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FINITE GROUPS ADMITTING AN AUTOMORPHISM
TRIVIAL ON A SYLOW 2-SUBGROUP

JOHN L. HAYDEN AND DAVID L. WINTER

In this paper we shall consider finite groups satisfying the following hypo-
thesis.

HyrorHEsIs . Let G be a finite group which admits an automorphism o of prime
order p, (p, |G|) = 1. Assume the fixed point subgroup B = Cg (o) contains some
Sylow 2-subgroup.

Let G(q) be a finite simple group of Lie type defined over the finite field
GF(q), godd. Let p be an odd prime with (p, |G(¢q)|) = 1. With the exception of
the groups *Dy(q), |G ()| = ¢"11; (g% — DI, (¢* + 1)/d,d = (¢, ¢" — 1) or
(¢, ¢° + 1). The integers a4, b, ¢, v, d are independent of ¢ and depend only on
the rank and family of the group [5]. By matching terms it is seen that
[G(g") : G(q)] is the product of an odd integer and integer factors ((¢”)* —
1)/(¢" — 1) and (@) + 1)/(@ + 1). As () — 1)/(g" — 1) = @) +
@2+ ...+ (¢") + 1isasum of p odd integers, ((¢")* — 1)/(¢* — 1)) is
odd. Similarly ((¢?)* 4+ 1)/(¢” 4+ 1) is odd and we conclude [G(¢*) : G(¢)] must
be odd. Moreover, (¢?)* + 1 = ¢* & 1(mod p) so (p, |G(q)|) = 1if and only if
(P, |G(@)]) = 1. Let ¢ be a field automorphism of G(¢?) of order p. Then
C¢(0) =2 G(g) and we conclude that G(¢”) is a finite simple group satisfying
Hypothesis I. A similar argument shows the groups?D,(¢?) satis{y Hypothesis I.

The above remarks illustrate that the simple Lie groups G(¢”), ¢ odd,
satisfy Hypothesis I. Our first step toward obtaining the converse of this state-
ment is the following result proved in Section 1.

THEOREM 1. Let G be a finite simple group satisfying Hypothesis I. Then
G = Ly(q?), q 0dd, or G is of component type.

The classification of groups of component type has been the object of a
considerable amount of research in the last few years. (See Section 1 for
definitions and notation.) Recent progress suggests that work has nearly been
completed in classifying all simple groups with an involution ¢ for which
O(Cg(t)) # 1. This classification, now called the Unbalanced Group Conjecture,
is stated in Section 1. Under the assumption of the Unbalanced Group Con-
jecture, simple groups with a component of type G(¢), ¢ odd, have been de-
termined. We shall show that the following conjecture can be proved from the
Unbalanced Group Conjecture and the classification of groups of component
type G(q), ¢ odd.
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CONJECTURE. Let G be a finite simple group satisfying Hypothesis I. Then G
is a Chevalley group over GF(q"), q odd.

This proof as well as the proof of Theorem 1 uses several results of (5.
Glauberman. Because (|G|, p) = 1, every non-empty subset Q & B = C(0)
has N¢(Q) = Nz(Q)Cs(Q). This factorization is used in conjunction with the
main theorem of [2] which states that if G contains an involution ¢ whose
centralizer is contained in B, then G has a proper normal subgroup of odd
order.

In Section 2 of this paper, we shall determine the structure of finite groups
which satisfy Hypothesis I with B = C4 (o) solvable. The following statement
is the main result.

THEOREM 2. Let G be a finite group satisfying Hypothesis I. Assume B = Cq(o)
is solvable. Then one of ihe following occurs:
1) G 1s solvable with G = O, (G)B.
i1) G contains characteristic subgroups Gy, Gy such that Gy < Gy I G with
Gi1, G/Gs solvable and Go/G, = Ly X ... X L,, L; = Ly(3"),1 =1 < n.

COROLLARY 2. Let G be a finite simple group satisfying the hypolhesis of
Theorem 2. Then G = Lo(37).

It is seen that Corollary 2 is an immediate consequence of Theorem 2.
Moreover, the argument of Section 2 shows G to be the largest normal solvable
subgroup of G while G, is the preimage in G of the largest normal semisimple
subgroup of G/G;.

