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FINITE GROUPS ADMITTING AN AUTOMORPHISM 
TRIVIAL ON A SYLOW 2-SUBGROUP 

JOHN L. HAYDEN AND DAVID L. WINTER 

In this paper we shall consider finite groups satisfying the following hypo­
thesis. 

H Y P O T H E S I S I. Let G be a finite group which admits an automorphism a of prime 
order p, (p, \G\) = 1. Assume the fixed point subgroup B = CG(a) contains some 
Sylow 2-subgroup. 

Let G(q) be a finite simple group of Lie type defined over the finite field 
GF{q), q odd. Let p be an odd prime with (p, \G(q)\) = 1. With the exception of 
the groups *DA(q),\G(q)\ = qmIli ( ^ - 1 )11 , {q^ + l)/d,d = (c, qv - 1) or 
(c, qv + 1)- The integers au bj} c, v, d are independent of q and depend only on 
the rank and family of the group [5]. By matching terms it is seen tha t 
[G(qv) : G (q)] is the product of an odd integer and integer factors ((qp)a — 
l)/(qa - 1) and ((qPY + l)/(q» + 1). As ((g*)* - l)/(qa - 1) = (qa)p~l + 
(qa)p-2 + . . . + (qa) + 1 is a sum of p odd integers, ((qp)a - I)/(qa - 1)) is 
odd. Similarly ({qvY + l)/(qb + 1) is odd and we conclude [G(qv) : G(q)] must 
be odd. Moreover, (qv)a ± 1 = qa =b l (mod p) so (p, \G(q)\) = 1 if and only if 
(p, \G(qp)\) = 1. Let a be a field automorphism of G(qp) of order p. Then 
CG(a) ~ G(q) and we conclude tha t G(qp) is a finite simple group satisfying 
Hypothesis I. A similar argument shows the groups 3 P 4 ( ^ ) satisfy Hypothesis I. 

The above remarks illustrate tha t the simple Lie groups G(qp), q odd, 
satisfy Hypothesis I. Our first step toward obtaining the converse of this state­
ment is the following result proved in Section 1. 

T H E O R E M 1. Let G be a finite simple group satisfying Hypothesis I. Then 
G = L2(gp) , q odd, or G is of component type. 

The classification of groups of component type has been the object of a 
considerable amount of research in the last few years. (See Section 1 for 
definitions and notation.) Recent progress suggests tha t work has nearly been 
completed in classifying all simple groups with an involution t for which 
0{CG{t)) 9^ 1. This classification, now called the Unbalanced Group Conjecture, 
is s tated in Section 1. Under the assumption of the Unbalanced Group Con­
jecture, simple groups with a component of type G(q), q odd, have been de­
termined. We shall show tha t the following conjecture can be proved from the 
Unbalanced Group Conjecture and the classification of groups of component 
type G(q), q odd. 
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CONJECTURE. Let G be a finite simple group satisfying Hypothesis I. Then G 
is a Chevalley group over GF(qp), q odd. 

This proof as well as the proof of Theorem 1 uses several results of G. 
Glauberman. Because (\G\, p) = 1, every non-empty subset Q C B = CG(a) 
has NG(Q) = NB(Q)CG(Q). This factorization is used in conjunction with the 
main theorem of [2] which states that if G contains an involution t whose 
centralizer is contained in B, then G has a proper normal subgroup of odd 
order. 

In Section 2 of this paper, we shall determine the structure of finite groups 
which satisfy Hypothesis I with B = CG(a) solvable. The following statement 
is the main result. 

THEOREM 2. Let G be a finite group satisfying Hypothesis I. Assume B = CG(a) 
is solvable. Then one of the following occurs: 

i) G is solvable with G = 02>{G)B. 
ii) G contains characteristic subgroups Gi, G2 such that G\ <3 G2 <? G with 

Gi, G/G2 solvable and G2/G1 ^ Lx X . . . X L„, Li ÊË L2(Z
V), 1 ^ i g n. 

COROLLARY 2. Let G be a finite simple group satisfying the hypothesis of 
Theorem 2. Then G ^ L2(3P). 

It is seen that Corollary 2 is an immediate consequence of Theorem 2. 
Moreover, the argument of Section 2 shows Gi to be the largest normal solvable 
subgroup of G wrhile G2 is the preimage in G of the largest normal semisimple 
subgroup of G/Gi. 

1. Groups of component type. We recall some notation and terminology 
from [1] and [3]. A group A is quasisimple if A is its own commutator group and, 
modulo its center, A is simple. A component of a group is a subnormal quasi-
simple subgroup. The core of a group is its largest normal subgroup of odd order. 
A 2-component of a group is a subnormal subgroup A such that A is its own 
commutator subgroup and A is quasisimple modulo its core. G is of component 
type if the centralizer in G of some involution contains a 2-component. This is 
equivalent to requiring that the centralizer is not 2-constrained (see 2.11, [7]). 

