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1. Introduction

We denote here by X an n-dimensional compact connected Kähler manifold and by κ(X)
its canonical (or Kodaira) dimension. The motivations for the following shortest, but non-
transparent, definition of specialness will be explained below. See [9], where this notion
was introduced, for more details.

Definition 1.1. A compact Kähler manifold X is said to be special if, for any p > 0,
any rank-1 coherent subsheaf L ⊂ Ωp

X and any positive integer N , the natural meromor-
phic map ΦN,L : X ��� P(V ∗

N,L) has an image of dimension at most (p − 1).† Here, V ∗
N,L

denotes the dual of the complex vector space of sections of SymN (Ωp
X) that take values

in L⊗N ⊂ SymN (Ωp
X) at the generic point of X.

In particular, X then has no surjective meromorphic map f : X ��� Y onto a man-
ifold Y of general type and dimension p > 0, since otherwise L := f∗(KY ) ⊂ Ωp

X

would contradict the bound (p − 1) above. On the non-algebraic side, if X has no map

† By convention, this dimension is −∞ if VN,L = {0}, and is always at most equal to p, by a classical
result of Bogomolov.
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onto a positive-dimensional projective manifold, it is obviously special too. An equiva-
lent geometric definition of specialness of X actually requires that X satisfies the more
restrictive condition of having no meromorphic map onto an orbifold of general type (see
Definition 3.7 for the precise definition and the relevant notions concerning orbifolds).

Specialness is preserved by bimeromorphic maps and finite étale covers, this last asser-
tion being surprisingly difficult to show. Special manifolds generalize in higher dimensions
the rational and elliptic curves, which are obviously exactly the special curves. The next
fundamental examples of special manifolds are, indeed, those that are either rationally
connected or with zero canonical dimension (i.e. with κ = 0; see Example 3.8). However,
the class of special manifolds is much larger than the union of these two classes, since one
shows by classification that a compact Kähler surface X is special if and only if κ(X) � 1
and π1(X) is almost abelian. In particular, ruled elliptic surfaces are special and surfaces
with κ(X) = 1 are special if and only if they do not map onto any hyperbolic curve after
some finite étale cover. No such simple characterization is true when n � 3.

The central role of special manifolds in classification theory comes from the fact that,
as shown in [9, 5.8], any compact Kähler manifold is canonically and functorially decom-
posed by its core fibration cX : X → C(X) into its special part (the fibres of cX) and
its general-type part (the orbifold base (C(X), ∆(cX)), which is its usual base C(X)
together with a ramification divisor ∆(cX) on C(X) encoding the multiple fibres of cX).

Special manifolds and general-type orbifolds are, thus, the two antithetical primitive
pieces from which arbitrary compact Kähler manifolds are built in one single step. In
contrast to general-type manifolds, for which no classification scheme seems to be known
or even expected, special manifolds are conjectured to have many fundamental properties
in common with rational and elliptic curves.

Conjecturally, indeed, an orbifold version of the Cn,m conjecture implies that any spe-
cial manifold is canonically and functorially decomposed, by means of orbifold versions
of the rational quotient and of the Iitaka–Moishezon fibration, as a tower of fibrations
whose orbifold fibres have either κ = 0 or κ+ = −∞ (a weak version of rational connect-
edness; see [10]). We stress that the orbifold considerations are essential here (as in the
log minimal model programme (LMMP), but for different reasons), and that apparently
there is no possibility of working in the category of varieties without additional struc-
ture. This tower decomposition allows us to lift (conditionally) to special manifolds (and
even, more naturally, to special orbifolds) properties that are expected to be common to
manifolds that are either rationally connected or with κ = 0, and naturally leads to the
following conjectures.

Conjecture 1.2 (Campana [9, 10]).

(1) (Abelianity conjecture.) A special compact Kähler manifold has an almost abelian
fundamental group (i.e. π1(X) has an abelian subgroup of finite index).

(2) A compact Kähler manifold (respectively, a projective manifold defined over a
number field) has an identically vanishing Kobayashi pseudometric (respectively,
is potentially dense) if and only if it is special (this last statement is inspired by
Lang’s conjectures).
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For example, rationally connected manifolds are simply connected [5], and compact
Kähler manifolds X with c1(X) = 0 have an almost abelian fundamental group, by [2,29].

In this paper we prove the abelianity conjecture above for 3-folds (as stated above,
this is known for surfaces by classification; see Proposition 3.9).

Theorem 1.3. Let X be a compact Kähler 3-fold. If X is special†, its fundamental
group is almost abelian.

This immediately implies, among several other things, a precise solution of Shafare-
vich’s conjecture in this case (and for all special manifolds if the abelianity conjecture
holds).

Corollary 1.4. If X is a special compact Kähler 3-fold with universal cover X̃, let X ′

be any finite étale cover of X with abelian torsion-free fundamental group and Albanese
variety Alb(X ′) of dimension d := q(X ′). Then,

X̃ = X ′ ×Alb(X′) Ãlb(X ′)

is holomorphically convex, the universal cover Ãlb(X ′) of Alb(X ′) being Stein, since it
is isomorphic to Cd.

2. Reduction to the two-dimensional orbifold case

We prove the theorem in this section only in the cases where no orbifold structure is
needed, that is, except when either X is projective and κ(X) = 2, or a(X) = 2. The
treatment of these two residual cases needs the consideration of two-dimensional projec-
tive special orbifolds and is the subject of the subsequent sections.

Because of the lack of a minimal model programme in the Kähler non-projective case,
we need to treat it differently from the projective case. So, first assume that X is pro-
jective. We work according to the value of κ(X) � 2.

κ(X) = −∞. By Miyaoka’s theorem, X is uniruled. Let rX : X → R(X) be its rational
quotient (also known as its maximal rationally connected (MRC) fibration). Then, R(X)
is also special, with dim(R(X)) � 2, and π1(X) � π1(R(X)), since the fibres of rX are
rationally connected. Since π1(R(X)) is almost abelian, so is π1(X).

κ(X) = 0. If c1(X) = 0, the theorem is true, by [2, 29]. One reduces to this case by
the minimal model programme and [25] (see [18, (4.17.3)]). The details are as follows.
There exists a terminal model X ′ birational to X such that KX′ is torsion, hence trivial
after finite étale (in codimension 1) cover. Then, X ′ has only cDV singularities. It is thus
smoothable in the projective category, by [25]. The conclusion follows, since π1(X) is a
quotient of the fundamental group of the generic fibre.

