
J. Dorfmeister and H. Wu

Nagoya Math. J.

Vol. 187 (2007), 1–33

UNITARIZATION OF LOOP GROUP

REPRESENTATIONS OF FUNDAMENTAL GROUPS

JOSEF DORFMEISTER and HONGYOU WU

Abstract. In this paper, we give a characterization of the simultaneous uni-

tarizability of any finite set of SL(2, C)-valued functions on S
1 and determine

all possible ways of the unitarization. Such matrix functions can be regarded as

images of the generators for the fundamental group of a surface in an S
1-family,

and the results of this paper have applications in the construction of constant

mean curvature surfaces in space.

In recent years, a Weierstrass type representation [4] has been used

to construct surfaces of non-zero constant mean curvature in space (CMC

surfaces). This construction starts with an sl(2, C)-valued holomorphic or

meromorphic 1-form on some (compact or non-compact) Riemann surface

S other than S
2. Pulling back to the simply connected cover S̃ of S, one

obtains a 1-form η on S̃ which is invariant under the fundamental group

π1(S) of S. In the next step of the construction, one solves the ordinary

differential equation dH = Hη on S̃ with the initial condition I at some

base point z0. Then, every γ ∈ π1(S) induces a monodromy matrix ργ via

H. As a special feature of this construction, everything depends also on

a parameter λ ∈ S
1. In particular, for γ ∈ π1(S), the matrix ργ = ργ(λ)

depends holomorphically on λ on C
∗ = C \ {0}. In this way, one obtains

a map ρ from π1(S) into the loops in SL(2, C) satisfying ργδ = ργρδ, i.e.,

ρ is a representation of π1(S) in the SL(2, C)-loop group. When the CMC

surface to be constructed has umbilic points, in order to obtain eventually

an immersion from S into R
3, not just from S̃ into R

3, it is necessary that

ργ(λ) ∈ SU(2) for all γ ∈ π1(S) and λ ∈ S
1. At this point, no criterion

on η is known which would characterize the 1-forms on S̃ corresponding

to unitary representations ρ. Therefore, one tries to find conditions under

which one can conjugate ρ such that the new representation ρ̂ is unitary. The

new representation ρ̂ can always be derived from some 1-form η̂, which can

be obtained from η by a gauge transformation. This actually corresponds to
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2 J. DORFMEISTER AND H. WU

using an initial condition at z0 different from I when solving the differential

equation dH = Hη.

In this paper, we present an algorithm testing and characterizing the

unitarizability of a monodromy representation ρ. It suffices to check whether

a set of generators L1, L2, . . . , Lm of the image of π1(S) under ρ can be si-

multaneously unitarized. It turns out that this is possible only if each Li

has an eigenvalue function vi(λ) which is holomorphic on a neighborhood

of S
1. We will also assume that no Li has the λ-independent eigenvalues

±1, which is satisfied in the geometric context mentioned above. Then, the

unitarizability of one matrix function L can be characterized by the obvious

conditions on the trace of L, see Proposition 2.2. Also, a specific matrix

function T can be found conjugating L into some canonical unitary matrix

function. Given two matrix functions L1 and L2 satisfying these conditions

and thus being unitarizable separately by some T1 and T2, respectively, we

first consider the case where L1 and L2 commute. This can be characterized

by T1T
−1
2 being diagonal or off-diagonal, see Proposition 3.1. Since com-

muting with each other is an equivalence relation, we can assume that no

pair of the generators L1, L2, . . . , Lm commute. In this case, we character-

ize the simultaneous unitarizability of L1 and L2 by simple conditions on

the entry functions of T1T
−1
2 , see Theorem 3.5. Similarly, the simultaneous

unitarizability of L1, L2 and L3 is characterized by simple conditions on the

entry functions of T1T
−1
2 and T2T

−1
3 , with each Ti having the same meaning

as above, see Theorem 4.1. Finally, for the case of four or more generators,

it turns out that it suffices to verify that every three consecutive generators

are simultaneously unitarizable, see Theorem 4.14.

In the geometric applications to CMC surfaces mentioned above, one

actually uses the twisted loop group consisting of the loops in SL(2, C) which

reflect some invariance under the Cartan involution of SL(2, C) correspond-

ing to the symmetric space S
2 = SU(2)/U(1). Therefore, it is natural that in

view of these applications, we use twisted loop groups throughout this paper.

However, there is also some technical advantage: while the twisted and un-

twisted loop groups are isomorphic in the case of SL(2, C), this isomorphism

does not preserve the so-called “positive loops”, see (1.10). Thus, writing

this paper in the untwisted setting would require replacing frequently used

standard loop group splittings (Birkhoff and Iwasawa splittings) by closely

related ones, for which at least some of the properties would need to be

proven. Finally, from the point of view of Kac-Moody groups, twisted and

untwisted groups are equally natural, and the untwisted version should not
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be preferred.

Another issue is how to deal with cases where some eigenvalue function

vanishes at some points of S
1. Since these eigenvalue functions do not

vanish identically on S
1 and are holomorphic in some neighborhood of S

1, it

is natural to consider r-circles which are sufficiently close to S
1. Fortunately,

for these r-loops, there is already a well-developed theory for us to use.

It is worth pointing out that up to conjugations by unitary matrix

functions, there is at most one way to simultaneously unitarize two or more

matrix functions, unless they commute for all values of λ ∈ S
1, see The-

orems 3.5, 3.24, 4.1 and 4.14. This result will be essential in proving the

so-called “closing conditions” when r-dressing with r < 1 is needed. In the

geometric applications discussed above, these closing conditions ensure that

the CMC immersion from S̃ into R
3 constructed from η actually descends

down to S and yields a CMC immersion from S into R
3.

We mention that it seems more natural to consider the unitarization

problem in the algebra of matrix functions meromorphic in a neighborhood

of S
1. However, in general, the problem does not have a solution in that

algebra, see the proof of Theorem 2.6 together with Remark 2.14. Moreover,

the topology on the Wiener algebra needed for the geometric applications

that we are primarily interested in adds severe difficulties to the problem.

This paper is organized as follows. In Section 1, we introduce the basic

definitions concerning loop groups and recall some fundamental results. In

Section 2, we characterize the unitarizability of one matrix function L and

determine all the matrix functions unitarizing L. Section 3 is devoted to

the characterization of the simultaneous unitarizability of two matrix func-

tions, while Section 4 considers three or more matrix functions. Finally, in

Section 5, we discuss the relation between the simultaneous unitarizability

of matrix functions by dressing and their pointwise simultaneous unitariz-

ability, and deal with the closing conditions.

§1. Notation and basic results on loop groups

In this paper, for any r > 0 and each c ∈ C, we will use S
1
r(c), Dr(c) and

D∗

r(c) to denote the circle {z ∈ C ; |z−c| = r}, the disk {z ∈ C ; |z−c| < r}
and the punctured disk {z ∈ C ; 0 < |z − c| < r}, respectively. When any

of c = 0 and r = 1 happens, we will omit the corresponding part from the

notation: S
1 = S

1
1 = S

1
1(0), D = D1 = D1(0), etc.

First, we state a result about holomorphic functions. This result will

be needed in Sections 2 and 3.
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Lemma 1.1. If a function f is even, holomorphic on a neighborhood

of S
1
r and real-valued on S

1
r, and any zero of f on S

1
r has an even order,

then there is a function g such that g2 = f and g is also holomorphic on a

neighborhood of S
1
r, and each such g is either even in λ or odd in λ.

Proof. Note that either f ≥ 0 on S
1
r or f ≤ 0 on S

1
r. Without loss

of generality, we assume further that f ≥ 0 on S
1
r. Locally, f has two

holomorphic square roots which are real at points of S
1
r. If they change sign

at a zero λ0 ∈ S
1
r of f , then the corresponding local holomorphic square

roots near −λ0 also change sign at −λ0, since f is even in λ. Thus, local

holomorphic square roots can be extended to become global holomorphic

square roots on a neighborhood of S
1
r: consider a λ∗ ∈ S

1
r which is not a zero

of f , and along S
1
r extend holomorphically the positive local holomorphic

square root near λ∗, then the extension is still positive at λ∗ (and hence

agrees with the original square root at λ∗) when S
1
r is exhausted. Note that

two local holomorphic square roots of f only differ by a sign. Since again f

is even in λ, g must be either even in λ or is odd in λ.

We denote by Wr the Wiener algebra [8] on S
1
r, i.e., the Banach algebra

of continuous functions f on S
1
r whose Fourier expansion f(λ) =

∑
i∈Z

fiλ
i

exists and satisfies

(1.2) ‖f‖r :=
∑

i∈Z

|fi|ri < +∞.

Moreover, W∗

r stands for the subalgebra of Wr consisting of elements which

never vanish on S
1
r, W−

r the subalgebra consisting of elements whose Fourier

expansion has only negative powers of λ, and W+
r the subalgebra consisting

of elements whose Fourier expansion does not involve any negative power

of λ. We will need the following results later.

Lemma 1.3. Let n ∈ N. If h ∈ W∗

r is always positive on S
1
r, then there

is a k+ ∈ W+
r never vanishing on Dr and satisfying

(1.4) h(λ) = k+(λ)n k+

(
r2/λ

)n
on S

1
r.

