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MIMO radar pseudo-orthogonal waveform
generation by a passive 1 3 M mode-mixing
microwave cavity
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Multiple Input Multiple Output (MIMO) Radar has many advantages compared with conventional Radars including
improved target parameters estimation, improved angular resolution while keeping a small number of antennas.
Nevertheless, these advantages can be obtained when probing simultaneously the scattering matrix with orthogonal transmit
signals. Recently, a passive orthogonal waveform generation technique was introduced using a 1 × M ports Mode-Mixing
microwave cavity whose transfer functions are uncorrelated. This approach makes MIMO Radar system able to satisfy trans-
mit beamforming constraint with a cost-efficient architecture. In this paper, more conceptual clarifications are brought and
the orthogonality metrics are assessed. Furthermore, the proposed method is experimentally compared with a conventional
MIMO Radar based on frequency hopping waveforms.
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I . I N T R O D U C T I O N

Multiple Input Multiple Output (MIMO) radars have received
great interest over the last decade [1, 2] thanks to their poten-
tial compared with conventional radars. The essence of this
concept is to probe simultaneously the channel with M
orthogonal signals and record the backscattered signals with
N receivers, which can spatially be independent to the trans-
mitters. Thus, the received signal can be re-assigned to the
source by performing correlation in pairs. This gives an
enlarged virtual array improving the spatial resolution [1].
The scattered signal of each couple of transmitter/receiver
provides two main benefits: spatial diversity gain and
increased degree-of-freedoms [3]. Each couple provides an
information about the probed channel as shown in Fig. 1.
The goal is to measure the scattering matrix (A)m,n which is
given by:

(A)m,n /

∫∫
source

1
(4p)2

exp(−ik.rTm)
rTm

r(r) exp(−ik.rRn)
rRn

, (1)

r(r) is the useful information referring to the reflectivity , rTm

and rRn are the distance from respectively the transmitter m
and the receiver n to the target (m [ [1, 2, . . ., M], n [

[1, 2, . . ., N]) as shown in Fig. 1. k is the wavenumber corre-
sponding to the operation frequency.

This scattering matrix can be sequentially measured by
switching the transmitting antennas and jointly process the
received signals [4, 5]. To simultaneously probe the channel,
the transmitted signals should be orthogonal. Therefore, it is
obvious that the waveform design is an issue for a MIMO
Radar systems.

Recent advances in MIMO Radar waveform design have
spawned the publication of numerous papers. Deng [6] has
initially proposed polyphase orthogonal code sets based on
genetic algorithm. Space-time coding of linear frequency
modulation has been proposed in [3–7] to mitigate cross-
correlation effects in MIMO Radars, but the obtained wave-
forms are nearly orthogonal and need chirps de-ramping
filters. A frequency hopping waveform is also an example of
suitable that can be used for MIMO Radar. This waveform
is chosen as the reference waveform for comparison with
the proposed concept in this paper. The analytic formulation
is as follows:

s(t) =
∑Q−1

q=0

u(t − qTc). exp(j2p(f0 + c(q)Df )t), (2)

where:

u(t) = 1, if 0 , t , Tc.

0, otherwise.

(
, (3)

where f0 is the center carrier frequency, c(q) is the qth element
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scrambled by a pseudo-noise Gold sequences [8], and Q, the
number of carriers. Tc corresponds to the pulse duration
and is fixed by the total bandwidth Bw of the signal. The
echo signals can be re-assigned to the sources by performing
correlation in pairs. The aim of the post-processing is first,
to estimate the channel matrix A, which represents the inter-
action between the transmitting and receiving antennas, and
then compensate the green functions to reconstruct the
target signature. This is made possible by means of MIMO
algorithms such as back-propagation of K-migration algo-
rithm [9, 10]. The first one is the base of image reconstruction
algorithm used in this paper.

All these aforementioned waveform design techniques are
based on the conventional MIMO architecture, which
should include M parallel transmitter chains ensuring
Frequency up-conversion, Digital to analog conversion, etc.
On the other hand, high resolution imaging will require as
much RF chains as antennas needed in conventional MIMO
architecture, which can rapidly be cumbersome and costly.