For any group H, we let E(H) be the inverse image in H of the socle of 
CH(F(H))/Z(F(H)), where F(H) is the Fitting subgroup of H. We then define 
E(H) to be the last term of the derived series of E(H), and put F*(H) = 
E(H)F(H). Lemma (2.1) in [3] shows E(H) to be the central product of 
uniquely determined quasisimple groups, which are called the components of 
EÇH) and are permuted under conjugation by H. Moreover, the components of 
E{H) are exactly the set of all subnormal quasisimple subgroups of H. See 
Section 2 of [3] for further properties of E(H) and F*(H). 

The first result of this section characterizes L2(q
p), q odd, (p, |L2(<z)|) = 1, as 

the only family of simple groups satisfying Hypothesis I and not of component 
type. 
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(1.1) Let G be a finite simple group which satisfies Hypothesis I. If the centra-

lizer of each involution of G is 2-constrained, then G ~ L2(q
p), a odd. 

Proof. Let us first assume G has 2-rank a t least 3. Let 5 G Syl2 (B) and notice 
for any involution t G S, CG(t) is ^-invariant. The coprime action of a on CG(t) 
produces T G Sy\2(CG(t)) with T cr-invariant and Lemma 6 of [2] shows T to be 
contained in some cr-invariant conjugate of S. Because cr-invariant Sylow 2-
subgroups of G are conjugate by an element of B (Lemma 5, [2]), we conclude 
tha t a acts trivially on T. By assumption G has 2-rank at least 3 so tha t [4] 
implies 02>{CG{t)) = 1 provided SCN 3 (2) 3^ 0. A simple group with 
SCNs(2) 9e 0, 2-rank a t least 3, and 2-constrained centralizers of involutions 
is isomorphic to G2(3) or the sporadic group J 3 (see [6, Corollary A]). The 
group J 3 does not satisfy Hypothesis I so we may assume 02>{C{t)) = 1 in 
any case. Set X — CG(t) and Q = 02{X). Lemma 5 in [2] and the fact tha t a 
acts trivially on Q imply X = CX(Q)NB nx(Q). Then, as X is 2-constrained, 
CX(Q) Q Q and we have X = NBnx(Q) Ç B. Theorem 1 in [2] shows G to 
have a normal subgroup N which does not contain t. This contradicts the 
simplicity of G. 

We may now assume G has 2-rank a t most 2. A result of Brauer and Suzuki 
implies G cannot have rank 1. Hence G is a simple group of 2-rank 2. Corollary A 
in [6] shows G is isomorphic to one of the groups L2(q), Lz(q)y Uz(q), q odd, 
£73(4), A? or Mn. The last three groups do not satisfy Hypothesis I and among 
the groups L^(q), Uz(q)} only £3(3) , Us(3) have 2-constrained centralizers. As 
L 3 (3) , Uz(3) do not admit an automorphism satisfying Hypothesis I, G = L 2 ( r ) , 
r odd. The structure of P TL(2, r) forces the existence of a field automorphism a 
of G of order p. We conclude tha t G ~ L2(q

p)} q odd. 

T H E O R E M 1. Let G be a finite simple group satisfying Hypothesis I. Then either 
G == L2(q

p), q odd or G is of component type. 

Proof. By (1.1), we may assume G contains an involution / such tha t CG{t) is 
not 2-constrained. Corollary 2.11 in [7] implies CG(t) contains a 2-component 
and we conclude tha t G is of component type. 

At this point we prove the conjecture as s tated in the introduction. We first 
s tate the Unbalanced Group Conjecture and the relevant theorem for groups of 
component type. 

UNBALANCED G R O U P C O N J E C T U R E . Let G be a finite group with F*(G) = L 

simple and 0(CG(t)) 9^ 1 for some involution t in G. Then one of the following 
holds: 

(1) L is a Chevalley group of odd characteristic, 
(2) L is an alternating group of odd degree, or 
(3) L is isomorphic to L3(4) or Held1 s group. 

C O M P O N E N T T H E O R E M (Aschbacher-Walter). Let G be a finite group with 
F*(G) = L simple containing an involution I such that CG(t) has a component A 
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with A/Z(A) a Chevalley group over GF(rp) where r is an odd prime power and 

p ^ 3. Then L is a Chevalley group over GF{q) for some odd q. 