Moreover, if h is even in λ, then so is k+; if h(−λ) = 1/h(λ) for all λ ∈ S
1
r,

then k+ = eα+ for some α+ ∈ W+
r which is odd in λ.
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Proof. By the Birkhoff decomposition on S
1
r [6],

(1.5) h(λ) = cλmh−(λ)h+(λ) on S
1
r,

where c is a non-zero constant, m ∈ Z, h− ∈ W−

r never vanishes on Er :=

{|λ| ≥ r} ∪ {∞} and satisfies h−(∞) = 1, while h+ ∈ W+
r never vanishes

on the closure Dr of Dr and satisfies h+(0) = 1. By the uniqueness of the

Birkhoff decomposition, the reality of h on S
1
r is equivalent to that

(1.6) c ∈ R, m = 0, h−(λ) = h+(λ) = h+

(
r2/λ

)
on S

1
r.

So, c > 0 by the positivity of h on S
1
r. Since h+ ∈ W+

r never vanishes on

Dr, it has an n-th root in W+
r , say l+. Therefore, we can set k+ = c′l+,

where c′ > 0 is a 2n-th root of c.

If h is even in λ, then (1.4) and the uniqueness of the Birkhoff decom-

position yield the evenness of k+. If h(−λ) = 1/h(λ) for all λ ∈ S
1
r, then

k+(λ)k+(−λ) = 1, and hence k+ = eα+ for some α+ ∈ W+
r which is odd in

λ.

We will frequently use the following relation between the Wiener algebra

and the set of analytic functions: let 0 ≤ r < R ≤ +∞, then a function on

{λ ∈ C ; r < |λ| < R} is in Ws for all s ∈ (r,R) if and only if it is analytic

on the annulus.

Set G = SU(2). Then, the complexification of G is G
C = SL(2, C). Let

r ∈ (0,+∞). We introduce the following twisted r-loop groups (see [4], [2]

and [3] for details), in which λ ∈ S
1
r serves as the loop parameter:

ΛrG
C
t =



G : S

1
r → G

C ;
gij ∈ Wr for each i, j
g11, g22 are even in λ
g12, g21 are odd in λ



 ,(1.7)

ΛrGt =

{
G ∈ ΛrG

C
t ;

G has a continuous extension
up to S

1 and is unitary on S
1

}
,(1.8)

Λ−

r,∗G
C
t =

{
G ∈ ΛrG

C
t ;

G extends holomorphically
to Er, and G(∞) = I

}
,(1.9)

Λ+
r G

C
t =

{
G ∈ ΛrG

C
t ; G extends holomorphically to Dr

}
,(1.10)

Λ+
r,BG

C
t =

{
G ∈ Λ+

r G
C
t ; G(0) ∈ B

}
,(1.11)

where the gjk’s are the entries of G, Er = {z ∈ C ; |z| > r} ∪ {∞} and B is

the solvable subgroup

(1.12)

{(
es 0
0 e−s

)
; s ∈ R

}
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of G
C. Then ΛrG

C
t is a complex Banach Lie group. Note that the map

(1.13) G(λ) 7−→ G(1/λ)

is a Lie group isomorphism from ΛrGt onto Λ1/rG, and each element of

them is holomorphic in λ on the open annulus between S
1
r and S

1
1/r. The

Lie algebra of ΛrG
C
t is denoted by ΛrGC, and one has similar notation for

the Lie algebras of the other Lie groups defined above. When r = 1, we

will always omit the corresponding subindex. The following results are from

Theorem 2.3 of [4].

Theorem 1.14. The multiplication ΛrGt × Λ+
r,BG

C
t → ΛrG

C
t is an

onto diffeomorphism. The multiplication Λ−

r,∗G
C
t × Λ+

r G
C
t → ΛrG

C
t is a

diffeomorphism onto the open and dense subset Λ−

r,∗G
C
t · Λ+

r G
C
t .

The splitting ΛrG
C
t = ΛrGt × Λ+

r,BG
C
t will be called the r-Iwasawa

splitting, while the splitting Λ−

r,∗G
C
t · Λ+

r G
C
t = Λ−

r,∗G
C
t × Λ+

r G
C
t ⊆ ΛrG

C
t is

usually called the r-Birkhoff splitting. Both of these splittings are analytic.

The elements of ΛrGt will sometimes be called unitary r-loops or said to be

r-unitary. When r = 1, we will also always omit the corresponding prefix.

Remark 1.15. If r ∈ (0, 1), G ∈ ΛrG
C
t is holomorphic on Dr \ Dρ

for some ρ ∈ (0, r) and G = GuG+ is its r-Iwasawa splitting, then Gu is

holomorphic on D1/ρ \ Dρ.

The untwisted loop group ΛrG
C can be defined by removing the even-

odd conditions in (1.7), and its corresponding subgroups can be introduced

analogously. We omit the details.

§2. Unitarization of one loop matrix

In this section, we give conditions for the unitarizability of one loop ma-

trix and determine all the possible ways to do the unitarization. As pointed

out in the introduction, the results on all the possible ways for unitarizing

one loop matrix will be used in Sections 3 and 4 in the unitarization of two

or more loop matrices. We also give examples showing that in general, it is

necessary to use r-dressing with r < 1 for unitarization.

Let r ∈ (0, 1]. We will use the notation ΛG
C
t ∩ ΛrG

C
t to denote the

elements of ΛG
C
t whose entries also converge under the Wr-topology, i.e.,
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the “common part” of ΛG
C
t and ΛrG

C
t . An element L ∈ ΛG

C
t ∩ ΛrG

C
t is

said to be unitarizable via r-dressing if there is a T+ ∈ Λ+
r G

C
t such that

the element T+LT−1
+ of ΛrG

C
t is r-unitary, i.e., has a continuous extension

up to S
1 and is unitary on S

1. In this case, if 0 < r < 1, then T+LT−1
+ is

actually holomorphic on {λ ∈ C ; r < |λ| < 1/r}.
Sometimes, we will abbreviate unitarization via 1-dressing as unitariza-

tion via dressing.

The following proposition shows that all the elements of ΛrG
C
t (not

only just the elements of Λ+
r G

C
t ) can be used for unitarization.

Proposition 2.1. Let r ∈ (0, 1]. An element L ∈ ΛG
C
t ∩ ΛrG

C
t is

unitarizable via r-dressing if and only if there is a T ∈ ΛrG
C
t such that the

element TLT−1 of ΛrG
C
t is r-unitary.

Proof. The necessity is clear. To show the sufficiency, let T = TuT+

be the r-Iwasawa splitting of T with Tu ∈ ΛrGt and T+ ∈ Λ+
r,BG

C
t , then

T+LT−1
+ = T−1

u · TLT−1 · Tu is r-unitary, and hence L is unitarizable via

r-dressing.

Conditions for unitarizability

The following proposition (see Theorem 3.5 in [3]) gives a characteri-

zation of an important class of unitarizable loop matrices. Recall that an

element of SL(2, C) is semi-simple if and only if it is diagonalizable.

Proposition 2.2. i) Let r ∈ (0, 1]. If L ∈ ΛG
C
t ∩ΛrG

C
t is unitarizable

via r-dressing, then

(2.3) tr L(λ) ∈ R and
∣∣trL(λ)

∣∣ ≤ 2 for all λ ∈ S
1.

ii) Assume that L ∈ ΛG
C
t is holomorphic on a neighborhood of S

1 and

semi-simple on S
1. If L satisfies (2.3), then it is unitarizable via r-dressing

for some r ∈ (0, 1].

Remark 2.4. Note that L ∈ ΛG
C
t satisfies (2.3) if and only if the eigen-

values of L(λ) are unimodular for all λ ∈ S
1.

In this paper, we will use v(λ) to denote an eigenvalues of L(λ), opposite

to [3], in which v(λ) is used to stand for the imaginary part of an eigenvalues.

So, when L(λ) satisfies (2.3), its eigenvalues are v(λ) and 1/v(λ).

https://doi.org/10.1017/S0027763000025824 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025824
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Proposition 2.5. Assume that L ∈ ΛG
C
t is holomorphic on a neigh-

borhood of S
1 and satisfies (2.3). Then, the eigenvalues v(λ) and 1/v(λ) of

L(λ) can be chosen to depend holomorphically on λ on a neighborhood of

S
1. The real parts of v and 1/v are both even in λ, and the imaginary parts

of v and 1/v are either both even in λ or both odd in λ.

Proof. Note that 4 − (tr L)2 is even in λ. From (2.3) we deduce that

4 − (trL)2 is real on S
1 and only has zeros of even order on S

1. Thus, by

Lemma 1.1, there is a function g which is holomorphic on a neighborhood

of S
1 and satisfies g2 = 4 − (tr L)2. So, we can take v = (tr L + ig)/2 and

1/v = (tr L − ig)/2. The real parts both equal trL/2 and are even in λ,

while g must be either even in λ or odd in λ.

The eigenvalues v(λ) and 1/v(λ) of L(λ) that depend holomorphically

on λ on a neighborhood of S
1, as produced in Proposition 2.5, will be called

holomorphic eigenvalues. We will always use such eigenvalues. Moreover,

when the imaginary parts of v and 1/v are even in λ, we will say that we

have the even case; while when the imaginary parts of v and 1/v are odd

in λ, the situation will called the odd case.

We note that the holomorphic eigenvalues of the monodromy of a non-

cylindrical Delaunay end are even in λ, while those of a cylindrical end are

not. These examples motivate our distinction between the even case and

odd case.

Using the concept of holomorphic eigenvalues, we have the following

refinement of Part ii) of Proposition 2.2.