1. Groups of component type. We recall some notation and terminology
from [1] and [3]. A group 4 is quasisimple if A is its own commutator group and,
modulo its center, 4 is simple. A component of a group is a subnormal quasi-
simple subgroup. The core of a group is its largest normal subgroup of odd order.
A 2-component of a group is a subnormal subgroup 4 such that 4 is its own
commutator subgroup and 4 is quasisimple modulo its core. G is of component
type if the centralizer in G of some involution contains a 2-component. This is
equivalent to requiring that the centralizer is not 2-constrained (see 2.11, [7]).

For any group H, we let £(H) be the inverse image in H of the socle of
Cy(F(H))/Z(F(H)), where F(H) is the Fitting subgroup of H. We then define
E(H) to be the last term of the derived series of E(H), and put I*(H) =
E(H)F(H). Lemma (2.1) in (3] shows E(H) to be the central product of
uniquely determined quasisimple groups, which are called the components of
E(H) and are permuted under conjugation by H. Moreover, the components of
E(H) are exactly the set of all subnormal quasisimple subgroups of H. See
Section 2 of [3] for further properties of E(H) and F*(H).

The first result of this section characterizes Ly(q?), ¢ odd, (p, |L2(¢)|) = 1, as
the only family of simple groups satisfying Hypothesis I and not of component
type.
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(1.1) Let G be a finite simple group which satisfies Hypoihesis I. If the centra-
lizer of each involution of G is 2-constrained, then G =< Ly(¢?), ¢ odd.

Proof. Let us first assume G has 2-rank at least 3. Let S € Syl»(B) and notice
for any involution ¢ € S, C¢(¢) is o-invariant. The coprime action of ¢ on Cg/(£)
produces T° ¢ Syl (Cg(¢)) with T g-invariant and Lemma 6 of [2] shows 7" to be
contained in some s-invariant conjugate of S. Because s-invariant Sylow 2-
subgroups of G are conjugate by an element of B (Lemma 5, [2]), we conclude
that ¢ acts trivially on 7. By assumption G has 2-rank at least 3 so that [4]
implies Qs (Ce(¢)) = 1 provided SCN;(2) = @#. A simple group with
SCN3(2) # @, 2-rank at least 3, and 2-constrained centralizers of involutions
is isomorphic to G:(3) or the sporadic group J3 (see [6, Corollary AJ). The
group J; does not satisfy Hypothesis I so we may assume O, (C(t)) = 1 in
any case. Set X = Cg(t) and Q = 02(X). Lemma 5 in [2] and the fact that ¢
acts trivially on Q imply X = Cx(Q)Np A x(Q). Then, as X is 2-constrained,
Cx(Q) € Q and we have X = Nz x(Q) € B. Theorem 1 in 2] shows G to
have a normal subgroup N which does not contain ¢. This contradicts the
simplicity of G.

We may now assume G has 2-rank at most 2. A result of Brauer and Suzuki
implies G cannot have rank 1. Hence G is a simple group of 2-rank 2. Corollary A
in [6] shows G is isomorphic to one of the groups L2(q), Li(q), Us(q), ¢ odd,
Us(4), A7 or M. The last three groups do not satisfy Hypothesis I and among
the groups L3(q), Us(q), only L3(3), U;(3) have 2-constrained centralizers. As
L;(3), Us(3) do not admit an automorphism satisfying Hypothesis I, G = Ly (r),
r odd. The structure of P T'L (2, r) forces the existence of a field automorphism ¢
of G of order p. We conclude that G = L»(¢”), ¢ odd.

TuroREM 1. Let G be a finite simple group satisfying Hypothesis 1. T hen either
G = Ly(g”), q odd or G is of component type.

Proof. By (1.1), we may assume G contains an involution ¢ such that C¢(¢) is
not 2-constrained. Corollary 2.11 in [7] implies C¢(¢) contains a 2-component
and we conclude that G is of component type.

At this point we prove the conjecture as stated in the introduction. We first
state the Unbalanced Group Conjecture and the relevant theorem for groups of
component type.

UNBALANCED GROUP CONJECTURE. Let G be a finite group with F*(G) = L
simple and O(Cq(t)) # 1 for some tnvolution t in G. Then one of the following
holds:

(1) L is a Chevalley group of odd characteristic,

(2) L s an alternating group of odd degree, or

(3) L 1is isomorphic to Ly(4) or Held's group.

CoMmPONENT THEOREM (Aschbacher-Walter). Let G be a finite group with
F*(G) = L simple containing an involution t such that Cq(t) has a component A
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with A/Z(A) a Chevalley group over GF(r?) where r is an odd prime power and
p = 3. Then L is a Chevalley group over GF(q) for some odd g.