† This paper in fact deals with the (a priori) more general case of classically special orbifolds defined
in [10]; see the terminological remark on [10, p. 5]. It is not known whether the two notions actually
differ.
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κ(X) = 1. Let JX : X → Y be the Moishezon–Iitaka fibration. Because its base is a
curve, there exists a finite étale cover of X (still written X) such that JX has no multiple
fibre.† Then, π1(X) is an extension of π1(Y ) (Y being a rational or elliptic curve, since
special) by a quotient of π1(Xy), Xy being the generic smooth fibre of JX , which is a
surface with κ = 0. Because these two groups are almost abelian, π1(X) is a priori only
polycyclic. The following result, however, implies the conclusion.

Theorem 2.1 (Campana [7]). Let f : X → Y be a fibration without multiple fibres
in codimension 1 on Y from a compact Kähler manifold onto a manifold Y . Assume that
Y and the generic fibre Xy of f both have an almost abelian fundamental group. Then,
X also has an almost abelian fundamental group.

The proof of this theorem rests on two deep results of Hodge theory: Deligne’s strictness
theorem for morphisms of mixed Hodge structures (MHSs), and Hain’s functorial MHS
on the Malčev completion of π1(X) when X is compact Kähler.

κ(X) = 2. When X is projective, this is the only remaining case. Note that, when
κ(X) = 1, we can remove the multiple fibres of JX by making a suitable finite étale cover
of X, because Y is a curve. When κ(X) = 2 this is, in general, no longer possible. This is
the reason why the notion of an orbifold base, which virtually removes the multiple fibres,
is introduced in this case, and why the geometry of such orbifolds needs to be considered
and defined. But once this is done, and the corresponding properties established, the
proof is entirely parallel.

We now deal with the case when X is not projective. We work this time according to
the algebraic dimension a(X) ∈ {0, 1, 2} of X.

a(X) = 0. Recall that the Albanese map is surjective and has connected fibres when
a(X) = 0 (see [27, 13.1, 13.6]). The irregularity of X can, thus, only take the val-
ues q(X) = 0, 2 or 3 (since q(X) = 1 would imply that a(X) � 1). The assumption
that a(X) = q(X) = 0 leads to the finiteness of π1(X) according to [6, Corollary 5.7].
Thus, if q(X) = 3, X is birational to its Albanese variety, and π1(X) is abelian. When
q(X) = 2, the Albanese fibration αX : X → Alb(X) has no multiple fibre in codimen-
sion 1, by [9, Proposition 5.3]. Moreover, the general fibre of αX is elliptic or rational,
by [27, Theorem 13.8]. From Theorem 2.1, we conclude that π1(X) is almost abelian.

a(X) = 1. The algebraic reduction aX : X → A(X) is then a fibration onto a curve
A(X) with general fibre special [9, Theorem 2.39]; the fundamental groups of the base
and of the fibre are then almost abelian (see Theorem 3.9). As in the projective case
with κ(X) = 1, we may assume that there are no multiple fibres. A final application of
Theorem 2.1 then implies the result.

† Or Y ∼= P1 and JX has one or two multiple fibres. This case is easily treated similarly, and is easier
since the orbifold base is now P1 minus one or two points with finite multiplicities, and, thus, has a finite
cyclic orbifold fundamental group. There is not even any need to consider the orbifold structure here,
since the fundamental group of P1 minus two points is Z, hence abelian.
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We are thus left with the following two cases:

(1) X is projective and κ(X) = 2,

(2) X is a compact Kähler 3-fold with a(X) = 2.

We briefly explain how the conclusion is then obtained. In both cases we have a fibration
(which may be assumed to be neat ; see Definition 3.5), after suitable modifications of X

and S, f : X → S on a smooth projective surface S, with generic fibres elliptic curves.
This defines a smooth, and hence Kawamata log terminal (klt) (see Example 3.3 and
Definition 5.1, respectively, for these notions) orbifold base (S, ∆f ). Because X is special,
so is (S, ∆f ). As above, for such a fibration, π1(X) is now an extension of π1(S, ∆f ) by
π1(Xs). We show the following below.

Theorem 2.2. The fundamental group of a special geometric orbifold (S, ∆S) of
dimension 2 is almost abelian of even rank at most 4.

The conclusion now follows from the orbifold version of Theorem 2.1, proved in [11,
Corollary 7.6].

We stress that our proof of Theorem 2.2 depends in an essential way on the fact
that integral klt pairs are locally uniformizable by smooth germs of surfaces, because we
are using the existence of Ricci-flat orbifold metrics when c1(S, ∆) = 0. This is the main
reason why we cannot extend Theorem 2.2 to any higher dimension. Otherwise, assuming
the abundance conjecture, it seems that one could derive the abelianity conjecture in the
projective case for klt orbifolds in any dimension using inductively on the dimension
essentially the same arguments as the ones presented below.

3. Some basic facts on orbifolds

3.1. Notion of orbifold

The orbifolds considered here are spaces with local smooth uniformizations under the
action of some finite groups. Isotropy in codimension 1 is expressed by a ‘ramification’
Q-divisor.

Definition 3.1 (Ghigi and Kollár [14]). An orbifold is a pair (X, ∆) where X is a
normal variety and ∆ a Q-Weil divisor of the following form:

∆ =
∑
i∈I

(
1 − 1

mi

)
∆i,

where the mi � 2 are integers, and the pair (X, ∆) is locally uniformizable in the following
sense. X is covered by the domains U of finite maps

ϕ : U → X

satisfying the following properties:

(i) ϕ(U) is open in X,

(ii) ϕ : U → ϕ(U) is a Galois cover whose branching divisor is exactly ∆|ϕ(U).

The support of ∆ is then |∆| =
∑

i ∆i.
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Terminological remark

The orbifolds we consider are compatible with all situations in which this term is used:
they are particular cases of the ones in [10], and the special manifolds defined below are
actually the classical special ones in [10]. These classical orbifolds are particular instances
of the more general versions defined in [10]. They are smooth Deligne–Mumford stacks
too, and also klt pairs of the LMMP. Because they are locally smoothly uniformized,
we can, as usual, attach to them fundamental groups and differential–geometric notions
such as metrics and differential forms, which coincide with the notions introduced more
generally in [10].

Definition 3.2. The canonical divisor of such a pair is defined as the (Weil) Q-divisor
KX + ∆.

Example 3.3. Let X be a smooth variety, and let |∆| =
∑

i∆i be a normal
crossing divisor; the choice of multiplicities mi � 2 on each component of the divi-
sor defines a canonical orbifold structure on (X, ∆). Since |∆| is locally given by the
equation z1 · · · zk = 0 in suitable coordinates (z1, . . . , zn), the map (z1, . . . , zn) �→
(zm1

1 , . . . , zmk

k , zk+1, . . . , zn) gives a local uniformization. These orbifolds are said to be
smooth and integral in [10].

In particular, an orbifold curve is simply a smooth curve with a finite set of points
marked with integral multiplicities at least 2.

Since we consider only integral and finite multiplicities here, we define the following.

Definition 3.4. A geometric orbifold is an orbifold (X, ∆) with X smooth and |∆| of
normal crossings.