Theorem 2.6. Let L = (lij) ∈ ΛG
C
t be holomorphic on a neighborhood

of S
1 and satisfy (2.3). Assume that the holomorphic eigenvalues v and 1/v

of L are not always equal on S
1, i.e., trL is not always equal to ±2. Then,

for each r ∈ (0, 1) sufficiently close to 1, L is unitarizable via r-dressing.

Proof. Our proof is basically the one of Theorem 3.5 in [3]. It is

presented here because some details will be needed later.

In the even case, if we set

(2.7) T =

(
1 l12/(v − l22)

−l21/(v − 1/v) (l11 − 1/v)/(v − 1/v)

)
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when L is not triangular (i.e., l12 6≡ 0 6≡ l21, which imply that neither of l11
and l22 is always equal to any of v and 1/v on S

1),

(2.8) T =

(
1 0

l21/(1/v − v) 1

)

when L is lower triangular (i.e., l12 ≡ 0), and

(2.9) T =

(
1 l12/(v − 1/v)
0 1

)

when L is upper triangular (i.e., l21 ≡ 0), then for each r ∈ (0, 1) sufficiently

close to 1, T ∈ ΛrG
C
t and it diagonalizes L into ΛrGt, i.e.,

(2.10) TLT−1 =

(
v 0
0 1/v

)
∈ ΛrGt.

In the odd case, l12vI
6≡ 0 is even in λ, where v = v

R
+ iv

I
with v

R
and

v
I

being real on S
1. Moreover, for each r ∈ (0, 1) sufficiently close to 1, we

have that T ∈ ΛrG
C
t and

(2.11) TLT−1 =

(
v

R
iv

I

iv
I

v
R

)
∈ ΛrGt,

where

(2.12) T =
i√

i l12vI

(
v

R
− l11 −l12

−iv
I

0

)

if i l12vI
has an even root

√
i l12vI

which is holomorphic along S
1
r, and

(2.13) T =
1√

i l12vI

(
iv

I
0

l11 − v
R

l12

)

if i l12vI
has an odd root

√
i l12vI

which is holomorphic along S
1
r.

Remark 2.14. We emphasize that the matrices in (2.7)–(2.9) are mero-

morphic on a neighborhood of S
1, while the matrices in (2.12) and (2.13)

are holomorphic on D \ Ds for some s ∈ (0, 1) and the product of any two

of their entries has a meromorphic extension to a neighborhood of S
1.
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The form given in (2.11) for elements of ΛrGt is called the anti-diagonal

form, while the one in (2.10) the diagonal form. All the elements of ΛrGt in

the anti-diagonal form make up a subgroup of ΛrGt, to be denoted by Λa
rGt

(and sometimes abbreviated as Λa
Gt when r = 1). Similarly, we will use

Λd
rGt to denote the subgroup of ΛrGt consisting of the diagonal elements

of ΛrGt (and frequently abbreviate Λd
1Gt as Λd

Gt).

Remark 2.15. Let r ∈ (0, 1].

i) If L ∈ ΛrG
C
t is diagonalizable in ΛrG

C
t , then its eigenvalues are equal

for all λ ∈ S
1
r if and only if L ≡ I or −I.

ii) Assume that L ∈ ΛrG
C
t \{±I} is diagonalized by T ∈ ΛrG

C
t , and the

eigenvalues of L are holomorphic on a neighborhood of S
1
r. Then, the general

S ∈ ΛrG
C
t diagonalizing L differs from T by a diagonal or off-diagonal factor

on the left. Note that a diagonal factor on the left does not change TLT −1,

while an off-diagonal one only interchanges the eigenvalues in TLT −1.

General form of all unitarizing matrices

If the eigenvalues of a matrix L ∈ SL(2, C) are distinct and have unit

modulus, then there is a matrix T ∈ SL(2, C) such that TLT −1 is diagonal

(and hence unitary), and the general S ∈ SL(2, C) unitarizing L has the

form S = UDT with unitary U and diagonal D. We generalize this matrix

result to the loop group setting.

Theorem 2.16. Let L ∈ ΛG
C
t be holomorphic on a neighborhood of

S
1.

i) If T ∈ ΛG
C
t diagonalizes L into ΛGt and L 6∈ {±I}, then the general

S ∈ ΛG
C
t unitarizing L has the form S = UG+T with U ∈ ΛGt and

diagonal G+ ∈ Λ+
G

C
t .

ii) If T ∈ ΛG
C
t conjugates L into Λa

Gt and L 6∈ {±I}, then the general

S ∈ ΛG
C
t unitarizing L has the form S = UG+T with U ∈ ΛGt and

(2.17) G+ =

(
coshα+ sinhα+

sinhα+ coshα+

)

for an odd α+ ∈ W+.

iii) Assume that L satisfies (2.3), and the two holomorphic eigenvalues

of L are even in λ and not always equal to each other. Let T be the matrix

given by (2.7) or (2.8) or (2.9) for L. Then, for any r ∈ (0, 1) sufficiently
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close to 1, the general S ∈ ΛrG
C
t unitarizing L has the form S = UG+T

with U ∈ ΛrGt and diagonal G+ ∈ Λ+
r G

C
t .

iv) Assume that L satisfies (2.3), and the two holomorphic eigenvalues

of L are not even in λ. Let T be the matrix given by (2.12) or (2.13) for

L. Then, for any r ∈ (0, 1) sufficiently close to 1, the general S ∈ ΛrG
C
t

unitarizing L has the form S = UG+T with U ∈ ΛrGt and G+ ∈ Λ+
r G

C
t

given by (2.17) for an odd α+ ∈ W+
r .

Proof. First, we show Parts i) and iii). We only need to prove the

necessity of the form of S, since the sufficiency is trivial. Set

(2.18) TLT−1 =

(
v 0
0 1/v

)
.

By our assumptions, v − 1/v has at most finitely many zeros on S
1. Note

also that 1/v = v on S
1.

i) Now, assume that S ∈ ΛG
C
t unitarizes L. Let ST−1 = UG+ be the

Iwasawa splitting of ST−1 and set

(2.19) G+ =

(
a b
c d

)
,

then
(

v + bc(v − 1/v) ab(1/v − v)
cd(v − 1/v) 1/v + bc(1/v − v)

)
(2.20)

= G+

(
v 0
0 1/v

)
G−1

+ = U−1 · SLS−1 · U

is unitary, i.e.,

(2.21) bc(1/v − v) = bc(v − 1/v), cd(v − 1/v) = −ab(1/v − v) on S
1.

The first identity of (2.21) implies that bc is real on S
1. Hence, bc has a

holomorphic extension to the whole Riemann sphere S
2, since it is holomor-

phic inside D (because b, c ∈ W+). So, bc is constant and actually equals 0,

since b(0)c(0) = 0. Thus, either b = 0 or c = 0. Moreover, ad = ad− bc = 1.

Therefore, the second identity of (2.21) yields that b = c = 0, i.e., G+ is

diagonal.

iii) By our assumptions, there is an s ∈ (0, 1) such that L and its

eigenvalues v and 1/v are holomorphic on N := D1/s \ Ds, v − 1/v does
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not have any zero on N \ S
1, and T is holomorphic on N \ S

1. Fix an

r ∈ (s, 1). Note that this r can be as close to 1 as one wants. Now, assume

that S ∈ ΛrG
C
t unitarizes L. Let ST−1 = UG+ be the r-Iwasawa splitting

of ST−1 and define a, b, c and d by (2.19). Then, U−1 ·SLS−1 ·U is given by

(2.20) and is r-unitary. Thus, ab, bc and cd have meromorphic extensions

to D1/r, their poles in D1/r are on S
1, and

(2.22) bc = bc, ab = −cd on S
1.

So, ab, bc, cd and ad = 1 + bc are meromorphic functions on the whole

Riemann sphere S
2 with poles only on S

1, and bc is real on S
1. Since

ad · bc = ab · cd on Dr and hence on S
2, from the second identity of (2.22)

we obtain that ad · bc = −ab · ab on S
1, which together with ad = 1 + bc

yield that

(2.23) (1 + bc)bc = −ab · ab ≤ 0 on S
1.

The reality of bc on S
1 now implies that −1 ≤ bc ≤ 0 on S

1. Thus, bc does

not have any pole on S
1 and hence is actually holomorphic on the whole

Riemann sphere S
2. The rest of the arguments for this part are the same

as the corresponding ones for Part i).