The authors wish to point out that the Unbalanced Group Conjecture has
been established modulo successful completion of Harris's work on groups with
an L.(q) component. The Component Theorem with certain modifications has
been announced by John Walter. Aschbacher has distributed a preprint of his
part of the work.

CONJECTURE. Let G be a simple group which satisfies Hypothesis I. Then G is a
Chevalley group over GF(¢?), q odd.

Proof. Let G be a minimal counterexample. Choose ¢ to be an involution of G.
If O(Cq(t)) ¢ 1, the Unbalanced Group Conjecture implies that G isa
Chevalley group over GF(r), r odd, 4s,.1, L3(4) or Held’s group. The groups
Asyy1, L3(4) and Held's group admit no automorphism of order p with
(p, |G]) = 1. Hence G is a Chevalley group over GF(r), r odd. Since (p,|G|) =1,
o must be a field automorphism so 7 = ¢”, ¢ odd. This contradicts our choice of
G.

We therefore have that O(Cgy (1)) = 1 for every involution ¢ of G. Let
X = Cq(t) and suppose X is 2-constrained for some involution ¢. Then
X = Nx(0:(X)) = Cx(02(X))Np A x(0:(X)) = B, against [2]. Therefore
E(X) # 1. Let Ly, ..., L, be the components of E = E(X). Because ¢ is
trivial on a Sylow 2-subgroup of G, ¢ leaves each L; invariant.

Suppose E C B. Then X = Cg(t) = Nx(E) = Cx(E)Npnx(£) C
O:(X)ENgp A x(E) € B. By [2], this is impossible. Hence ¢ is non-trivial on
some L ;. Furthermore, L; is perfect so ¢ is non-trivial on L,/Z(L;). By induc-
tion, L;/Z(L;) is a Chevalley group over GF(r?), r odd. The Component
Theorem implies G is a Chevalley group over GF(q,) for some odd ¢,. However,
(p, IG]) = 1 s0 ¢ must be a field automorphism and ¢; = ¢?, ¢ odd. This con-
tradicts our choice of G and the conjecture follows.

2. Groups with B = (Cg(os) solvable. In this section we shall determine
the structure of finite groups satisfying Hypothesis I with B = C4 (o) solvable.
We prove the following main result.

THEOREM 2. Let G be a finite group salisfying Hypothesis I. Assume B = Cg(o)
1s solvable. Then one of the following occurs:
1) G 1s solvable with G = Oy (G)B.
11) G contains characteristic subgroups Gy, G such that G; < G,
G/Gy solvable and G3/Gy = Ly X ... X Ly, L; = Ly(3%), 1

G with G,

d
<1=Zmn.

Let G be a finite group satisfying the hypothesis of Theorem 2. If G is
solvable, set Q = 0y5(G) and choose S € Syly(B). Then 7"=SNQ is a
Sylow 2-subgraup of Q and G = QN¢(7T') by a Frattini argument. Lemma 5 in
(2] and the fact that o acts trivially on 7 imply Ng(7") = Ce(T)Ny(T). AsG is
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solvable, Co(T) € QsoG = QN3 (T) C 0y, (G)B.Hence G = 0y (G)Band (i)
of Theorem 2 is established.

We may now assume G is nonsolvable and set G; = S(G), the largest normal
solvable subgroup of G. Let G = G/G;. Then ¢ induces an automorphism of G
with Cg(e) = B where B denotes the image of B in G. (See Lemma 3, [2].) If
G = B, G is solvable. We conclude that B is a proper subgroup of G and G is a
nonsolvable group satisfying the hypothesis of Theorem 2 with S(G) = 1. Now
proving Theorem 2 for G is equivalent to proving the theorem for G, so we may
assume for the remainder of this section that G satisfies

HyrotHEsis I1. Let G be a finite nonsolvable group satisfying the hypothesis of
Theorem 2 with S(G) = 1.

First we recall some definitions from [3]. Suppose 4 < T" < X are groups
such that whenever « € 4, x € X, and a* € T, then «* € 4. In this situation
we say A is strongly closed in T with respect to X.

The next series of propositions establish the existence of a strongly closed
Abelian 2-subgroup 4 of G.

(2.1) Let G satisfy Hypothesis I and choose S € Sylo(B). If S1 < S is strongly
closed in S with respect to B, then Sy 1s strongly closed in S with respect lo G.