3.2. The orbifold base of a fibration and special manifolds

Definition 3.5 (Campana [9, Definition 1.2]). Let f0 : X0 → Y0 be a fibration
(surjective morphism with connected fibres) between compact complex manifolds. A neat
model of f consists in a commutative diagram:

X

f

��

u �� X0

f0

��
Y v

�� Y0

where

(1) X and Y are smooth,

(2) u and v are bimeromorphic morphisms,

(3) the locus of singular fibres of f is a normal crossing divisor of Y ,

(4) every f -exceptional divisor is u-exceptional too.
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Such models actually exist birationally for any fibration; this can be proven using
Hironaka desingularization and Raynaud’s flattening theorems [9, Lemma 1.3]. Note
that any fibration is neat when Y is a curve.

Given a neat fibration f : X → Y , we can naturally associate a Q-divisor ∆∗(f) on the
base Y of f . This divisor will be supported on the singular locus of f and will thus be a
normal crossing: the pair (Y,∆∗(f)) will be a geometric orbifold.

The construction goes as follows (see also [9, 1.1.4]): if ∆i is any component of the
singular locus of f , its pullback can be written as

f∗(∆i) =
∑

j

mjDj + R,

where R is f -exceptional and Dj is mapped surjectively onto ∆i. The multiplicity of f

along ∆i is defined by mi = m(f,∆i) = gcdj(mj).

Definition 3.6. The pair (Y,∆∗(f)), where ∆∗(f) =
∑

i(1 − 1/mi)∆i, is called the
orbifold base of the fibration f0 (notation as above).

A fibration f0 is said to be of general type if the canonical divisor of the orbifold base
(Y,∆∗(f)) is big : κ(Y, KY + ∆∗(f)) = dim(Y ) > 0.

Definition 3.7 (Campana [9, Definition 2.1]). A compact Kähler manifold X is
said to be (classically) special if it does not admit any fibration of general type.

Example 3.8. The main examples of special manifolds are given by the following
classes [9, 3.22, 5.1, 2.39].

• Rationally connected manifolds.

• Compact Kähler manifolds X with κ(X) = 0. This is a consequence of the additivity
of canonical dimensions in general-type fibrations (see [9, Theorem 4.2], an orbifold
version of Viehweg’s theorem).

• The special curves are, thus, just the rational or elliptic ones.

• Compact Kähler manifolds of algebraic dimension 0 and, more generally, fibres of
algebraic reductions.

Conjecturally, in an orbifold version of Iitaka’s Cn,m-conjecture, special manifolds can
be reconstructed as a tower (in a suitable sense) of fibrations with fibres belonging to
the classes above. This reduces the abelianity conjecture, Conjecture 1.2 (1), to the case
of orbifolds with either κ = 0 or κ+ = −∞ (see [10, 13.10]).

In dimension 2 only, we still have a simple topological characterization of specialness.

Proposition 3.9 (Campana [9, Proposition 3.32]). A compact Kähler surface X

is special if and only if κ(X) � 1 and if π1(X) is almost abelian.

We also need the notion of the orbifold base of a fibration f : X → Y when X is
equipped with an orbifold divisor ∆X , at least when Y is a curve and X is a surface (for
the general case, see [10, Definition 4.2]).
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Definition 3.10. Let (X, ∆X) be a geometric orbifold of dimension 2 and let
f : X → C be a fibration onto a curve. We define the multiplicity of a point y ∈ C

(relative to f and ∆X) by the following formula: my(f,∆X) := gcdi(mimult∆X
(Fi)),

where f∗(y) =
∑

imiFi. The orbifold base is then the pair (C,∆∗(f,∆X)), where

∆∗(f,∆X) =
∑

y

(
1 − 1

my(f,∆X)

)
{y}.

We say that f is of general type if 2g(C) − 2 + deg(∆∗(f,∆X)) > 0.
The two-dimensional orbifold (X, ∆X) is then said to be special if (X, ∆X) does not

admit any general-type fibration onto a curve, and if κ(X, KX + ∆X) < 2.

4. Fundamental groups and fibrations

4.1. An orbifold exact sequence

In this section, we define the fundamental groups of orbifolds and study the morphisms
induced at the level of fundamental groups by classical orbifold morphisms.

Definition 4.1. Let (X, ∆) be an orbifold, and let X∗ be the smooth locus of X; the
fundamental group π1(X, ∆) is the quotient of the group π1(X∗ \ |∆|) by the normal
subgroup generated by the loops γ

mj

j , where γj is a small loop around the component ∆j

of multiplicity mj .

This definition is derived from the local models. If X = Cn/G, where G is a finite
subgroup of GLn(C) and ∆ is the branching divisor of the projection π : Cn → X, we
recover the group G as an orbifold fundamental group†:

π1(X, ∆) � G.

Example 4.2. The case of orbifold curves is quite classical. The structure of the
fundamental group of such an orbifold curve (C,∆ = (m1, . . . , mn)) (we just keep in
mind the deformation invariant, that is, the multiplicities, not the marked points) is
determined by the sign of its canonical bundle:

deg(KC + ∆) = 2g(C) − 2 +
n∑

j=1

(
1 − 1

mj

)
.

When this quantity is positive (respectively, 0; respectively, negative), the fundamen-
tal group of (C,∆) is commensurable to the fundamental group of a hyperbolic curve
(respectively, commensurable to Z2; respectively, finite and explicitly known).

When dealing with fibrations having multiple fibres, we need to consider orbifold fun-
damental groups. A fibration f : X → Y with general fibre Xy gives rise to a natural
sequence of fundamental groups

π1(Xy) i∗−→ π1(X)
f∗−→ π1(Y ) → 1.

† The orbifold divisor determines the structure of the smooth Deligne–Mumford stack X associated
with (X, ∆) and called the root stack by Abramovich and Vistoli.
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Although f∗ is surjective, since f has connected fibres, this sequence is in general not
exact in the middle. Multiple fibres are responsible for this failure, remedied by the
orbifold fundamental group.

We need the case where X has an orbifold structure†, and thus a slightly more general
version. For the definition (of a neat fibration in the orbifold setting), we refer the reader
to [10, Definition 4.8].

Proposition 4.3 (Campana [10, Corollary 12.10]). Let f : (X, ∆X) → Y be a
neat fibration. If Xy denotes a general fibre of f and ∆y denotes the restriction of the
orbifold structure to Xy, the sequence

π1(Xy, ∆y) → π1(X, ∆X)
f∗−→ π1(Y,∆∗(f,∆X)) → 1

is exact.

Remark 4.4. We omit the detailed definition of neatness required for the preceding
statement because in what follows we only use it in the two following, quite simple,
situations.