The authors wish to point out tha t the Unbalanced Group Conjecture has 
been established modulo successful completion of Harr is 's work on groups with 
an L2{q) component. The Component Theorem with certain modifications has 
been announced by John Walter . Aschbacher has distr ibuted a preprint of his 
pa r t of the work. 

C O N J E C T U R E . Let G be a simple group which satisfies Hypothesis I. Then G is a 

Chevalley group over GF(qp), q odd. 

Proof. Let G be a minimal counterexample. Choose / to be an involution of G. 
If 0(CG(l)) ^ 1, the Unbalanced Group Conjecture implies t ha t G is a 
Chevalley group over GF(r), r odd, A2n+i, £3(4) or Held's group. T h e groups 
T2„4-i, 1/3(4) and Field's group admi t no automorphism of order p with 
(p, \G\) — 1. Hence G is a Chevalley group over GF(r), r odd. Since (p, \G\) = 1, 
a must be a field automorphism so r = qp, q odd. This contradicts our choice of 
G. 

We therefore have tha t 0(CG(l)) = 1 for every involution t of G. Let 
X = CG(t) and suppose X is 2-constrained for some involution /. Then 
X = Nx(02(X)) = Cx(02(X))NBnx(02(X)) g B, against [2]. Therefore 
E(X) ^ 1. Let Li , . . . , Ln be the components of E = E(X). Because a is 
trivial on a Sylow 2-subgroup of G, a leaves each Lt invariant . 

Suppose E Ç B. Then X = CG(t) = NX(E) = Cx(E)NBnx(E) C 
02(X)ENB nx(E) Ç B. By [2], this is impossible. Hence a is non-trivial on 
some Li. Fur thermore , Lt is perfect so a is non-trivial on LJZ{Li). By induc­
tion, Li/ZÇLi) is a Chevalley group over GF(rp), r odd .The Component 
Theorem implies G is a Chevalley group over GF(qi) for some odd q_\. However, 
(p, \G\) — 1 so a mus t be a field automorphism and q\ = qp, q odd. This con­
tradicts our choice of G and the conjecture follows. 

2. Groups w i t h B = CG(a) so lvable . In this section we shall determine 
the s t ructure of finite groups satisfying Hypothesis I with B = CG(a) solvable. 
We prove the following main result. 

T H E O R E M 2. Let G be a finite group satisfying Hypothesis I. Assume B = CG(a) 
is solvable. Then one of the following occurs: 

i) G is solvable with G = 02'(G)B. 
ii) G contains characteristic subgroups Gly G2 such that d < G2 < G with Gi, 

G/G2 solvable and G2/Gi ^ Ll X . . . X Ln, Lt ^ L2(3
P), 1 ^ i ^ n. 

Let G be a finite group satisfying the hypothesis of Theorem 2. If G is 
solvable, set Q = 02>2(G) and choose 5 G Sy\2{B). Then T = S Pi Q is a 
Sylow 2-subgroup of Q and G = QNG(T) by a Fra t t in i a rgument . Lemma 5 in 
[2] and the fact t ha t a acts trivially on T imply NG(T) = CG(T)NB(T). As G is 
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solvable, CG{T) QQsoG = QNB(T) Ç 02 , (G)B. Hence G = Or{G)Band (i) 

of Theorem 2 is established. 

We may now assume G is nonsolvable and set Gi = S(G), the largest normal 
solvable subgroup of G. Let G = G/Gi. Then <r induces an automorphism of G 
with C^(cr) = 5 where S denotes the image of B in G. (See Lemma 3, [2].) If 
G = B, G is solvable. We conclude tha t 5 is a proper subgroup of G and G is a 
nonsolvable group satisfying the hypothesis of Theorem 2 with S(G) = 1. Now 
proving Theorem 2 for G is equivalent to proving the theorem for G, so we may 
assume for the remainder of this section tha t G satisfies 

H Y P O T H E S I S I I . Let G be a finite nonsolvable group satisfying the hypothesis of 
Theorem 2 with S(G) = 1. 

First we recall some definitions from [3]. Suppose A ^ T ^ X are groups 
such tha t whenever a G A, x G X, and ax G T, then ax £ A. In this situation 
we say A is strongly closed in T with respect to X. 

The next series of propositions establish the existence of a strongly closed 
Abelian 2-subgroup A of G. 

(2.1) Let G satisfy Hypothesis I and choose S G Sy\2(B). If Si ^ S is strongly 
closed in S with respect to B, then Si is strongly closed in S with respect to G. 

Proof. Suppose Si is strongly closed in S with respect to B and s9 G 5 for 
some s G Si, g G G. Lemma 5 of [2] implies the existence of b G B such t ha t 
sg = sb. By assumption sb G Si so s9 G Si as desired. 