Next, we show Parts ii) and iv). We note that Parts i) and iii) are

also true for the untwisted loop group (in this setting, B is replaced by

the subgroup of SL(2, C) consisting of the upper triangular matrices with

positive diagonal), since for any G+ given by (2.19) in the untwisted version

of Λ+
B

G
C
t or Λ+

r,BG
C
t we still have that c(0) = 0.

ii) Let S, U , G+, a, b, c and d be as in the proof of Part i). Set

(2.24) T∗ =
i√
2

(
1 1
1 −1

)
,

then T∗ ∈ SU(2), and

(2.25) T∗

(
v

R
iv

I

iv
I

v
R

)
T−1
∗

=

(
v 0
0 1/v

)
,

which is only in the untwisted loop group in general. Note that T∗T di-

agonalizes L. Split G+ into its constant term times its “strictly positive
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part”:

G+(λ) =

(
eα0 0
0 e−α0

)
G++(λ)(2.26)

=

(
eα0 0
0 e−α0

)
(I + G1λ + G2λ

2 + · · · )

with α0 ∈ R. Then, the Iwasawa splitting of S(T∗T )−1 = UG+T−1
∗

in the

untwisted loop group is

UT−1
∗

1

β

(
coshα0 − sinhα0

sinhα0 coshα0

)
·
(

β (β + 1
β ) tanhα0

0 1
β

)
T∗G++T−1

∗
,(2.27)

where β =
√

cosh2 α0 + sinh2 α0. Thus,

(2.28)

(
β (β + 1

β ) tanh α0

0 1
β

)
T∗G++T−1

∗

is diagonal. So, α0 = 0, and T∗G++T−1
∗

= diag{d++, 1/d++} for some

invertible d++ ∈ W+ satisfying d++(0) = 1. Hence, G+ is given by (2.17)

with α+ ∈ W+ such that eα+ = d++. From G+ ∈ Λ+
G

C
t and the identity

(2.29)

(
cosh γ sinhγ
sinh γ cosh γ

)(
cosh δ sinh δ
sinh δ cosh δ

)
=

(
cosh(γ + δ) sinh(γ + δ)
sinh(γ + δ) cosh(γ + δ)

)

we see that α+ is odd.

iv) This part can be shown similar to Part ii).

Remark 2.30. In the odd case, i.e., in Parts ii) and iv), we just showed

that

(2.31) S = UT−1
∗

·
(

eα+ 0
0 e−α+

)
· T̂

with U ∈ ΛrGt, odd α+ ∈ W+
r and T̂ = T∗T , where r = 1 for Part ii).

We note that in Theorem 2.16, whence T is chosen, the factorization

S = UG+T of S with U in ΛGt or ΛrGt and G+ in Λ+
B

G
C
t or Λ+

r,BG
C
t comes

from the Iwasawa decomposition of ST−1, and hence is unique. Moreover,

Theorem 2.16 can be restated as the following: G+ either is diagonal or has

the form given by (2.17), and this is the only condition on S.
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Lower and upper triangular loop matrices

The following result gives a necessary and sufficient condition for unita-

rization via dressing for the lower triangular loop matrices. Note that now

we are in the even case.

Proposition 2.32. Let L ∈ ΛG
C
t be holomorphic on a neighborhood

of S
1 and satisfy (2.3). Assume that l12 = 0.

i) If l11 ≡ l22, then L is unitarizable via dressing if and only if L = ±I.

ii) If l11 6≡ l22, then L is unitarizable via dressing if and only if the

meromorphic function l21/(l11 − l22) does not have any pole on S
1, i.e., if

and only if the vanishing order of l21 at any λ0 ∈ S
1 is at least that of

l11 − l22 at λ0.

Proof. Since l12 = 0, the holomorphic eigenvalues of L are l11 and

l22. The trace conditions imply that on S
1, l11 and l22 are unimodular, and

l22 = 1/l11 = l11.

i) From l11 ≡ l22 we obtain that l11 ≡ l22 ≡ ±1 and hence the claim.

ii) Define T by (2.8) with v = l11, then T ∈ ΛrG
C
t for every real r 6= 1

sufficiently close to 1, and

(2.33) TLT−1 =

(
l11 0
0 l22

)
∈ ΛrGt

for each real r in a neighborhood of 1.

If l21/(l11 − l22) does not have any pole on S
1, then it is holomorphic

on a neighborhood of S
1, and hence T ∈ ΛG

C
t unitarizes L.

Conversely, assume that L is unitarizable via dressing, then there is a

G+ ∈ Λ+
G

C
t such that G+LG−1

+ ∈ ΛGt. Let r ∈ (0, 1) be sufficiently close

to 1. Then, G+LG−1
+ ∈ ΛrG

C
t , G+LG−1

+ is hence r-unitary, and G+ =

UD+T for some U ∈ ΛrGt and diagonal D+ ∈ Λ+
r G

C
t by Theorem 2.16

Part iii). From D+ = U−1G+T−1 we see that D+ has a continuous extension

to D with a finite number of points taken away that is holomorphic on D.

Set

(2.34) D+ =

(
d+ 0
0 1/d+

)
,

then

(2.35) U−1G+ = D+T =

(
d+ 0

l21/[(l22 − l11)d+] 1/d+

)
∈ ΛG

C
t .
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This implies that

(2.36) d+ ∈ W∗, l21/[(l11 − l22)d+] ∈ W.

As a consequence, l21/(l11 − l22) is in W and hence does not have any pole

on S
1.

Note that the above proof also shows that in the case of Part ii) of the

proposition, the general element of ΛGt unitarizing L is of the form UD+T ,

where U ∈ ΛGt, D+ ∈ Λ+
G

C
t is diagonal, and T is given by (2.8) with

v = l11.

Taking transpose inverse in the above proposition, one immediately

obtains the corresponding result for upper triangular loop matrices.

Necessity of using r-dressing

Now, we present some loop matrices that can be unitarized via r-

dressing with suitable r < 1, but not via dressing. So, in general, r-dressing

can not be replaced by dressing.

Example 2.37. For s ∈ (0,+∞) \ {1/4, 1/2}, let t = 1/2 − s and

(2.38) f(λ) = 2π
√

s2 + st(λ−2 + λ2) + t2.

Since s2+st(λ−2+λ2)+t2 is positive on S
1 and even in λ, Lemma 1.1 implies

that f is holomorphic on a neighborhood of S
1. Thus, by Proposition 2.32,

for any odd function g which is also holomorphic on a neighborhood of S
1,

(2.39) L(λ) =

(
eif(λ) 0

g(λ) e−if(λ)

)
∈ ΛG

C
t

is unitarizable via dressing if and only if ±1 are zeros of g of order ≥ 2. This

is because ±1 are the only zeros of 2i sin f = eif − e−if , and they are double

zeros. Note that L is always unitarizable via r-dressing for each r ∈ (0, 1)

sufficiently close to 1.

In particular, the case with g(λ) = λ yields

(2.40)

(
eif(λ) 0

λ e−if(λ)

)
∈ ΛG

C
t ,

which is not unitarizable via dressing, but always unitarizable via r-dressing

for each r ∈ (0, 1) sufficiently close to 1.
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§3. Simultaneous unitarization of two loop matrices

In this section, we give conditions for the simultaneous unitarization of

two loop matrices and show that under these conditions, there is a unique

element of Λ+
r,BG

C
t unitarizing them, unless the two loop matrices commute.

As pointed out in the introduction, this uniqueness result will be used in

Section 5 to deal with the closing conditions.

If one of the two loop matrices to be simultaneously unitarized is equal

to I or −I, then we only need to unitarize the other one. So, in the rest

of this section, we will frequently exclude ±I from the two loop matrices to

be simultaneously unitarized.

Commutativity of two loop matrices

First, we characterize the commutativity of two given loop matrices in

terms of conditions on the loop matrices diagonalizing or anti-diagonalizing

them individually.

Proposition 3.1. Let 0 < r ≤ 1, and L1, L2 ∈ ΛrG
C
t \ {±I}. Assume

that for i = 1 and 2, there exists a Ti ∈ ΛrG
C
t such that TiLiT

−1
i is in

Λd
rGt∪Λa

rGt and holomorphic on a neighborhood of S
1
r. Then, the following

statements are equivalent :

i) L1 and L2 commute;

ii) T1 conjugates L1 and L2 both into Λd
rGt or both into Λa

rGt;

iii) L1 and L2 are both in the even case or both in the odd case, and

T∗T1T
−1
2 T−1

∗
is either diagonal or off-diagonal, where T∗ = I in the

even case and is given by (2.24) in the odd case.

Proof. Let i = 1 or 2. Set T̂i = T∗Ti, where T∗ = I if Li is in the even

case and T∗ is given by (2.24) if Li is in the odd case. Then, Di := T̂iLiT̂
−1
i

is diagonal, and its diagonal entries are holomorphic on a neighborhood of

S
1
r and not always equal. Thus, an S in the untwisted r-loop group ΛrG

C

diagonalizes Li if and only if S differs from T̂i by a diagonal or off-diagonal

factor on the left, and an off-diagonal factor on the left just interchanges

the diagonal entries of T̂iLiT̂
−1
i .

i) =⇒ ii). From T̂−1
1 D1T̂1L2 = L1L2 = L2L1 = L2T̂

−1
1 D1T̂1 we obtain

(3.2) D1 · T̂1L2T̂
−1
1 = T̂1L2T̂

−1
1 · D1,
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which implies that T̂1L2T̂
−1
1 is diagonal. Thus, if L1 is in the even case,

then T1 conjugates L1 and L2 both into Λd
rGt; if L1 is in the odd case, then

T1 conjugates L1 and L2 both into Λa
rGt.

ii) =⇒ i). This is trivial.

i) =⇒ iii). By Part ii), L1 and L2 are both in the even case or both in

the odd case. Substituting L2 = T̂−1
2 D2T̂2 into (3.2) yields that

(3.3) D1 · T̂1T̂
−1
2 D2T̂2T̂

−1
1 = T̂1T̂

−1
2 D2T̂2T̂

−1
1 · D1,

from which we see that T̂1T̂
−1
2 D2T̂2T̂

−1
1 is diagonal, and its entries are the

same as those of D2, but perhaps in different order. Thus, T∗T1T
−1
2 T−1

∗
=

T̂1T̂
−1
2 is either diagonal or off-diagonal.

iii) =⇒ i). Since now T̂1T̂
−1
2 D2T̂2T̂

−1
1 is diagonal by assumption, (3.3)

follows, and hence

(3.4) T̂−1
1 D1T̂1 · T̂−1

2 D2T̂2 = T̂−1
2 D2T̂2 · T̂−1

1 D1T̂1,

i.e., L1L2 = L2L1.