Proof. Suppose S; is strongly closed in .S with respect to B and s € .S for
some s € .Sy, ¢ € G. Lemma 5 of [2] implies the existence of b € B such that
s = s, By assumption s? € Sy so s € S; as desired.

(2.2) Let G satisfy Hypothesis I and suppose H I B, S € Sylo(B). Then
S M H 1s strongly closed in S with respect to G.

Proof. Set S; = S M H and suppose s” € S for some s € Sy, b € B. Because
H < B, s® € S;and we conclude Sy is strongly closed in .S with respect to B. By
(2.1), S, is strongly closed in .S with respect to G.

(2.3) Let G satisfy Hypothesis I. Then there exists S € Syla(B) and an Abelian
2-subgroup A < S, A # 1, such that A 1s strongly closed in S with respect to G.

Proof. By hypothesis, B is solvable so that B/0(B), has a minimal normal
elementary Abelian 2-subgroup. Let 7" be an elementary Abelian 2-group of B
so that 70 (B) is the preimage of this subgroup in B. Then 70(B) < B and, by
(2.2),SMN (T'O(B)) = A # 1isastrongly closed Abelian 2-subgroup of .S with
respect to G.

Let S € Syly(B) and 4 C S be a strongly closed Abelian 2-group of S. By
(2.3), 4 # 1. Set K = (4¢). Theorem A in [6] implies K/O(K) is the central
product of an Abelian 2-group and certain quasisimple groups. Because
S(G) = 1,04 3(K) =1land K = L; X ... X L, where L;issimple,1 < 7 < m.
According to [6], L; may be of Type I or II. A group of Type I is isomorphic to
one of the groups L(2"), n = 3, Sz(2***!), n = 1 or U;(2"), n = 2. Groups of
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Type 11 are Ly(q), ¢ = 3, 5 (mod 8) or simple groups of Janko-Ree type. The
automorphism ¢ centralizes SN K € Syl,(K) and thus must centralize a
Sylow 2-subgroup of each L; Each group of Type I is a C-group so that
centralizers of involutions are solvable and consequently 2-constrained. The
argument (1.1) of Section 1 may then be used to show that these simple groups
cannot admit an automorphism ¢ satisfying Hypothesis 1. The solvability of B
implies ¢ must act faithfully on L; and consequently L, must be a group of
Type I1. We are now able to prove the following:

(2.4) Let G satisfy Hypothesis II. Then G contains a normal subgroup K such

Proof. The remarks preceding (2.4) show the existence of K < G such that
K =1L X...XL,, L;simple of type L:(q), ¢ = 3, 5 (mod 8) or isomorphic
to a simple group of Janko-Ree type.

We first show no factor L; of K is of Janko-Ree type. Suppose L is a simple
group of Janko-Ree type admitting an automorphism ¢ satisfying Hypo-
thesis 1. Let 7" = C,(¢) and choose ¢ € T, with { an involution. From [3; 9],
Cr(t)y = {t) X F, F = L,(3+1) n = 1. It follows that ¢ leaves F invariant with
Cr(o) a solvable subgroup containing a Sylow 2-subgroup of F of order 4. The
structure of P T'L (2, 32*+1) forces ¢ to be a field automorphism with GF(3) the
fixed field of o (see [8, p. 632]). Hence F = L,(3”) and Cr(s) = 44, the alter-
nating group on four letters. We conclude that Cy(t) = () X D, D = A, A
Sylow 2-subgroup of L is elementary Abelian of order 8 so by a transfer argu-
ment all involutions of L are conjugate. Let R € Sylo(7"). Lemma 5 in (2]
shows 1" controls fusion in R and hence 7" has no normal subgroup of index 2. Let
(@, b) be a four-group of Randset O = 0y (I). Then O = Co(a)Co(b)Cp(ad).
However, for t € {a, b)*, Cz(t) has no normal subgroup of odd order so
Oy (T) = 1. The solvability of T implies R < T so that [T : Cp(¢)] = 7,
|T| = 2%-3-7. Letx € T be an element of order 3 fixed by ¢. Lemma 6 in [2]
implies the existence of a o-invariant Sylow 3-subgroup Q of L containing x.
Moreover, [9] shows |Q| = 3%. Now ¢ must act fixed-point freely on the re-
maining 3% — 3 elements of Q so 3% — 3 = 0 (mod p). But, 3% — 3 = 3% —
3 = 24 (mod p), a contradiction to our choice of p. We conclude that a group
L of Janko-Ree type admits no automorphism ¢ satisfying Hypothesis 1.