(a) When ∆X is empty, this neatness assumption has already been encountered (see
Definition 3.5). The content of the previous proposition is then that π1(X) sits in
the middle of a short exact sequence (with the fundamental group of the orbifold
base on the right-hand side).

(b) When Y is a curve, the fibration f : (X, ∆X) → Y is always neat.

4.2. Nilpotency class in fibrations

To complete this study of the behaviour of fundamental groups in fibrations, we prove
that nilpotency conditions on the fundamental groups are preserved in fibrations between
Kähler orbifolds. This remarkable fact (obviously false even for submersions between
complex manifolds as the Iwasawa manifold shows) is a consequence of deep results in
mixed Hodge theory.‡

Theorem 4.5 (Campana [11, Corollary 7.6]). Let f : (X, ∆X) → (Y,∆Y ) be a
neat fibration (see Remark 4.4) between smooth compact Kähler orbifolds. If the groups
π1(Xy, ∆Xy ) and π1(Y,∆Y ) are almost abelian¶, then π1(X, ∆X) is almost abelian as
well.

Proof. This is a reduction to the case when ∆X = 0. Since f is assumed to be neat,
the sequence

π1(Xy, ∆Xy ) → π1(X, ∆X)
f∗−→ π1(Y,∆Y ) → 1

† Because X will not then be our initial 3-fold, but the two-dimensional supporting space of the
orbifold base of either its Iitaka fibration, or of its algebraic reduction.

‡ The key ingredients are the existence of an MHS on the Malčev completion of the fundamental group
of a compact Kähler manifold and the strictness of morphisms of MHSs.

¶ More generally, if these two groups are torsion-free nilpotent of nilpotency class at most ν, then
π1(X, ∆X) is also nilpotent of nilpotency class at most ν.
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is exact. Since π1(Xy, ∆Xy
) and π1(Y,∆Y ) are almost abelian groups (of finite type),

G = π1(X, ∆X) is an almost polycyclic group; in particular, the group G is linear. Sel-
berg’s lemma asserts that G then has a finite index subgroup G′ � G that is torsion free.
Consider X ′, the orbifold cover of (X, ∆X) associated with G′; the latter being torsion
free, X ′ is a normal variety with no orbifold structure (i.e. ∆′ = 0). Since X ′ has only
quotient singularities, its fundamental group is isomorphic to that of X̃, a desingular-
ization of X ′ [17, Theorem 7.5]. To conclude, we consider (a neat model of) the Stein
factorization of

X̃ → X ′ → X → Y.

Indeed, taking a further blow-up of X̃, we can complete the picture:

X̃ ��

f̃
����������������� X ′ �� X

f �� Y

Ỹ

g

����������

with f̃ a neat fibration and g generically finite. It is then easy to see that we have an
exact subsequence (with vertical maps having finite index images):

π1(X̃y) ��
� �

��

π1(X̃)
f̃∗ ��

� �

��

π1(Ỹ ,∆∗(f̃)) ��
� �

��

1

π1(Xy, ∆Xy
) �� π1(X, ∆X)

f∗ �� π1(Y,∆Y ) �� 1

So we are reduced to the same situation with ∆X = 0, and we can apply [11, Corol-
lary 7.6]. �

4.3. Fundamental groups of orbifolds with non-positive canonical bundle

Just as in the case of compact Kähler manifolds, when the orbifold first Chern class is 0
or positive, the now commonplace differential–geometric methods can then be applied to
construct orbifold Kähler metrics with Ricci-curvature of the corresponding sign (using
the local smooth uniformizations).

Theorem 4.6. Let X = (X, ∆) be an orbifold with X compact Kähler. If the first
Chern class of X is non-negative, the group π1(X ) is almost abelian. More precisely:

• if c1(KX + ∆) = 0, then π1(X, ∆) is almost abelian of even rank† bounded by
2 dim(X);

• if c1(KX + ∆) > 0, then π1(X, ∆) is finite.

† The rank of an almost abelian group G of finite type is the maximum rank of an abelian subgroup
of finite index of G.
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To begin with, we recall some basic facts on differential calculus on orbifolds. The
smooth functions (differential forms, hermitian metrics, etc.) on an orbifold (X, ∆) are
the smooth functions on X∗ \ |∆| that can be smoothly extended (as the usual objects,
after taking inverse images) in local uniformizations. For instance, if (X, ∆) is a geometric
orbifold, a Kähler metric has the following form in coordinates charts adapted to ∆:

ω∆ = ωeucl +
n∑

j=1

i∂∂̄|zj |2/mj

= ωeucl +
n∑

j=1

idzj ∧ dz̄j

m2
j |zj |2(1−1/mj)

.

Local uniformizations can also be used to compute integrals of forms of maximal degree.
If ϕ : U → ϕ(U) ⊂ X is such a local cover and α an orbifold top-form on X, define∫

ϕ(U)
α =

1
deg(ϕ)

∫
U

ϕ∗α.

This local computation can then easily be globalized using partitions of unity.
The canonical divisor has been defined in Definition 3.2 as a Q-divisor. It should be

noted here that (X being compact and the uniformizations being finite) some integral
multiple of this divisor defines a line bundle on X and it can be used to compute the
first Chern class of X. As a by-product, the Ricci form of any orbifold volume form is a
(1, 1)-orbifold form whose cohomology class coincides with c1(X ).

As in the manifold case, every invariant form whose cohomology class coincides with
c1(X ) is the Ricci curvature of an orbifold Kähler metric. This fact has already been
noted several times in the literature (see, for instance, [8,15] when c1(X ) = 0, and [12]
when c1(X ) > 0, and the references therein). We need the following statement.

Theorem 4.7 (Calabi–Yau). Let X be a Kähler orbifold whose underlying space is
compact and let us fix ω0 as an orbifold Kähler metric. For any representative (i.e. smooth
invariant (1, 1) form) α of c1(X ), there exists a unique orbifold Kähler metric ω in the
Kähler class [ω0] such that Ricci(ω) = α.

Proof. We reproduce the arguments given in [8, Theorem 4.1]. This is a simple adap-
tation of the proof exposed in [26, pp. 85–113]. Since Ricci(ω0) and α define the same
class, the orbifold ∂∂̄-lemma provides us with a smooth (orbifold) function f such that
Ricci(ω0) = α + i∂∂̄f . We normalize f (by addition of a suitable constant) in such a way
that ∫

X

(ef − 1)ωn
0 = 0.

The problem is then reduced to solving the Monge–Ampère equation

(ω0 + i∂∂̄ϕ)n = efωn
0 . (MA)
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To do so, we apply the continuity method as in [26, pp. 85–113] and consider the set T

of t ∈ [0, 1] for which the equation

(ω0 + i∂∂̄ϕt)n = Ctetfωn
0 (MA)t

has a solution, where

Ct =

∫
X

ωn
0∫

X
etfωn

0
.