Convention. Suggested by the above proof, whenever TLT −1 is in

Λd
rGt ∪Λa

rGt and holomorphic on a neighborhood of S
1
r for some r ∈ (0, 1],

we set T̂ = T∗T , where T∗ = I if L is in the even case and T∗ is given by

(2.24) if L is in the odd case.

Simultaneous unitarization of two loop matrices via dressing

Now, we study the simultaneous unitarization of two loop matrices via

dressing. It turns out that when the two loop matrices do not commute,

there is at most one element of Λ+
B

G
C
t simultaneously unitarizing them.

Theorem 3.5. Let L1, L2 ∈ ΛG
C
t \ {±I} be holomorphic on a neigh-

borhood of S
1. Assume that for i = 1 and 2, there exists a Ti ∈ ΛG

C
t such

that TiLiT
−1
i is in Λd

Gt ∪ Λa
Gt, and let T̂i be as in the above convention.

Set

(3.6) T̂1T̂
−1
2 =

(
a b
c d

)
.

Then, L1 and L2 can be simultaneously unitarized via dressing if and only

if either b = c = 0, or a = d = 0, or

(3.7) abcd 6≡ 0, and
d

a
, − c

b
are always finite, real and positive on S

1.
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In the first two cases, L1 and L2 commute; while in the last case, there is a

unique element of Λ+
B

G
C
t simultaneously unitarizing L1 and L2.

Proof. By Proposition 3.1, L1 and L2 can be simultaneously conjugated

into Λd
Gt or into Λa

Gt if and only if T̂1T̂
−1
2 is either diagonal or off-diagonal,

i.e., if and only if L1 and L2 commute. So, for the rest of this proof, we can

assume that T̂1T̂
−1
2 is neither diagonal nor off-diagonal.

For i = 1 and 2, let T∗,i = I if Li is in the even case and T∗,i equals the

matrix in (2.24) if Li is in the odd case.

From Parts i) and ii) of Theorem 2.16 we know that L1 and L2 can

be simultaneously unitarized via dressing using an S ∈ ΛG
C
t if and only if

there are U1, U2 ∈ ΛG and G1, G2 ∈ Λ+
B

G
C
t such that each of G1 and G2

is diagonal or has the form given in (2.17), and S = U1G1T1 = U2G2T2.

The latter is equivalent to S = V1K1T̂1 = V2K2T̂2, where Vi = UiT
−1
∗,i and

Ki = T∗,iGiT
−1
∗,i for i = 1 and 2. Note that K1 and K2 are diagonal by

Remark 2.30, and that V1, V2, K1, K2, T̂1 and T̂2 are only in the untwisted

loop group ΛG
C in general, and V1 and V2 are in ΛG.

Now, assume that L1 and L2 can be simultaneously unitarized via

dressing. Then, using the notation of the last paragraph, K1T̂1T̂
−1
2 K−1

2 =

V −1
1 V2 ∈ ΛG

C is unitary. Set

(3.8) Ki =

(
ki 0
0 1/ki

)
for i = 1 and 2.

Then,

(3.9) K1T̂1T̂
−1
2 K−1

2 =

(
ak1/k2 bk1k2

c/(k1k2) dk2/k1

)
,

and hence

(3.10) dk2/k1 = ak1/k2, c/(k1k2) = −bk1k2 on S
1.

So, none of a, b, c and d is identically zero on S
1 (since T̂1T̂

−1
2 is neither

diagonal nor off-diagonal by our assumption), and d/a and −c/b are always

finite, real and actually positive on S
1. Thus, (3.7) is necessary.

Conversely, to show sufficiency, assume that (3.7) is true. By the

Birkhoff decomposition on S
1,

(3.11)
d(λ)

a(λ)
=

1

m1
λmf−(λ)f+(λ) on S

1,
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where m1 is a non-zero constant, m ∈ Z, f− ∈ W− never vanishes on

E := {|λ| ≥ 1} ∪ {∞} and satisfies f−(∞) = 1, while f+ ∈ W+ never

vanishes on D and satisfies f+(0) = 1. By the uniqueness of the Birkhoff

decomposition, the reality of d/a on S
1 is equivalent to that

(3.12) m1 ∈ R, m = 0, f+(λ) = f−(λ) on S
1.

Thus,

(3.13)
d(λ)

a(λ)
=

1

m1
f+(λ)f+(λ) on S

1.

The positivity of d/a on S
1 then implies that m1 > 0. Similarly,

(3.14) − c(λ)

b(λ)
= n1g+(λ)g+(λ) on S

1,

where n1 > 0, and g+ ∈ W+ never vanishes on D and satisfies g+(0) = 1.

Set

(3.15) k1 = (n1/m1)
1/4(f+g+)1/2, k2 = (m1n1)

1/4(g+/f+)1/2 on D.

The roots here are possible since f+ and g+ can be represented in the form

exph+ with h+ ∈ W+. Then, k1 and k2 belong to W+, never vanish on

D, and satisfy (3.10). Note that k1(0) > 0 and k2(0) > 0. Define K1 and

K2 by (3.8), then we have (3.9), and hence V := K1T̂1T̂
−1
2 K−1

2 ∈ ΛG
C is

unitary. Moreover, from (3.10) or direct calculations we deduce that

(3.16) k2
1k1

2
= − cd

ab
, k2

2k2
2

= − ac

bd
= − ac

bd
on S

1.

Next, we proceed in three non-overlapping situations separately.

If L1 and L2 are both in the even case, then T̂1T̂
−1
2 = T1T

−1
2 , which

implies that a and d are even in λ, while b and c are odd in λ. Thus, cd/ab

and ac/(bd) are even in λ. By (3.16) and Lemma 1.3, k1 and k2 are also

even in λ. Hence, Gi := Ki ∈ Λ+
B

G
C
t for i = 1 and 2, and U := V =

K1T1T
−1
2 K−1

2 ∈ ΛGt. So, L1 and L2 can be simultaneously unitarized via

dressing using G1T1 = UG2T2.

If one of L1 and L2 is in the even case and the other is in the odd case,

without loss of generality, we can assume that L1 is in the even case and L2

is in the odd case. Set

(3.17) T1T
−1
2 =

(
ã b̃

c̃ d̃

)
.
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Then, ã and d̃ are even in λ, b̃ and c̃ are odd in λ, and

(3.18)
cd

ab
=

c̃2 − d̃2

ã2 − b̃2
,

ac

bd
=

ac

bd
=

(ã + b̃)(c̃ + d̃)

(ã − b̃)(c̃ − d̃)
=

(ã + b̃)(c̃ + d̃)

(ã − b̃)(c̃ − d̃)
.

So, cd/ab is even in λ, and

(3.19)
( ac

bd

)
(−λ) =

( bd

ac

)
(λ).

Thus, by (3.16) and Lemma 1.3, k1 is even in λ, and k2 = eα2 for some odd

α2 ∈ W+. Then, we deduce that G1 := K1 ∈ Λ+
B

G
C
t , G2 := (T∗,2)

−1K2T∗,2

∈ Λ+
B

G
C
t , and

(3.20) U := V T∗,2 = K1 · T1T
−1
2 · T−1

∗,2 K−1
2 T∗,2 = G1 · T1T

−1
2 · G−1

2 ∈ ΛGt.

Thus, G1T1 = UG2T2 simultaneously unitarizes L1 and L2.

If L1 and L2 are both in the odd case, similarly we can show that

ki = eαi with an odd αi ∈ W+ and Gi := T−1
∗,i KiT∗,i ∈ Λ+

B
G

C
t for i = 1 and

2, and U := T−1
∗,1 V T∗,2 = G1 · T1T

−1
2 ·G−1

2 ∈ ΛGt. Hence, L1 and L2 can be

simultaneously unitarized via dressing using G1T1 = UG2T2.

Moreover, k1 and k2 are uniquely determined by (3.16), k1(0) > 0 and

k2(0) > 0. Hence, in any case, G1 and G2 in Λ+
B

G
C
t are also unique.

Therefore, the unique element of Λ+
B

G
C
t that simultaneously unitarizes L1

and L2 is the Λ+
B

G
C
t -part in the Iwasawa splitting of G1T1, i.e., that of

G2T2.

Remark 3.21. In the case of the above theorem where L1 and L2 do

not commute, up to a unitary factor on the left, the only element of ΛG
C
t

simultaneously unitarizing L1 and L2 is

(3.22) G1T1 = T−1
∗,1

((
− cd

ab

)1/4
0

0
(
− ab

cd

)1/4

)
T∗,1T1,

where T∗,1 is determined by L1. The Λ+
B

G
C
t -part of the diagonal matrix in

(3.22) is K1 in the above proof. Such an element of ΛG
C
t can also be given

by

(3.23) G2T2 = T−1
∗,2

((
− ac

bd

)1/4
0

0
(
− bd

ac

)1/4

)
T∗,2T2,

where T∗,2 is determined by L2. The Λ+
B

G
C
t -part of the diagonal matrix in

(3.23) is K2 in the above proof.

https://doi.org/10.1017/S0027763000025824 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025824


UNITARIZATION OF LOOP GROUP REPRESENTATIONS 21

Simultaneous unitarization of two loop matrices via r-dressing

Next, we deal with the simultaneous unitarization of two loop matrices

via r-dressing with r < 1 and, when they do not commute, find a unique

element of Λ+
r,BG

C
t to do so.