The contribution of this paper is to introduce an alternate
pseudo-orthogonal waveform generation technique that
requires a single transmitter radio frequency (RF) chain
while maintaining the same transmitter antenna array. This
is made possible by the means of a mode-mixing microwave
cavity whose transfer functions are intrinsically uncorrelated
[10–16]. In this new approach, the orthogonality of the trans-
mitted waveforms is passively ensured by the component
transfer functions. As consequence, high orthogonality prop-
erties required in MIMO Radar Imaging can be achieved with
a cost-efficient architecture.

The paper is organized as follows. Section II introduces the
principle of unique Transmitter RF chain MIMO Radar and
the mathematical formulations ensuing. The orthogonality
metrics that should be met and numerical analysis are
described in Section III. Experimental results are set forth in
Section IV to show the effectiveness of the proposed
method. Finally, a conclusion is drawn in Section V.

I I . S I N G L E T R A N S M I T T E R R F
C H A I N M I M O R A D A R P R I N C I P L E

Unlike a conventional MIMO architecture, the single-chain
MIMO Radar needs a single transmitter RF chain to feed
the required M transmit antennas. Since the transmitted
signals toward the target should be orthogonal, the proposed
architecture should satisfy this constraint. In practice, this
constraint can be achieved by the mean of a microwave
device whose transfer functions are uncorrelated [12]. As
shown in Fig. 2, the transmit antennas are connected to a
1 × M passive microwave component, which can be an over-
sized microwave cavity [13], a chaotic cavity, etc.

Indeed, an oversized microwave cavity relative to the
propagating wavelength can reach a high modal density,
which is necessary for good correlation properties. The time
domain response of this kind of components can be
modeled by the equation below [10–14]:

cm(t) = gm(t).e−t/2tc (4)

where:

† gm(t) fits a zero-mean random Gaussian distribution. It can
be seen as a Rayleigh multi-path channel. The channel rich-
ness depends on the size of the cavity compared with the
propagating wavelength.

† tc corresponds to the channel delay spread (decay time),
which is linked to the cavity quality factor. For an air-filled
cavity, the quality factor depends essentially on the con-
ductivity, and the number of input and output ports.
Therefore, increasing the number of the transmitting
antennas will decrease the quality factor, and thus impact
the delay spread of each channel. This constraint should
be considered while designing the cavity for MIMO
Radar applications.

Fig. 1. Conventional MIMO Radar principle. The transmitted signals are orthogonal, thus the echo signals can be re-assigned to the source by performing
correlation in pairs (Amn). This gives an enlarged virtual receiver aperture improving the spatial resolution.
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Furthermore, to improve frequency and spatial diversity
inside the cavity, the number of degenerated modes can be
minimized by means of a chaotic cavity. This can be achieved
by a regular cavity with convex boundaries shape to obtain
ergodic properties [15], or by inserting a diffusing object
inside a regular cavity. In this paper, a simple regular oversized
cavity is used to perform the experiment.

The first application of such cavities was introduced in
[16]. The authors demonstrated the ability to perform
antenna beamforming without any electronically control
using a 1 × 4 small regular reverberating chamber. Herein,
this component is used as a passive chaotic waveform gener-
ator exploiting its intrinsic transfer function properties. In this
context, a single waveform x( f ) should be generated at the
input of the component, and each transmitting antenna can
be addressed independently with an orthogonal waveform at
the output of the component. This allows the reduction of
the number of transmitting RF chains compared with the con-
ventional MIMO Radar architectures. In the depicted Fig. 2,
the signal sm( f ) radiated by the antenna m is :

sm(f ) = x(f )cm(f ), (5)

where x( f ) is a unique signal generated at the input of the
component, and cm( f ) the component transfer function
between the input and the mth output port of the component.
For the sake of notation simplicity, equation (5) can be pre-
sented in linear equation form, with an implicit notation of
the frequency:

s = x c. (6)

Note that vectors and Matrix are respectively, represented
by a bold and capital bold character. Therefore, the signals
measured by the receiving antenna array considering a noise-
less scenario is:

y = As, (7)

with A the aforesaid scattering matrix, which accounts for
useful information required for the imaging. An estimated
Ar of the channel matrix can be computed for each frequency
by compensating the contribution of the generated waveform

x and the component transfer functions c in a single
operation:

Ar = ys+, (8)

where s+ is the transmitted waveform equalizer. Numerous
equalization techniques can be applied to solve this linear
problem, Tikhonov approach is an example of suitable
methods to solve it. The explicit solution is thus given by [17]:

s+m = (s†s + mI)−1s†, (9)

where m denotes the regularization parameter, which is used
as a threshold to prevent any ill-conditioning problem [12].
(.)† denotes the transposed-conjugate operator. The expres-
sion of the estimated channel matrix can be expressed by:

Ar = ys+m

= Ass+m

≈ ARm

. (10)

Considering an ideal equalization of the generated signal x
at the device input, Rm can be considered as the pseudo-
correlation matrix of the component transfer functions:

Rm =

c1 × c+1m c1 × c+2m . . . c1 × c+mm

c2 × c+1m c2 × c+2m . . . c2 × c+mm

. . . . . . . . . . . .

cm × c+1m cm × c+2m . . . cm × c+mm

⎡
⎢⎢⎣

⎤
⎥⎥⎦. (11)

Ideally, this matrix tends to an identity matrix, correspond-
ing to uncorrelated transfer functions leading to a perfect esti-
mation of the channel matrix Ar ≈ A. Such constraints are
not practically achievable, limited by the frequency diversity
of microwave components, but can be approached using an
oversized microwave cavity regarding the operating wave-
length [18].

Fig. 2. Illustration of a single RF chain MIMO Radar transmitters fed by a 1 × M mode-mixing microwave cavity.
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I I I . O R T H O G O N A L I T Y M E T R I C S

A) Correlation criterion
For MIMO radar applications, the probing signals must have
good correlation properties : thin autocorrelation pick and low
cross-correlation sidelobes to minimize interferences between
channels. The cross-correlation function between two signals
generated from two different antennas (i.e. si(t) and sj(t), (i, j)
[ [1, 2, . . .M])must satisfy the condition below :

rij(t) =si(t) ⊗ sj(t)

=
∫1

−1

si(t).s∗j (t − t)dt = 0 ∀i = j
, (12)

where (.)∗ denotes complex conjugate of the argument (.). For
an infinite bandwidth, rii(t) tends to a Dirac function d(t).

An important metric to evaluate this correlation property is
the Person correlation coefficient (PCC), which is defined by
[19] :

r(i, j) = cov[si(t)sj(t)]
sisj

, (13)

where cov[si(t)sj(t)] is the covariance between si(t) and sj(t),
and si and sj are the standard deviation of the si(t) and
sj(t), respectively. The PCC gives an indication of the linear

relationship between the two signals. If r(i, j) ¼ 0, then si(t)
and sj(t) are said uncorrelated. Whereas, the closer the value
of r(i, j) is to 1 the stronger the correlation between the two
signals. Figure 3 shows an example of an oversized air-filled
microwave cavity with outer dimensions of 0.8 × 0.8 ×
1 m3. The component is constituted of 1 × 24 (Input/
Output) ports. The transfer functions have been characterized
and the correlation coefficients have been computed for 16
channels. As it can be noticed in Fig. 3(e) the device transfer
functions are uncorrelated. As result, it can be utilized to gen-
erate pseudo-orthogonal waveform for MIMO Radar
applications.

B) Conditioning criterion
An other metric to evaluate the performances of the proposed
concept is the condition number, which helps to evaluate the
impact of errors on the scattering matrix reconstruction. Let
us consider a MIMO array of M transmitters and N receivers.
As mentioned in equation (7), the received signal vector can
be given in the frequency domain by the equation y ¼ As
leading to a corresponding solution Ar = ys+. Thereby, an
error in y will unfortunately beget a wrong estimation of the
scattering matrix.

The condition number gives a bound on how inaccurate
the solution Ar will be after equalization. It can be seen as
the rate at which the solution will change with respect to a
change in y. Assuming an error e in y, the error in the solution

Fig. 3. Example of an oversized microwave cavity. (a) The front side of the cavity with output ports. (b) Inner-view with UWB probes randomly placed inside the
empty cavity. (c) The backside of the cavity with a single input port. (d) The transfer function between the input port and output port 1. (e) Correlation coefficients
of 16 transfer functions.
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is e.s+. Thus,the ratio of the relative error in Ar and y can be
expressed as follows [20]:

ERR = ||e.s+||/||ys+||
||e||/||y|| = ||e.s+||

||e||

( )
||y||
||ys+||

( )
, (14)

for non-zeros y and e , the maximum value is bounded by the
product of the two operator norms:

ERmax =max(e,y=0)
||e.s+||
||e||

( ) ||y||
||ys+||

( )

= max(e=0)
||e.s+||
||e||

( )
max(y=0)

||y||
||ys+||

( )