When t = 0, ϕ0 = 0 is an obvious solution for (MA)t. The set T is open by linearization
of the problem and the implicit functions theorem (applied in local uniformizations).
To see that T is closed we need a priori estimates on the solution of (MA)t, which
are established using two types of argument: the maximum principle and Nash–Moser
iteration (integral inequalities). These can be used in the orbifold setting as well: the
maximum principle is applied in local uniformizations and integral inequalities are also
valid in this formalism (see the remarks following Theorem 4.6). �

We proceed as in the manifold case to deduce Theorem 4.6 from Theorem 4.7. The pos-
itivity assumptions can be translated in the following way: in the Fano case (c1(X ) > 0)
there exists a positive (1, 1)-form α representing c1(X ); in the Ricci flat case (c1(X ) = 0)
we choose α = 0. We can now apply Theorem 4.7: X has an orbifold Kähler metric ω

with prescribed Ricci curvature Ricci(ω) = α.
In the Fano case, by the compactness of X, we get that Ricci(ω) � εω, where ε > 0.

The following orbifold version of Myer’s theorem applied to the orbifold universal cover
(see [24]) of X implies the finiteness of the orbifold fundamental group.

Theorem 4.8 (Borzellino [3, Corollary 21]). Let (Y, g) be a complete Riemannian
orbifold (of dimension n). If its Ricci curvature satisfies the inequality

Ricci(g) � (n − 1)k

for some k > 0, then its diameter is bounded above:

diam(Y ) � π√
k

.

Moreover, the underlying space Y of Y is compact if (Y, g) is an orbifold étale cover of
some compact orbifold.

When c1(X ) = 0, the following orbifold splitting theorem, Theorem 4.9, again applied
to the orbifold universal cover of X also implies the claim.

Theorem 4.9 (Borzellino and Zhu [4]). Let (Y, g) be a compact Riemannian
orbifold (of dimension n). If the Ricci curvature is everywhere non-negative, the orbifold
universal cover Ỹ admits a (metric) splitting

Ỹ � N × Rm,

where N is a compact orbifold. The orbifold fundamental group of Y is also an extension
of a crystallographic group by a finite group and is, in particular, almost abelian.

From the arguments given in [8, 5.4, 6.3] we deduce that the rank of the almost abelian
group π1(X, ∆) is even and bounded by 2 dim(X).
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5. Minimal model programme for klt pairs in dimension 2

5.1. Kawamata log terminal pairs as orbifolds in dimension 2

In this short section, we gather from [19] some well-known facts on the minimal model
programme (MMP) for log pairs in dimension 2. Starting with a pair (X, ∆), where
X is a smooth surface and ∆ =

∑
jbj∆j is a Q-Weil effective divisor, we can perform

a sequence of divisorial contractions that ends with a birational model of the initial
pair and whose geometry is simplest, according to the sign of the canonical bundle. In
this process, however, (KX + ∆)-negative curves are being contracted, and the resulting
surface is no longer in general smooth. The relevant preserved category of singularities
is then described as follows.

Definition 5.1. A pair (X, ∆), where X is a Q-factorial normal variety, is said to
have only klt singularities if

(i) for all j, 0 < bj < 1;

(ii) for any (or equivalently, one) log-resolution f : Y → X of (X, ∆), in

KY + ∆̃ = f∗(KX + ∆) +
∑

i

aiEi,

we have ai > −1 for all i, ∆̃ being the strict transform of ∆, and Ei the exceptional
divisors of f .

A smooth (integral) orbifold is of course a klt pair. These singularities are preserved
in the LMMP.

Theorem 5.2 (Kollár and Mori [19, Theorem 3.47]). Let (X, ∆) be a klt surface.
There exists a birational morphism f : X → S such that the resulting pair (S, ∆S =
f∗(∆)) is still klt and satisfies (exactly) one of the following properties:

(1) KS + ∆S is nef;

(2) S admits a fibration π : S → C onto a (smooth) curve C, the general fibre of π

being a smooth KS + ∆S-negative rational curve;

(3) (S, ∆S) is del Pezzo: ρ(S) = 1 and −(KS + ∆S) is ample.

The crucial case in our situation is when the orbifold base (X, ∆) of either the Iitaka
fibration or the algebraic reduction of our initial 3-fold is two dimensional with κ(X, ∆) =
0. The LMMP in dimension 2 replaces it with an orbifold (S, ∆S) with KS + ∆S ≡ 0, to
which the results of the preceding section can be applied once we prove that (S, ∆S) is
an orbifold (i.e. is locally smoothly uniformizable). This is the content of Theorem 5.3.

When ∆ = 0, it is well known that klt singularities coincide with quotient singularities
in dimension 2 (see [19, Proposition 4.18]). This property still holds for ∆ 
= 0 with
integral multiplicities (i.e. coefficients bj of the form 1 − 1/m).
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Theorem 5.3. Let (X, ∆) be a pair where X is a surface and ∆ has integral multi-
plicities. The following conditions are equivalent near each point of X:

(1) (X, ∆) is klt,

(2) (X, ∆) has a finite local fundamental group,

(3) (X, ∆) is locally presented as a quotient: π : B2 → B2/G � X, where G is a finite
group acting linearly (and unitarily) on B2 (the unit ball of C2) and ∆ is the unique
Q-divisor on X such that π∗(KX + ∆) = KB2 .

This statement is found and used in several places [16,21], but never with a complete
accessible proof: the appendix of [16] consists of a list of the possible cases, and refers to
the thesis [23] for the proof. For this reason, we give a proof of Theorem 5.3 at the end
of the present text (see the appendix).

5.2. Fundamental groups and Mori contractions

We now relate the fundamental groups of a geometric orbifold (X, ∆) of dimension 2
and of its minimal model (S, D = ∆S = f∗(∆)) as in Theorem 5.2.

Proposition 5.4. Let (X, ∆) be a geometric orbifold of dimension 2 and let
f : (X, ∆) → (S, D) be its minimal model. There exists a natural surjective morphism of
groups:

f � : π1(S, D) → π1(X, ∆).

In particular, if π1(S, D) is almost abelian, so is π1(X, ∆).

Proof. We call E the union of the curves contracted by f ; f being an isomorphism
away from E, we have the natural maps, S∗ being the smooth locus of S,

S∗ \ |D| f−1

−−→ X \ (|∆| ∪ E) ↪→ X \ |∆|

(note that |∆| and E may have common components). At the level of fundamental groups,
we get the natural morphisms

π1(S∗ \ |D|) ∼−→ π1(X \ (|∆| ∪ E)) � π1(X \ |∆|) � π1(X, ∆).

To get the morphism f � we need only remark that the loops around the components of D

are sent onto loops around corresponding components in ∆ with the same multiplicities,
since f is an isomorphism between S∗ and X \ E. �

Example 5.5. In general, the kernel of this morphism can, however, be very big, as
shown by the following example.