Theorem 3.24. Let L1, L2 ∈ ΛG
C
t be holomorphic on a neighborhood

of S
1 and satisfy (2.3). Assume that for i = 1 and 2, the two holomorphic

eigenvalues of Li are not always equal on S
1. For i = 1 and 2, let Ti be

the matrix given by (2.7) or (2.8) or (2.9) or (2.12) or (2.13) for Li, and

define T̂i by the above convention. Moreover, set

(3.25)

(
a b
c d

)
= T̂1T̂

−1
2 .

Then, L1 and L2 can be simultaneously unitarized via r-dressing for some

r ∈ (0, 1) sufficiently close to 1 if and only if either b = c = 0, or a = d = 0,

or as meromorphic functions on a neighborhood of S
1,

(3.26)

abcd 6≡ 0, and
d

a
, − c

b
are real and non-negative on S

1 (away from poles).

In the first two cases, L1 and L2 commute; while in the last case, there is

a unique element of Λ+
r,BG

C
t simultaneously unitarizing L1 and L2, and we

can choose r such that it can be replaced by any number in (r, 1).

Proof. Fix an r ∈ (0, 1) such that L1, L2 and their eigenvalues are

holomorphic on N := D1/s \ Ds for some s ∈ (0, r), T1 and T2 are holomor-

phic on N \ S
1, and each of a, b, c and d is either identically zero or never

zero on N \ S
1. Since this r can be replaced by any number between r and

1, we only need to consider this r.

By Proposition 3.1, L1 and L2 can be simultaneously conjugated into

Λd
rGt or into Λa

rGt if and only if T̂1T̂
−1
2 is either diagonal or off-diagonal,

i.e., if and only if L1 and L2 commute. So, for the rest of this proof, we can

assume that T̂1T̂
−1
2 is neither diagonal nor off-diagonal.

For i = 1 and 2, let T∗,i = I if Li is in the even case and T∗,i equals the

matrix in (2.24) if Li is in the odd case.

By Parts iii) and iv) of Theorem 2.16, L1 and L2 can be simultaneously

unitarized via r-dressing using an S ∈ ΛrG
C
t if and only if there are U1, U2 ∈

ΛrGt and G1, G2 ∈ Λ+
r,BG

C
t such that each of G1 and G2 is diagonal or
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has the form given in (2.17), and S = U1G1T1 = U2G2T2. The latter is

equivalent to S = V1K1T̂1 = V2K2T̂2, where Vi = Ui(T∗,i)
−1 and Ki =

T∗,iGi(T∗,i)
−1 for i = 1 and 2. Note that K1 and K2 are diagonal by

Remark 2.30, and that V1, V2, K1, K2, T̂1 and T̂2 are only in the untwisted

r-loop group ΛrG
C in general, and V1 and V2 are in ΛrG.

Now, assume that L1 and L2 can be simultaneously unitarized via r-

dressing. Then, using the notation of the last paragraph, K1T̂1T̂
−1
2 K−1

2 =

V −1
1 V2 ∈ ΛrG

C is r-unitary. Define k1 and k2 by (3.8), then (3.9) holds.

Thus, the entries of K1T̂1T̂
−1
2 K−1

2 have holomorphic extensions to D1/r \Dr

and extend continuously to S1/r, and for λ ∈ D1/r \ Dr,

(3.27) (dk2/k1)(λ) = (ak1/k2)(1/λ), (c/(k1k2))(λ) = −(bk1k2)(1/λ).

So, abcd 6≡ 0 on S
1, k1k2 and k1/k2 have meromorphic extensions to D1/r\Dr

and extend continuously to S1/r, and for λ ∈ D1/r \ Dr,

(3.28)
( k1

k2

)
(λ) ·

( k1

k2

)
(1/λ) =

d(λ)

a(1/λ)
, (k1k2)(λ) · (k1k2)(1/λ) = − c(λ)

b(1/λ)
.

On S
1 (with a finite number of points taken away), (3.28) can be rewritten

as

(3.29)
( k1

k2

)
·
( k1

k2

)
=

d

a
, k1k2 · k1k2 = − c

b
,

and the expressions in (3.28) are the unique meromorphic extensions of the

ones here. By (3.29), as meromorphic functions, d/a and −c/b are real and

non-negative on S
1. Thus, (3.26) is necessary.

Conversely, to show sufficiency, assume that (3.26) is true. Then, each

zero or pole of d(λ)/a(1/λ) on S
1 has an even order. So,

(3.30)
d(λ)

a(1
/
λ)

= f(λ)

∏m2

i=1(1 − λ/λ+
i )(1 − λ+

i /λ)∏m3

j=1(1 − λ/λ−

j )(1 − λ−

j /λ)
on N ,

where m2,m3 ∈ N∪{0}, λ+
1 , λ+

2 , . . . , λ+
m2

, λ−

1 , λ−

2 , . . . , λ−

m3
∈ S

1 (it is possible

that some of them repeat) such that λ+
i 6= λ−

j for any i and j, and f is

holomorphic and never vanishes on N . By the Birkhoff decomposition on

S
1,

(3.31) f(λ) =
1

m1
λmf−(λ)f+(λ) on N ,
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where m1 is a non-zero constant, m ∈ Z, f− ∈ W− never vanishes on

E = {|λ| ≥ 1} ∪ {∞} and satisfies f−(∞) = 1, while f+ ∈ W+ never

vanishes on D and satisfies f+(0) = 1. The reality of d(λ)/a(1/λ) on S
1 is

equivalent to that

(3.32) m1 ∈ R, m = 0, f+(1/λ) = f−(λ) on N .

In total, we have that

(3.33)
d(λ)

a(1/λ)
=

1

m1
f+(1/λ)f+(λ)

∏m2

i=1(1 − λ/λ+
i )(1 − λ+

i /λ)∏m3

j=1(1 − λ/λ−

j )(1 − λ−

j /λ)
on N .

Since d/a is non-negative on S
1, we obtain that m1 > 0. Similarly,

(3.34) − c(λ)

b(1/λ)
= n1g+(1/λ)g+(λ)

∏n2

i=1(1 − λ/ν+
i )(1 − ν+

i /λ)∏n3

j=1(1 − λ/ν−

j )(1 − ν−

j /λ)
on N ,

where n1 > 0, n2, n3 ∈ N ∪ {0}, ν+
1 , ν+

2 , . . . , ν+
n2

, ν−

1 , ν−

2 , . . . , ν−

n3
∈ S

1 such

that ν+
i 6= ν−

j for any i and j, and g+ is a never-vanishing holomorphic

function on D1/s satisfying g+(0) = 1. Set

k1(λ) =
( n1

m1

)1/4
[

f+(λ)g+(λ)
∏m2

i=1(1 − λ/λ+
i )
∏n2

k=1(1 − λ/ν+
k )∏m3

j=1(1 − λ/λ−

j )
∏n3

l=1(1 − λ/ν−

l )

]1/2

,

(3.35)

k2(λ) = (m1n1)
1/4

[
g+(λ)

∏m3

j=1(1 − λ/λ−

j )
∏n2

k=1(1 − λ/ν+
k )

f+(λ)
∏m2

i=1(1 − λ/λ+
i )
∏n3

l=1(1 − λ/ν−

l )

]1/2

(3.36)

on D. Then, k1 and k2 belong to W+
r , never vanish on D, have continu-

ous extensions to S
1 with at most a finite number of points taken away,

and satisfy (3.28) on D \ Dr. Thus, we have (3.27) on D \ Dr. Note

that k1(0) > 0 and k2(0) > 0. Define K1 and K2 by (3.8), and consider

V := K1T̂1T̂
−1
2 K−1

2 ∈ ΛrG
C. Since only k1k2 and k1/k2 occur in V , it

is meromorphic on N . By (3.27), V is unitary and hence stays uniformly

bounded at its continuous points on S
1. Thus, the finitely many singulari-

ties of V on S
1 are removable. Therefore, V is r-unitary. Moreover, (3.28)

then holds on N , and hence

(3.37)

k2
1(λ)k2

1(1/λ) = − (cd)(λ)

(ab)(1/λ)
, k2

2(λ)k2
2(1/λ) = − (ac)(1/λ)

(bd)(λ)
on N .
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Next, we proceed in three non-overlapping situations separately. Since the

remaining arguments are similar to the corresponding ones in the proof of

Theorem 3.5, we will only sketch them.

If L1 and L2 are both in the even case, then cd/ab and ac/(bd) are

even in λ. By (3.37) and Lemma 1.3, k1 and k2 are also even in λ. Hence,

Gi := Ki ∈ Λ+
r,BG

C
t for i = 1 and 2, and U := V = K1T1T

−1
2 K−1

2 ∈ ΛrGt.

So, L1 and L2 can be simultaneously unitarized via r-dressing using G1T1 =

UG2T2.

If one L1 and L2 is in the even case and the other is in the odd case,

without loss of generality, we can assume that L1 is in the even case and L2

is in the odd case. So, cd/ab is even in λ, and

(3.38)
( ac

bd

)
(−λ) =

( bd

ac

)
(λ) on S

1.