(2.2) Let G satisfy Hypothesis I and suppose H < B, S G SyU(B). Then 
S C\ H is strongly closed in S with respect to G. 

Proof. Set Si = S C\ H and suppose sb G S for some s G Si, b G -S. Because 
H < B, sb £ Si and we conclude Si is strongly closed in S with respect to B. By 
(2.1), Si is strongly closed in S with respect to G. 

(2.3) Let G satisfy Hypothesis I. Then there exists S G Syl2(I3) and an Abelian 
2-subgroup A Ç. S, A j* 1, such that A is strongly closed in S with respect to G. 

Proof. By hypothesis, B is solvable so tha t B/0(B), has a minimal normal 
elementary Abelian 2-subgroup. Let T be an elementary Abelian 2-group of B 
so tha t TO(B) is the preimage of this subgroup in B. Then TO(B) <\ B and, by 
(2.2), S H (TO(B)) = A j£ 1 is a strongly closed Abelian 2-subgroup of S with 
respect to G. 

Let S G SyUCS) and A Ç S be a strongly closed Abelian 2-group of S. By 
(2.3), A 7* 1. Set 2£ = ( ^ G ) . Theorem A in [6] implies K/0(K) is the central 
product of an Abelian 2-group and certain quasisimple groups. Because 
S(G) = 1,02>,2(K) = l a n d i £ = Lx X . . . X Lm where Lt is simple, 1 ^ i^m. 
According to [6], Lt may be of Type I or I I . A group of Type I is isomorphic to 
one of the groups L 2 (2 n ) , n ^ 3, Sz(22n+1)J n ^ 1 or Uz(2

n), n ^ 2. Groups of 
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Type II are L2(q), q = 3, 5 (mod 8) or simple groups of Janko-Ree type. The 
automorphism a centralizes S H K £ Sy\2(K) and thus must centralize a 
Sylow 2-subgroup of each Lt. Each group of T y p e I is a C-group so tha t 
centralizers of involutions are solvable and consequently 2-constrained. T h e 
argument (1.1) of Section 1 may then be used to show tha t these simple groups 
cannot admi t an automorphism a satisfying Hypothesis I. T h e solvability of B 
implies a must act faithfully on Lt and consequently Lt mus t be a group of 
T y p e I I . We are now able to prove the following: 

(2.4) Let G satisfy Hypothesis II. Then G contains a normal subgroup K such 

that K = L1 X . . . X Lm Li ^ L2(3
V), 1 ^ i S m. 

Proof. The remarks preceding (2.4) show the existence of K < G such tha t 
K = L\ X . . . X Lm, Lt simple of type L2(q), q = 3, 5 (mod 8) or isomorphic 
to a simple group of Janko-Ree type. 

We first show no factor L{ of K is of Janko-Ree type. Suppose L is a simple 
group of Janko-Ree type admit t ing an automorphism a satisfying Hypo­
thesis I. Let T = CL(a) and choose / G T, with / an involution. From [3; 9], 
CL(t) = (/) X F, F^L2(3

2n+l),n ^ 1. I t follows tha t a leaves /^ invar iant with 
CF(a) a solvable subgroup containing a Sylow 2-subgroup of F of order 4. The 
s t ructure of PTL(2, 32w+!) forces a- to be a field automorphism Avith G F (3) the 
fixed field of a (see [8, p. 632]). Hence F ^ L2(3

P) and CF(<r) = A,, the alter­
nat ing group on four letters. We conclude t ha t CT(t) = (/) X D, D ^ AA. A 
Sylow 2-subgroup of L is e lementary Abelian of order 8 so by a transfer argu­
ment all involutions of L are conjugate. Let R G S y l 2 ( r ) . Lemma o in [2] 
shows T controls fusion in R and hence T has no normal subgroup of index 2. Let 
(a, b) be a four-group of R and set 0 = Or (T). Then 0 = C0{a)C0(b)C0{ab). 
However, for / G (a, by, CT(l) has no normal subgroup of odd order so 
Ov(T) = 1. The solvability of T implies R < T so t ha t [T : CT(t)] = 7, 
\T\ = 23 • 3 • 7. Let x Ç T be an element of order 3 fixed by a. Lemma 6 in [2] 
implies the existence of a cr-invariant Sylow 3-subgroup Q of L containing x. 
Moreover, [9] shows \Q\ = 33 p . Now a mus t act fixed-point freely on the re­
maining 33 p - 3 elements of Q so 33 p - 3 = 0 (mod p). But , 33 p - 3 = 3 3 -
3 = 24 (mod p), a contradiction to our choice of p. We conclude tha t a group 
L of Janko-Ree type admits no automorphism a satisfying Hypothesis I. 