We may now conclude that K = Ly X ... X L, L, = Ly(q), ¢ =3, 5
(mod 8). Because ¢ fixes a Sylow 2-subgroup of L;, ¢ must be a field auto-
morphism with Cy,(s) solvable. Thus ¢ = 3? and L, =~ L,(3?),1 £ i < m.

(2.5) Let G satisfy Hypothesis II. Then E(G) = Ly X ... X L,, L; = Ly(37),
1 =1 £ n Moreover, C4(E(G)) = 1.

Proof. We use induction on |G|. Set E = E(G). By (2.5), G contains a normal
subgroup K = L; X ... X L,, L; =~ Ls(3?), 1 £ 4 < m. Then K £ E and
E=KCg(K). If Cxg(K) =1, E= K and (2.5) holds. Because G satisfies
Hypothesis 11, we may assume Cy(K) is a proper nonsolvable g-invariant sub-
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group of E. In fact, Cz(K) is the direct product of certain simple components of
G so E(Cg(K)) = Cg(K). By induction, Cz(K) is the direct product of copies
of Ly(3?). The first conclusion of (2.5) now follows.

By hypothesis, the Fitting subgroup F(G) = 1so that '*(G) = F(G)E(G)

E(G). From (2.2) of [3], C4(E(G)) © E(G). We conclude that Cq(E(G)) I

(2.6) Let G satisfy Hypothesis II. Then G/E(G) s solvable.

Proof. Set E = E(G). The structure of E is given in (2.5). Let S € Syls(B).
A Sylow argument shows G = ENg(SM E) and Lemma 5 in [2] implies
Ne(SNE) = Ce(SNE)Ng(SN E). Because Nz(SM E) is solvable, it
remains to show Cq(S M E) is solvable.

Set X1 = Ce(SM E) and assume X, # 1. By (2.5), C4(E) = 1 so X; does
not centralize each factor of E. Notice X; must leave each factor of E invariant
so, after a suitable rearrangement of the subscripts on the L, we may assume
X, = Cx,(L;) is a proper normal subgroup of X;. Then X /X, is isomorphic to
a group of automorphisms of L; which centralizes a Sylow 2-subgroup of L;.
The structure of PTL(2, 3?) forces X /X, to be solvable. A similar argument
shows Xy = 1 or X, contains a proper normal subgroup X; such that X,/X3; is
solvable. Consequently, X; contains a subnormal series X; > Xo > ... > 1
for which X ;/X ;1 is solvable. We conclude X; = C¢(S M E) is solvable. The
result (2.6) now follows.

The proof of Theorem 2 now follows from (2.5), (2.6) and the remarks
preceding (2.1). Specifically, let G; = S(G) and choose G; to be the preimage in
G/Gy of E(G/Gy).

Notice that the groups which satisfy the hypothesis of Theorem 2 may have
E(G) = 1. For example, let G be isomorphic to the centralizer of a ‘“‘central”
element of order 3 in PSp4(3?) where (p, |PSps(3?)]) = 1. From [8], G = UL,
UNL=1,|U| = 3%, L = SLy(3") with U = 03(G). Then, if we take ¢ to be
the central involution of L, G; = U{t), G» = G and because L is not subnormal
in G, E(G) = 1.

On the other hand, consider X = Sps(3?) where (p, |Sps(3)|) = 1. Itisshown
in [10] that X contains an elementary 2-subgroup D of order 16 generated by
symplectic involutions of type 2. Furthermore, Cx(D) = Ly X Ls X L3 X Ly,
L; = SLy(3%) with Nx(D)/Cx (D) = S,. Clearly the field automorphism of X
of order p induces an automorphism of Nx(D) which satisfies Hypothesis I.
Now take H to be any finite solvable group with (p, |H|) = 1 and let L be a
group isomorphic to Nx (D). Set G = H X L. The automorphism o of order p
which acts trivially on H and acts as a field automorphism of L satisfies the
hypothesis of Theorem 2. In fact, if Q = O0s(L), G1 = H X Q, Gs = HC,(Q),
and G/62 §S4 Here E(G) = CL(Q) = L1 X L2 X L3 X L4, L, ng(gp)
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