Thus, by (3.37) and Lemma 1.3, k1 is even in λ, and k2 = eα2 for some

odd α2 ∈ W+ ⊂ W+
r . Then, we deduce that G1 := K1 ∈ Λ+

r,BG
C
t , G2 :=

(T∗,2)
−1K2T∗,2 ∈ Λ+

r,BG
C
t , and U := V T∗,2 = G1 · T1T

−1
2 · G−1

2 ∈ ΛrGt.

Thus, G1T1 = UG2T2 simultaneously unitarizes L1 and L2.

If L1 and L2 are both in the odd case, then Gi := T−1
∗,i KiT∗,i ∈ Λ+

r,BG
C
t

for i = 1 and 2, and U := T−1
∗,1 V T∗,2 = G1 · T1T

−1
2 · G−1

2 ∈ ΛrGt. Hence,

L1 and L2 can be simultaneously unitarized via r-dressing using G1T1 =

UG2T2.

Moreover, k1 and k2 are uniquely determined by (3.37), k1(0) > 0 and

k2(0) > 0. Hence, in any case, G1 and G2 in Λ+
r,BG

C
t are also unique.

Therefore, the unique element of Λ+
r,BG

C
t that simultaneously unitarizes L1

and L2 is the Λ+
r,BG

C
t -part in the Iwasawa splitting of G1T1, i.e., that of

G2T2.

Remark 3.39. In the case of the above theorem where L1 and L2 do not

commute, up to a unitary factor on the left, the meromorphic extension to S
1

of the only element of ΛrG
C
t simultaneously unitarizing L1 and L2 is given

by (3.22) with T∗,1 determined by L1. The Λ+
r,BG

C
t -part of the diagonal

matrix in (3.22) is K1 in the above proof. The meromorphic extension to S
1

of such an element of ΛrG
C
t can also be given by (3.23) with T∗,2 determined

by L2. The Λ+
r,BG

C
t -part of the diagonal matrix in (3.23) is K2 in the above

proof.
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Remark 3.40. We note that our above proof of Theorem 3.24 actually

shows the following fact: when L1 is diagonal or anti-diagonal, there exists

an r ∈ (0, 1), as close to 1 as one wants, such that Λ+
r G

C
t contains an element

S which commutes with L1 and unitarizes L2, i.e.,

(3.41) SL1S
−1 = L1, SL2S

−1 is r-unitary.

In fact, if L1 is diagonal or anti-diagonal, then T1 = I and we can take

S = T−1
∗

K1T∗, where T∗ is determined by L1. A similar statement is true

when L1 is an s-unitary conjugate of its diagonal or anti-diagonal form for

some s ∈ [r, 1).

Remark 3.42. From (3.35) and (3.36) we see that in general, the K1

and K2 produced in the above proof can not be meromorphically extended to

the whole S
1. Thus, in general, the loop matrix simultaneously unitarizing

L1 and L2 is not meromorphic on any neighborhood of S
1.

Some examples

Now, we apply Theorems 3.5 and 3.24 to several special subcases. We

start with the subcase where the two loop matrices to be simultaneously

unitarized are both lower triangular, while the subcase where the two loop

matrices are both upper triangular can be treated very similarly. Note that

now we are in the even case in the sense of Section 2.

Corollary 3.43. Consider

(3.44) L1 =

(
eif 0
p e−if

)
, L2 =

(
eig 0
q e−ig

)

in ΛG
C
t with real-valued f and g in W. Assume that f , g, p and q are holo-

morphic on a neighborhood of S
1, and none of sin f and sin g is identically

0 on S
1.

i) The matrices L1 and L2 can be simultaneously unitarized via dressing

if and only if p/ sin f and q/ sin g are always finite on S
1 and L1 and L2

commute, if and only if

(3.45)
p

sin f
and

q

sin g
are always finite and equal on S

1.

In particular, if p = 0 and q 6= 0 in W, then L1 and L2 can not be simulta-

neously unitarized via dressing.
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ii) The matrices L1 and L2 can be simultaneously unitarized via r-

dressing for some r ∈ (0, 1) sufficiently close to 1 if and only if they com-

mute, i.e., if and only if

(3.46)
p

sin f
=

q

sin g
on S

1

as meromorphic functions. In this case, there is a unique element of Λ+
r,BG

C
t

simultaneously unitarizing L1 and L2, and we can choose r such that it can

be replaced by any number in (r, 1). In particular, if furthermore p = 0

and q 6= 0 in W, then L1 and L2 can not be simultaneously unitarized via

r-dressing for any r ∈ (0, 1) sufficiently close to 1.

Proof. Our assumptions and Proposition 2.32 imply that if L1 and L2

are unitarizable via dressing, then p/ sin f and q/ sin g are always finite on

S
1. So, following the proof of Theorem 2.6, in this subcase we can take

(3.47) T1 =

(
1 0
ip

2 sin f 1

)
, T2 =

(
1 0
iq

2 sin g 1

)
.

Then,

(3.48) T1T
−1
2 =

(
1 0

ip
2 sin f − iq

2 sin g 1

)
.

Therefore, our results follow directly from Theorems 3.5 and 3.24.

Next, we examine the subcase where one of the two loop matrices is

lower triangular and the other one is upper triangular. This subcase is also

motivated by some situation in the construction of constant mean curvature

trinoids. Note that we are again in the even case.

Corollary 3.49. Consider

(3.50) L1 =

(
eif 0
p e−if

)
, L2 =

(
e−ig q
0 eig

)

in ΛG
C
t with real-valued f and g in W. Assume that f , g, p and q are

holomorphic on a neighborhood of S
1, and none of sin f , sin g, p and q is

identically 0 on S
1.
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i) The matrices L1 and L2 can be simultaneously unitarized via dressing

if and only if

(3.51)
p

sin f
,

q

sin g
are always finite, pq is real, −4 <

pq

sin f sin g
< 0 on S

1.

In this case, there is a unique element of Λ+
B

G
C
t simultaneously unitarizing

L1 and L2.

ii) The matrices L1 and L2 can be simultaneously unitarized via r-

dressing for some r ∈ (0, 1) sufficiently close to 1 if and only if

(3.52) 4 sin f sin g + pq 6≡ 0, pq is real, −4 ≤ pq

sin f sin g
≤ 0 on S

1

as meromorphic functions. In this case, there is a unique element of Λ+
r,BG

C
t

simultaneously unitarizing L1 and L2, and we can choose r such that it can

be replaced by any number in (r, 1).

Note that the inequalities in (3.52) imply, for example, that the zeros

of sin f sin g on S
1 are among the ones of pq on S

1.

Proof. i) By our assumptions and Proposition 2.32, if L1 and L2 are

unitarizable via dressing, then p/ sin f and q/ sin g are always finite on S
1.

So, following the proof of Theorem 2.6, in this subcase we can take

(3.53) T1 =

(
1 0
ip

2 sin f 1

)
, T2 =

(
1 iq

2 sin g

0 1

)
.

Then,

(3.54) T1T
−1
2 =

(
1 − iq

2 sin g
ip

2 sin f
pq

4 sin f sin g + 1

)
.

Thus, by Theorem 3.5, L1 and L2 can be simultaneously unitarized via

dressing if and only if

(3.55)
p

sin f
,

q

sin g
are always finite, − p sin g

q sin f
,

pq

4 sin f sin g
+ 1 ∈ (0,+∞) on S

1.

Assume that p/ sin f and q/ sin g are always finite on S
1. Since

(3.56)
p sin g

q sin f
=

pq

sin f sin g

/ qq

sin2 g
,
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p sin g/(q sin f) is real and negative on S
1 if and only if pq is real on S

1 and

(3.57)
pq

sin f sin g
< 0 on S

1.

Hence, L1 and L2 can be simultaneously unitarized via dressing if and only

if the conditions of (3.51) are satisfied.

ii) The proof of this part is similar to that of the above part, and the

only difference is that here we use Theorem 3.24 instead of Theorem 3.5.

We remark that the conditions (3.51) and (3.52) appear in different

forms in [7] and [1] under the additional assumption that L1L2 is also uni-

tarizable.

§4. Simultaneous unitarization of three or more loop matrices

In this section, we present conditions for the simultaneous unitarizabil-

ity of three or more loop matrices and show that under these conditions,

there is a unique element in Λ+
r,BG

C
t unitarizing them, unless the loop ma-

trices all commute. As pointed out in the introduction, this uniqueness

result will be used in Section 5 to deal with the closing conditions.

Simultaneous unitarization of three loop matrices

First, we consider the simultaneous unitarization of three loop matrices

via dressing or r-dressing with r ∈ (0, 1). We will see that this case is crucial

for the case of four or more loop matrices.

Theorem 4.1. Let L1, L2, L3 ∈ ΛG
C
t \ {±I} be holomorphic on a

neighborhood of S
1. Suppose that neither L1 and L2 nor L2 and L3 com-

mute.

i) For i = 1, 2 and 3, assume that Ti ∈ ΛG
C
t conjugates Li into Λd

Gt∪
Λa

Gt, and define T̂i from Ti as in Section 3. Set

(4.2) T̂1T̂
−1
2 =

(
a b
c d

)
, T̂2T̂

−1
3 =

(
e f
g h

)
.

