4-2)i tons weight per square inch.

The conditions are of course totally different from those existing in
the outer layer of a gravitating solid sphere.
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Two GRAVITATING SHELLS.

§18. The case of two concentric shells of ordinary matter acted
on solely by their gravitational forces may be solved in a similar
way. In the inner shell, which is assumed not to touch the outer,
the solution is exactly the same as in the previous case because the
forces exerted by the outer shell are nil. The forces on the outer
shell arise partly from its mutual gravitation, partly from the
attraction of the inner shell. The consequences of the former set
of forces we know already, and so, as strains are superposable when
kept within the limits to which the mathematical theory applies,
we need now investigate only the action of the inner shell on
the outer.

The forces exerted by a shell of radii e, c and density pl on an
external shell are derived from the potential

The solution thus obtained for the action solely of the inner shell
on the outer is

+
a'-b* 3m-n r2 a3 - b3 2n

From this we find for any thickness of shell

t a + b + a*b*\ (92)
\3m-n 2»ir7 '

m~ntdr «! + «6 + 62 m + n\3m-n 2»ir
ua-ub_ 8 / ' 3 M a + b m-n
a - b h a? + ab + b2 n(3m — n)

'"' -AH (a — r)(r - b)(ab + ar + br) m~n
TT = — M / ^ - -r —

The radial stress is thus everywhere a pressure; it vanishes of
course over both surfaces. The radial strain is everywhere an
extension.

The displacement, and thence the strains and stresses in the
outer shell, due to its mutual gravitation, may be deduced from (88)
by replacing p, e, c, by pa, b, a respectively.

When the shell is very thin let

a-b = h, r — 6 = £,

and let . „ (c3 - e3)
^ ^ ^ - ; = ft,
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so that gt and g$ are respectively the accelerations at the outer
surface of the outer shell duo to the attraction of the inner shell
and its own gravitation. Then to a first approximation the com-
plete values for the strains and stresses in the outer shell are
as follows:—

u/r = Sa/a = -

(95).

The intensity of the actual bodily force in the outer shell varies
regularly from g1 at the inner to gx + g% at the outer surface. Thus
the above results show that to a first approximation the strains and
the transverse stress in the shell are the same as if the bodily forces
had at every point of the thickness a constant value equal to the
mean of the actual values. The value of the radial stress depends
even to a first approximation on the law of distribution of the
bodily forces, but this stress is negligible compared to the transverse
stress. So far as concerns the results (95) the inner shell may be a
solid core or a shell of any thickness. The only limitation is that
the two shells must not be in contact.

T h e E l e m e n t s of Quaternions Second Paper).
DISCUSSION OF THE PROOFS OF THE LAWS OF THE QUATERNIONIC ALGEBRA.

[Abstract.]

By Dr WILLIAM PEDDIE.

Three main .aws regulate the treatment of ordinary algebraic
quantities. These are the Associative Law, the Distributive Law,
and the Commutative Law. If a, b, c, ..., represent quantities
dealt with in the algebra, the associative law of multiplication
asserts that a(6c) = (oJ)c, where the brackets have the usual
meaning that the quantity within them is to be regarded as a
single quantity:" the distributive law of multiplication asserts
that (a + b)(c + d) = ac + bc + ad+bd: and the commutative law
gives ab = ba. With regard to addition, the associative law
asserts that (a + b) + c = a + (b + 6) : and the commutative law
gives a + b = b + a.
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