Let C be an elliptic curve, and let X be the blow-up of S = C ×C at a point (c, c). Let
F ⊂ S be the fibre of the first projection through this point and let G be its strict trans-
form in X. If m > 1 is an integer, the minimal model of (X, ∆ = (1 − 1/m)G) is (S, D =
(1−1/m)F ) and the exceptional divisor E of the blow-up is the only (KX + ∆)-negative
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curve on X. Since the orbifold base of the first projection is (C, (1 − 1/m){c}), the fun-
damental group of (S, D) has (a finite index subgroup that has) a surjective morphism
onto a non-abelian free group. On the other hand, the orbifold base of g : (X, ∆) → C, g

being the composition of the first projection and the blow-up, is merely C since the fibre
over c has E as a component and inherits from it the multiplicity 1. It is then easy to see
that (X, ∆) is special and that its fundamental group is isomorphic to the fundamental
group of X, and thus abelian.

Remark 5.6. The direction of the arrow f � in Proposition 5.4 is not the usual one.
We explain its construction differently. The map f : (X, ∆) → (S, D) = (X, ∆)min is,
in general, not a ‘classical’ orbifold morphism (in the sense of [10]) and, thus, does
not induce a functorial morphism of groups, unless the multiplicities on the exceptional
divisors of f are sufficiently divisible (for example, by the order of the local fundamental
group of (S, D) at the point under consideration). In Example 5.5, equipping E with a
multiplicity divisible by m is the right condition. This is achieved as follows.

Let ∆+ be an orbifold divisor on X such that f∗(∆+) = f∗(∆) = D, and such that
f : (X, ∆+) → (S, ∆) and idX : (X, ∆+) → (X, ∆) are orbifold morphisms (this means,
for idX , that the multiplicity of any component of ∆ divides the corresponding multi-
plicity in ∆+).

We then get two functorial group morphisms: f �
+ : π1(X, ∆+) → π1(S, D), which is an

isomorphism, and id�
X : π1(X, ∆+) → π1(X, ∆), which is surjective (as above). Our initial

f � was nothing but (idX)� ◦ (f �
+)−1.

5.3. Abelianity for special klt pairs and proof of the main theorem

To conclude this section, we use the preceding proposition to prove the abelianity
conjecture for geometric orbifolds of dimension 2.

Proof of Theorem 2.2. Let (S, D) be the minimal model of the pair (X, ∆X). We
argue according to the values of κ = κ(X, ∆) = κ(S, D) ∈ {−∞, 0, 1}.

If κ = 1, then X admits a fibration f onto a smooth curve C whose general fibre F

satisfies F · (KX + ∆) = 0; the general orbifold fibre (F, ∆F ) is then orbifold elliptic and
its fundamental group is almost abelian (see Example 4.2). Adding to C the orbifold
divisor ∆∗ = ∆∗(f,∆X) of classical multiplicities, we get an exact sequence

π1(F, ∆F ) → π1(X, ∆X) → π1(C,∆∗) → 1.

The orbifold curve (C,∆∗) is special since so is (X, ∆), and Theorem 4.5 shows that
π1(X, ∆) is almost abelian.

When (S, D) admits a structure of Mori fibre space over a (special) curve (in particular,
κ = −∞), we still have a fibration on X whose fibres are special (in fact rational) and
we can proceed as above.

There are two cases left to consider:

• κ(S, D) = 0,

• (S, D) is log del Pezzo.
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In the first case, KS + D being nef it is semi-ample (due to log abundance for surfaces;
see [13]) and then torsion. In particular, the orbifold (S, D) is Ricci flat. In the second
case, (S, D) is Fano. In both cases, we can apply Theorem 4.6 to conclude that the
fundamental group of (S, D) is almost abelian. Finally, Proposition 5.4 can be applied
(it is only here we need it) to show that π1(X, ∆X) is almost abelian as well. �

Recall that (X, ∆X) was the two-dimensional orbifold base of either the Iitaka fibration,
or of the algebraic reduction of our initial special Kähler 3-fold, in the two cases left open
(see the end of § 2) in the proof of Theorem 1.3. Since the smooth fibres are then elliptic
curves, and the orbifold base is also special, it then has an abelian fundamental group,
and, thus, has the 3-fold under study, by Theorem 4.5.

Appendix A. Classification of klt singularities of surfaces

In this appendix we give a proof of the classification of klt singularities for integral pairs
(see Theorem 5.3). The method is first to treat the singular case (using the method
of [19, Theorem 4.7]) and then to reduce the smooth case to the preceding one using
orbifold étale covers. Then let (X, ∆), ∆ =

∑
j(1 − 1/mj)Dj , be a germ of a klt pair.

A.1. The singular case

To begin with we quote a useful (negativity) lemma on connected quadratic forms.

Lemma A 1 (Kollár and Mori [19, Corollary 4.2]). Let E :=
⋃

jEj be a con-
nected exceptional curve on a smooth complex surface. Let A :=

∑
jajEj and let

B :=
∑

jbjEj , with aj , bj ∈ R. Assume that A · Ej � B · Ej for any j. Then either
A = B or aj < bj for any j.

We first consider the case in which the germ X is singular.

Lemma A 2. Assume that X is singular, and that ∆ 
= 0. Let f : X ′ → X be the
minimal resolution of the germ X, ∆′ =

∑
k(1−1/mk)D′

k being the strict transform of ∆
in X ′ and E =

⋃
jEj the exceptional divisor. The extended dual graph of f∗(∆) is then

one of those below (which are the dual graphs when ∆ 
= 0), in which the (non-compact)
components of ∆′ are indicated by black dots. Moreover, all intersections are transversal
and all white dots are smooth rational curves. These are (−2)-curves, except possibly in
the first case (see Remark A 3 below for additional constraints in the first case):

• ◦ ◦ · · · ◦ • • ◦ ◦ · · · ◦ ◦
◦

• ◦ ◦ · · · ◦ ◦ ◦

Proof. We assume knowledge of the classification of Duval (i.e. canonical) and of klt
germs of two-dimensional singularities, and, more precisely, the fact that the dual graphs
of their minimal resolutions are given either by Dynkin diagrams of (−2)-curves of type
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An, Dn, Ek (for k = 6, 7, 8) or by Hirzebruch–Jung chains with transversal intersections
(see [19, Theorem 4.7] for the method of the proof we now adapt).

From negativity, rational numbers ai are uniquely determined by the numerical equal-
ities

∀j, dj := (KX′ + ∆′) · Ej = A · Ej , (
)

with A :=
∑

iaiEi. Write also that ei := −E2
i .