= max(e=0)
||e.s+||
||e||

( )
max(∀v=0)

||vs||
||v||

( )

=||s+||.||s||

, (15)

finally the condition number k(s) can be bounded by :

k(s) = ||s+||.||s|| ≥ ||s+s|| = 1. (16)

Therefore, if the condition number is large, even a small
error e may occur large error in the scattering matrix. On
the other hand, smaller error in y will not produce much
error in Ar. Furthermore, when k(s) is exactly one, then the
equalization operation defined by equation (8) can find an
approximation solution Ar , which is very close to the real scat-
tering matrix A. As consequence, a signal s with condition
number nearby 1 is said well-conditioned, and that with infin-
ite condition number is said ill-conditioned (this implies that
equation (7) does not possess a unique, and well-defined
solution).

Figure 4 show a comparison between a conventional
orthogonal frequency waveform of Q ¼ 32 carriers with the
orthogonal waveforms generated by an oversized cavity. For
this comparison, the frequency range is set from 2.5 to
3.5 GHz. The component decay time was set to 500 ns and
16 waveforms are considered.

Noticeably, the frequency hopping waveform is well-
conditioned compared with the mode-mixing waveform,
which implies a better reconstruction of the scattering

matrix. That is due to the fact that the frequency hopping
can be well controlled. While, the microwave cavity consid-
ered here is an entirely passive component, and the condition-
ing belongs to its intrinsic properties. Increasing the signal
bandwidth will increase the number of modes inside the
cavity providing more frequency diversities. As a conse-
quence, the conditioning number is minimized. Minimizing
the number of degenerated modes can certainly be helpful
to improve the conditioning number.

I V . M E A S U R E M E N T R E S U L T S

In this section, a measurement bench is set up to show the
feasibility of the proposed method. The air-filled microwave
aforementioned is used to connect M ¼ 4 transmit antennas.
The N ¼ 4 receivers are directly connected to an oscilloscope
Agilent DSO90404A 20 GSa/s. The inter-elements spacing is
dT ¼ 1.4 × lc and dR ¼ 0.7 × lc respectively, the trans-
mitting and the receiving antennas. lc corresponds to the
central wavelength in the 2.5–3.5 GHz frequency
Bandwidth. First, a conventional MIMO radar measurement
is performed by the mean of four orthogonal frequency
hopping waveforms generated by a four channels Arbitrary

Fig. 4. Comparison of the conditioning number of a conventional orthogonal
frequency hopping waveform and the mode-mixing waveform.

Fig. 5. MIMO Radar measurement setup. (a) Conventional MIMO with four FH-waveforms generated by an arbitrary waveform generator (AWG). (b)
Mode-mixing MIMO measurement setup, the transmitters are connected to the metallic cavity behind and the receivers are connected to a digital oscilloscope.
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waveform generator Agilent M8190A 12 GSa/s. Then the
same radar scenario was made by the mean of the proposed
method. Figure 5 shows the measurement setup.

The backscattered signals are measured and the same post-
processing and MIMO back-propagation algorithm [9] is
applied to both methods to locate the targets. Figure 5 show
the imaging results, which uphold the feasibility of the pro-
posed method. With a single generated waveform at the
microwave device input, the MIMO channel matrix can be
measured in one shot. The beam width at –3 dB of the
maximum is about 88 for both methods. For the mode-mixing
waveform, the image Peak-to-noise Ratio is about 14.27 and
12.76 dB respectively, the cylinder and the two metallic
ribbons image while those of the conventional FH-MIMO
are about 16.21 and 13.83 dB. As it can be noticed, the
target can clearly be located with a single transmit RF chain
ensuring MIMO Radar architecture simplification with
respect to the transmit beamforming constraint.

V . C O N C L U S I O N

This paper is assessed in more detail the orthogonality metrics
of the mode-mixing waveform, as previously studied. Using a
passive microwave component whose transfer functions are
quasi-orthogonal, MIMO radar transmitters can be independ-
ently addressed via a single generated waveform at the device
input port. This condition has been achieved by means of an
oversized microwave cavity regarding the operating wave-
lengths. The measurement results show that the proposed
method can be applied to minimize the complexity of the con-
ventional MIMO Radar architecture. Only a single transmitter
RF chain is required to feed the same antenna array. Future
works will focus on the design of miniaturized microwave

components that can provide good correlation properties,
accurate algorithms will be developed to enhance the image
reconstruction.
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