Then, L1, L2 and L3 can be simultaneously unitarized via dressing if and

only if Li and Li+1 can be simultaneously unitarized via dressing for i = 1

and 2 and

(4.3) acef = bdgh on S
1.
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In this case, there is a unique element of Λ+
B

G
C
t simultaneously unitarizing

L1, L2 and L3.

ii) For i = 1, 2 and 3, assume that the two holomorphic eigenvalues of

Li are not always equal on S
1, let Ti be given by (2.7) or (2.8) or (2.9) or

(2.12) or (2.13) for Li, and define T̂i from Ti as in Section 3. Then, L1, L2

and L3 can be simultaneously unitarized via r-dressing for some r ∈ (0, 1)

sufficiently close to 1 if and only if Li and Li+1 can be simultaneously unita-

rized via r-dressing for i = 1 and 2 and (4.3) is satisfied by the meromorphic

functions a, b, . . . , h defined by (4.2). In this case, there is a unique element

of Λ+
r,BG

C
t simultaneously unitarizing L1, L2 and L3, and we can choose r

such that it can be replaced by any number in (r, 1).

Proof. i) Assume that Li and Li+1 can be simultaneously unitarized

via dressing for i = 1 and 2. Then, by Theorem 3.5 and our assumptions,

(4.4) bdef 6≡ 0,
ac

bd
and

gh

ef
are always finite, real and negative on S

1.

By Remark 3.21, the elements of ΛG
C
t simultaneously unitarizing L1 and

L2 have the form

(4.5) ULT−1
∗

((
− ac

bd

)1/4
0

0
(
− bd

ac

)1/4

)
T∗T2 with UL ∈ ΛGt,

and the elements of ΛG
C
t simultaneously unitarizing L2 and L3 have the

form

(4.6) URT−1
∗



(
− gh

ef

)1/4
0

0
(
− ef

gh

)1/4


T∗T2 with UR ∈ ΛGt,

where in both cases T∗ is determined by L2. Since the matrices given by

(4.5) and (4.6) both unitarize L2 and the two diagonal matrices in them

have positive diagonal entries, the uniqueness of such splitting implies that

L1, L2 and L3 can be simultaneously unitarized via dressing if and only if

the two diagonal matrices are equal, i.e., if and only if (4.3) holds.

ii) The proof of this part is similar to that of the above part, but uses

Theorem 3.24 and Remark 3.39 in place of Theorem 3.5 and Remark 3.21.
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We would like to point out that the case where L1 and L3 commute and

T3 = T1 is a special case of the above theorem. In this case, (4.3) follows

directly from (3.7) or (3.26).

The following example shows that in general, the simultaneous unita-

rizability via dressing of every pair of at least three loop matrices does not

imply the simultaneous unitarizability via dressing of all the loop matrices.

Example 4.7. Let r ∈ (0, 1], k > 1, l ∈ (1/k, 1) ∪ (1, k) and t ∈ (0, π).

Define T2 = I,

(4.8) T1(λ) =
1√

1 + k2

(
k iλ

i/λ k

)
, T3(λ) =

1√
1 + k2

(
k/l −ilλ

−i/l/λ kl

)
.

Consider

(4.9) L1 = T−1
1 L2T1, L2 =

(
eit 0
0 e−it

)
, L3 = T−1

3 L2T3.

Then, for each i ∈ {1, 2, 3}, Ti and Li are in ΛrG
C
t , Ti diagonalizes Li into

ΛrGt (hence Li is in the even case), and the difference of the holomorphic

eigenvalues of Li does not have any zero on S
1. By Theorems 3.5 and 3.24,

from

T1T
−1
2 = T1,(4.10)

T2T
−1
3 =

1√
1 + k2

(
kl ilλ

i/l/λ k/l

)
,(4.11)

T1T
−1
3 =

1

1 + k2

(
k2l − 1/l ik(l + 1/l)λ

ik(l + 1/l)/λ k2/l − l

)
(4.12)

and our assumptions we see that any two of L1, L2 and L3 can be simulta-

neously unitarized via r-dressing. However, since

(4.13)
k · i/λ
iλ · k = −1,

i/l/λ · k/l

kl · ilλ
= − 1

l4
6= −1 on S

1,

L1, L2 and L3 can not be simultaneously unitarized via r-dressing by The-

orem 4.1.

Simultaneous unitarization of four or more loop matrices

Finally, we consider the simultaneous unitarization of four or more loop

matrices via dressing or r-dressing with r ∈ (0, 1).
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Theorem 4.14. Let m ≥ 4 be an integer. Assume that L1, L2, . . . , Lm

∈ ΛG
C
t \ {±I} are holomorphic on a neighborhood of S

1.

i) If L1, L2, . . . and Lm can be individually conjugated into Λd
Gt ∪

Λa
Gt by elements of ΛG

C
t , then they can be simultaneously unitarized via

dressing if and only if each consecutive triple Li, Li+1 and Li+2 can be

simultaneously unitarized via dressing. In this case, if not all of L1, L2, . . .

and Lm commute, then there is a unique element of Λ+
B

G
C
t simultaneously

unitarizing L1, L2, . . . and Lm.

ii) Suppose that for each i ∈ {1, 2, . . . ,m}, the two holomorphic eigen-

values of Li are not always equal on S
1. Then, L1, L2, . . . and Lm can be

simultaneously unitarized via r-dressing for some r ∈ (0, 1) sufficiently close

to 1 if and only if each consecutive triple Li, Li+1 and Li+2 can be simulta-

neously unitarized via r-dressing. In this case, if not all of L1, L2, . . . and

Lm commute, then there is a unique element of Λ+
r,BG

C
t simultaneously uni-

tarizing L1, L2, . . . and Lm, and we can choose r such that it can be replaced

by any number in (r, 1).

Proof. i) The necessity is trivial. So, we only need to prove the suffi-

ciency and the uniqueness statement.

We say that two loop matrices Li and Lj are equivalent if they commute.

Then, this defines an equivalence relation among L1, L2, . . . and Lm. By

Proposition 3.1, it suffices to consider only one representative from each

equivalence class. Thus, we can assume further that every pair of the given

loop matrices do not commute. Now assume that S ∈ Λ+
B

G
C
t unitarizes

L1, L2 and L3, while R ∈ Λ+
B

G
C
t unitarizes L2, L3 and L4. Then, the

uniqueness statement of Theorem 3.5 yields that R = S, since both R and

S unitarize L2 and L3. Hence, L1, L2, L3 and L4 can be simultaneously

unitarized via R = S. An iteration of this argument proves the sufficiency

and the uniqueness statement of the theorem.

ii) The proof of this part is similar to that of the above part, and the

only difference is that here we use Theorem 3.24 instead of Theorem 3.5.

§5. Pointwise simultaneous unitarization, and closing conditions

In this section, summarizing our results in Sections 3 and 4, we first

state a relation between the simultaneous unitarization of loop matrices via

r-dressing and the pointwise simultaneous unitarization of the matrices in

SL(2, C). Then, we prove a result concerning the closing conditions to be

defined below.
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In Theorems 3.24, 4.1 and 4.14, the conditions for the simultaneous uni-

tarization of two or more loop matrices via r-dressing with r < 1 sufficiently

close to 1 are the same as the conditions for the pointwise simultaneous uni-

tarization on S
1 of the corresponding matrices in SL(2, C). Thus, we have

the following result.

Theorem 5.1. Let m ≥ 2 be an integer. Assume that for each i ∈
{1, 2, . . . ,m}, Li ∈ ΛG

C
t \ {±I} is holomorphic on a neighborhood of S

1,

and the two holomorphic eigenvalues of Li are not always equal on S
1. Then,

L1, L2, . . . and Lm can be simultaneously unitarized by r-dressing for some

r ∈ (0, 1) sufficiently close to 1 if and only if for almost every λ ∈ S
1, the

matrices L1(λ), L2(λ), . . . and Lm(λ) can be simultaneously unitarized in

SL(2, C). In this case, we can choose r such that it can be replaced by any

number in (r, 1).

We note that in [9], a result very similar to Theorem 5.1 is proved by

Nick Schmitt using a quite different method.

Let 0 < r ≤ 1. Motivated by the construction of CMC surfaces from

holomorphic potentials, an r-unitary loop matrix M is said to satisfy the

closing conditions if

(5.2) M(λ = 1) = ±I, M ′(λ = 1) = 0.

We have the following theorem concerning these conditions.

Theorem 5.3. Let m ≥ 2 be an integer. Assume that L1, L2, . . . , Lm ∈
ΛG

C
t \ {±I} are holomorphic on a neighborhood of S

1, not all of L1, L2, . . .

and Lm commute, there is an r ∈ (0, 1) sufficiently close to 1 and a T+ ∈
Λ+

r G
C
t simultaneously unitarizing L1, L2, . . . and Lm, and the two holomor-

phic eigenvalues vi and 1/vi of each Li are not always equal on S
1. Then,

for any i ∈ {1, 2, . . . ,m},
i) T+LiT

−1
+ satisfies the closing conditions if and only if

(5.4) vi(1) = ±1, v′i(1) = 0;

ii) when vi can be written as eifi with fi ∈ W being real-valued, T+LiT
−1
+

satisfies the closing conditions if and only if

(5.5) fi(1) ∈ Zπ, f ′

i(1) = 0.
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Proof. i) From the proofs and the uniqueness parts of our simultaneous

unitarization results in Theorems 3.24, 4.1 and 4.14,

(5.6) T+LiT
−1
+ = UiT

−1
∗,i

(
vi 0
0 1/vi

)
T∗,iU

−1
i

for some Ui ∈ ΛrGt, where T∗,i is determined by Li as usual. This implies

our claim by the definition (5.2) of the closing conditions.

ii) This part directly follows from Part i).
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