We may now conclude tha t K — Lx X . . . X Lm, Lt ^ L2(q), q = 3, 5 
(mod 8) . Because a fixes a Sylow 2-subgroup of Lu a mus t be a field auto­
morphism with CLi(<r) solvable. T h u s q = 3P and Lt ~ L2(3

P), 1 ^ i ^ m. 

(2.5) Let G satisfy Hypothesis II. Then E{G) = Lx X . . . X Ln, L{ ^ L2{3V), 
1 ^ i S n. Moreover, CG(E(G)) = 1. 

Proof. We use induction on \G\. Set E = E(G). By (2.5), G contains a normal 
subgroup K = L i X . . . X Lm, L{^ L2(3

V), 1 ^ i ^ m. Then K ^ E and 
£ = KCE(K). Ii CB(K) = 1, E = K and (2.5) holds. Because G satisfies 
Hypothesis I I , we may assume CE(K) is a proper nonsolvable cr-invariant sub-
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group of E. In fact, CE(K) is the direct product of certain simple components of 
G so E(CE(K)) = CE(K). By induction, CE(K) is the direct product of copies 
of L2(3

P). The first conclusion of (2.5) now follows. 

By hypothesis, the Fi t t ing subgroup F(G) = 1 so tha t F*(G) = F(G)E(G) = 
E(G). From (2.2) of [3], CG(E(G)) Q E(G). We conclude tha t CG(E(G)) = 1. 

(2.6) Let G satisfy Hypothesis II. Then G/E(G) is solvable. 

Proof. Set E = E(G). The s tructure of E is given in (2.5). Let 5 £ Sy\2(B). 
A Sylow argument shows G = ENG(S C\ E) and Lemma 5 in [2] implies 
NG{SC\E) = CG(Sr\E)NB(Sr\E). Because NB(S H E) is solvable, it 
remains to show CG(S C\ E) is solvable. 

Set Xi = CG(Sr\E) and assume Xl 9* 1. By (2.5), CG(E) = l s o ! i does 
not centralize each factor of E. Notice X\ must leave each factor of E invariant 
so, after a suitable rearrangement of the subscripts on the Li} we may assume 
X2 = Cxi (Li) is a proper normal subgroup of X\. Then X\/X2 is isomorphic to 
a group of automorphisms of L\ which centralizes a Sylow 2-subgroup of L\. 
The s t ructure of PTL(2, 3P) forces X\/X2 to be solvable. A similar argument 
shows X2 = 1 or X2 contains a proper normal subgroup X 3 such tha t X2/X^ is 
solvable. Consequently, X\ contains a subnormal series Xx > X2 \> . . . > 1 
for which Xt/Xi+i is solvable. We conclude X\ = CG(S C\ E) is solvable. The 
result (2.6) now follows. 

T h e proof of Theorem 2 now follows from (2.5), (2.6) and the remarks 
preceding (2.1). Specifically, let Gi = S(G) and choose G2 to be the preimage in 
G/Giof E(G/Gi). 

Notice tha t the groups which satisfy the hypothesis of Theorem 2 may have 
E(G) = 1. For example, let G be isomorphic to the centralizer of a "cen t ra l " 
element of order 3 in PSpA(3p) where (p, \PSp,(3p)\) = 1. From [8], G = UL, 
U H L = 1, I U\ = 33 p , L ^ 5L2(3P) with U = 0 3 (G) . Then, if we take t to be 
the central involution of L, G\ = U(t), G2 = G and because L is not subnormal 
in G, E(G) = 1. 

On the other hand, consider X = Sp8(3p) where (p, |Sp8(3) |) = 1. I t is shown 
in [10] t ha t X contains an elementary 2-subgroup D of order 16 generated by 
symplectic involutions of type 2. Fur thermore, CX(D) = Lx X L2 X L 3 X L4 , 
Lt ^ 5L2(3P) with NX(D)/CX(D) ^ 5 4 . Clearly the field automorphism of X 
of order p induces an automorphism of NX(D) which satisfies Mypothesis I. 
Now take H to be any finite solvable group with (p, \H\) = 1 and let L be a 
group isomorphic to NX(D). Set G = H X L. The automorphism a of order p 
which acts trivially on H and acts as a field automorphism of L satisfies the 
hypothesis of Theorem 2. In fact, if Q = 02(L), Gi = H X (?, G2 = HCL(Q), 
and G/G2 ^ 5 4 . Here £ ( G ) = CL(Q) ^ Li X U X L 3 X L4, L , ^ L 2(3P) . 
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