Assume first that there exist (at least) two components D1 and D2 in ∆′, of multi-
plicities m1 and m2, respectively. Consider a shortest chain E1, . . . , En of components
of E joining them, such that D1 (respectively, D2) meets E1 (respectively, En), but no
other E�. An easy computation gives that

dj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(e1 − 2) +
(

1 − 1
m1

)
(D1 · E1) if j = 1,

(en − 2) +
(

1 − 1
mn

)
(D2 · En) if j = n,

ej − 2 otherwise.

Consider now the curve B := −β(
∑n

1E�), for some β > 0 to be chosen later. We assume
first that n � 2. The intersection numbers are then given by

B · Ej =

{
β(ej − 1), j = 1, n,

β(ej − 2), 1 < j < n.

We now choose the value of β according to the self-intersection of the Ej :

(1) if ei 
= 2, for some i 
= 1, n, we set

β = inf
{

1,
dj

ej − 1
, j = 1, n

}

= inf
{

1, 1 +
(1 − 1/m1)(E1 · D1) − 1

e1 − 1
, 1 +

(1 − 1/m2)(En · D2) − 1
en − 1

}
,

(2) if ei = 2, for all i 
= 1, n, we set

β = inf
{

dj

ej − 1
, j = 1, n

}
.

We thus have that A · Ej � B · Ej for any j, and equality for some j. From Lemma A 1
we get that A = B and aj = −β > −1, since (X, ∆) is klt. Using (
) easily implies that(

1 − 1
m1

)
(D1 · E1) < 1 and

(
1 − 1

m2

)
(D2 · En) < 1.

Because (1 − 1/m) � 1
2 , we get that D1 · E1 = D2 · En = 1, and we are thus in the first

case of the lemma.
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Assume now that n = 1 and note that then Di meets E1 for i = 1, 2. We then have
that

(e1 − 2) +
(

1 − 1
m1

)
(D1 · E1) +

(
1 − 1

m2

)
(D2 · E1) = βe2

1

for some β < 1 (by the klt condition). The solutions are easily determined to be either

(i) E1 · D1 = E1 · D2 = 1 and m1, m2 are arbitrary or

(ii) (up to permutation) E1 · D1 = m1 = 2 and E1 · D2 = 1, with m2 arbitrary.

This last case (which is not a normal crossing) is excluded by two blow-ups that make the
total transform of ∆ a normal crossings divisor. We indeed get the following extended
dual graph (in which the E′

i, i = 1, 2, 3, appear as white circles in the order E′
1, E′

3,
E′

2, while the left-hand (respectively, upper) black dot is the strict transform of D1

(respectively, D2)):
•

• ◦ ◦ ◦

(which is a non-klt case). We also have that e′
1 = e1 + 2, e′

3 = 1 and e′
2 = 2. A direct

resolution of the linear system (
) shows that this pair is not klt.
Assume next that our dual graph contains a fork (of white vertices). We know that

KX′ ≡ 0 in this case (ei = 2, for all i). Let D1, E1, . . . , En−2, En−1, En be a shortest
subgraph connecting the component D1 to the fork En−2, En−1, En, the last two vertices
being the end points of the fork. The sequence is so labelled that D1 meets E1 only, and
that E1, . . . , En−2 is a chain. Consider the curve

B := −
(

1 − 1
m1

)
(D1 · E1)

( n−2∑
�=1

E� + 1
2 (En−1 + En)

)
.

A computation similar to the preceding one (but simpler, since now KX′ ≡ 0) shows that
A · Ej = B · Ej for all j. Thus, A = B and we are in the second case.

The only case left is no fork and only one component in ∆′. This is the last diagram
(with transversal intersection by the klt and integral conditions, as above) since the
degenerate case where n = 2 in the preceding case would lead to the existence of a fork
by the connectedness of E. �

Remark A 3. In the first case, the computation additionally gives that (e1 − 1)m1 =
(en − 1)m2 and also ei = 2, for all i 
= 1, n. The arguments of [1, III (5.1)] show that the
singularity of X is cyclic of type AN,q with N = (n−1)(e1−1)(en −1)+(e1−1)+(er −1)
and q = (n − 1)(e1 − 1) + 1, with N/q = (en − 1) + (e1 − 1)/((n − 1)(e1 − 1) + 1).

Lemma A 4. Let (X, ∆) be a two-dimensional germ of a pair as above. This germ is
klt if and only if has a finite local fundamental group.

https://doi.org/10.1017/S0013091513000849 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000849


Special compact Kähler 3-folds 73

Proof. If ∆ = 0, this proof is that of [19, Proposition 4.18]. Otherwise, if the singu-
larity is of type An, an easy computation shows (as in [20, Chapter IV, § 13–14]) that the
local fundamental group has order nm1m2. If the singularity is of type Dn, we reduce it
to the preceding case by a double cover. �

To deal with the smooth case, we need preliminary observations (see Lemma A 5,
Example A 8 and Lemma A 10) on orbifold étale covers.

A.2. Orbifold étale covers

This first lemma ensures that orbifold étale covers of klt pairs will remain klt.

Lemma A 5 (Kollár and Mori [19, Proposition 5.20]). Let g : (X ′, ∆′) → (X, ∆)
be a finite map between normal germs of varieties. Assume that KX′ + ∆′ and KX + ∆
are Q-Cartier†, and that KX′ + ∆′ = g∗(KX + ∆). Then, KX′ + ∆′ is klt if and only if
KX + ∆ is klt.

We return to dimension 2 with integral pairs.

Definition A 6. We say that a finite map g : (X ′, ∆′) → (X, ∆) of degree d is orbifold
étale if

(i) the map g ramifies only above the support of ∆ =
∑

k(1 − 1/mk)Dk,

(ii) g has order of ramification rk dividing mk along Dk,

(iii) ∆′ = g∗(
∑

k(1 − rk/mk)Dk).

Remark A 7. In this preceding case the local fundamental group of (X ′, ∆′) has
index d in the local fundamental group of (X, ∆). Moreover, from the ramification formula
we get that

K ′
X + ∆′ = g∗

(
KX +

r∑
k=1

(
1 − 1

rk

)
Dk

)
+

r∑
k=1

(
1 − rk

mk

)
g∗

(
Dk

rk

)
= g∗(KX + ∆)

since (1 − 1/rk) + (1 − rk/mk)/rk = 1 − 1/mk. It also follows that (X, ∆) is klt if and
only if (X ′, ∆′) is too.

We apply this remark only when r1 = m1 and rk = 1 for r � 2. In this case, ∆′ =
g∗(

∑k=r
k=2(1 − 1/mk)Dk) and the component D1 ‘disappears’.

Example A 8. We now always assume that X is a smooth germ.

(1) Assume that D1 is a cusp of the equation xp = yq (p, q coprime) and of multiplic-
ity m1, which we write symbolically as ∆1 = (p, q; m1). Then, X ′ is the singularity of the
equation zm1 = yq −xp. Thus, if (X, ∆) is klt, we have that 1/p+1/q+1/m1 > 1. And so
(p, q, m1) is, up to order, either (2, 2, m) or (2, 3, m), m = 3, 4, 5. Moreover, if the support
of ∆ is reducible (if r � 2), then X ′ must be an An singularity and the support of ∆′

must have at most two components. Thus, (p, q; m1) is, up to order, (2, 2; m) and r � 3.

† In dimension 2 the Q-Cartier assumption is superfluous.
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If D1 is not a priori assumed to be a cusp, but just to be given by a parametrization
x(t) = tq, y(t) = tp, with p, q coprime, then since the cover of degree m1 ramified exactly
over D1 will be a klt singularity, and so will have the usual normal form in suitable
coordinates, we see a posteriori that D1 was indeed a cusp in suitable coordinates.

(2) Assume that the support of ∆ has two smooth components D1, D2, tangent at order
p � 2 at the origin. They have (in this order), in suitable coordinates, the equations
y = 0 and y = xp. Consider the map g : C2 → X given by g(u, v) = (x, y) := (u, vm1).
Thus, using Remark A 7, we see that making this (orbifold étale) cover g we are led to
the case (again klt) where

∆′ = g∗
( k=r∑

k=2

(
1 − 1

mk

)
Dk

)
,

with D′
2 having the equation vm1 = up. In this case, letting d be the gcd of (m1, p),

the germ D′
2 splits into d irreducible components that are cusps of type (p′, m′

1) and
multiplicity m2, with p′ := p/d, m′

1 := m1/d, and are thus smooth if and only if either
p = m1 = d or p = d 
= m1 or m1 = d 
= p.

A.3. The smooth case

We next consider the remaining case in which the germ X is smooth. Write ∆ =∑r
k=1(1 − 1/mk)Dk. For k = 1 . . . r, let tk � 1 be the multiplicity of the germ Dk at

the origin. Thus, Dk is smooth if and only if tk = 1. We say that an irreducible germ of
curve in X � C2 has a (p, q)-cusp at the origin if its equation in suitable coordinates is
yq − xp = 0 (with p and q coprime); in this case the multiplicity is inf(p, q).

Lemma A 9. If (X, ∆) is klt, the only possibilities for the data r, tk, mk are the
following.

(1) tk = 1 for all k. Then r � 3. If r = 3, then 1/m1 + 1/m2 + 1/m3 > 1 (i.e. either
(m1, m2, m3) = (2, 2, m3) with m3 � 2 arbitrary, or (m1, m2, m3) = (2, 3, m3) with
2 � m3 � 5).

(2) tk = 2 for some k. Then either r = 1 and Dk has a (2, q)-cusp at the origin with
1/2+1/q+1/mk > 1, or r = 2 (and we assume that k = 1). There are two subcases:

(a) D1 has a (2, q)-cusp with m1 = 2 and D2 is smooth and has intersection
multiplicity 2 with D1; m2 and q (odd) are arbitrary.

(b) D1 has a (2, 3)-cusp with m1 = 2, D2 (smooth) has intersection multiplicity 3
with D1 and m2 = 2.

(3) tk = 3 for some k. Then r = 1 and D1 is a (3, 5)-cusp or (3, 4)-cusp with m1 = 2.

Proof. We make a blow-up f : X1 → X at the origin with exceptional divisor E1

and define K1 := KX1 and K = KX . Let ∆1 be the strict transform of ∆ in X1. Then
K1 + ∆1 = f∗(K + ∆) + cE1, where c = 1 −

∑
ktk(1 − 1/mk). The klt condition implies

that c > −1, that is,
∑

ktk(1 − 1/mk) < 2. Since (1 − 1/mk) � 1, this implies that
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∑

ktk < 4. Thus, r � 3 and we get the following list of possible values:

(1) if tk � 3 for some k, then r = 1 and t1 = 3;

(2) if tk = 2 for some k, then r = 1, 2, and (t1, t2) = (2, 1) if r = 2;

(3) if tk = 1 for all k, then r = 1, 2 or 3.

We now examine the distribution of possible multiplicities.
If t1 � 2 and r = 1, the étale orbifold cover (see Example A 8) of degree m1 ramified

along the (p, q)-cusp D1 leads to the singularity zm1 = yq − xp with the zero orbifold
divisor, which is klt if and only if the claimed inequality 1/p + 1/q + 1/m1 > 1 holds.
If t1 = 2, 3, we thus get the cases described in Lemma A 9 (2) and (3). We are left with
the case t1 = 2, t2 = 1, r = 2. Thus, D1 is a (2, q)-cusp of multiplicity m1 and D2 is
smooth of multiplicity m2 with q odd. We distinguish two cases according to whether
the intersection multiplicity of D1 and D2 is 2 or more.

In the first case, the orbifold étale cover of (X, ∆) ramified to order m2 along D2 leads
to the orbifold divisor ∆′ supported on the locus of the equation x2 = ym2q and with
multiplicity m1. Since (X ′, ∆′) is still klt, we derive that 1/2 + 1/qm2 + 1/m1 > 1, and
it yields m1 = 2 since qm2 � 6.

If the intersection multiplicity of D1 and D2 is 3 or more, the orbifold étale cover of
(X, ∆) ramified to order m2 along D2 leads to the orbifold divisor ∆′ supported on the
locus of the equation x2m2 = yq and with multiplicity m1 (still klt). If q and m2 are
coprime, we get the inequality 1/q +1/2m2 +1/m1 > 1, where the only possible solution
is m1 = m2 = 2 and q = 3.

We now show that q and m2 are coprime, which will complete the proof. Otherwise,
let d > 1 be their gcd. Then, ∆′ consists of d components of multiplicity m1 and the
equations xt = εys with t = q/d and s = 2m2/d. These components need to be smooth,
since d > 1. Thus, either t = 1 or s = 1. Since q is odd it is not divisible by 2m2, and so
q = d divides m2. Because ∆′ is supported by d = q � 3 smooth components, we finally
get d = q = 3 components having pairwise tangency of order 2m2/q � 2 at the origin.
This contradicts Lemma A 10. �

Lemma A 10. Let (X, ∆) be a two-dimensional smooth germ, the support of ∆
consisting of s � 2 smooth germs having two-by-two contact order t � 1 at the origin
and each of multiplicity mk (k = 1, . . . , r). Then, (X, ∆) is klt if and only if

∑
k

(
1 − 1

mk

)
< 1 +

1
t
.

The solutions (t, r, m1 � m2 � · · · � mr) are

• t = 1, r = 2 and (m1, m2);

• t = 1, r = 3 and (2, 2, m3) or (2, 3, 3 � m3 � 5);

• t = 2, r = 2 and (2, m2), (3, m2 � 5);
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• t = 3, r = 2 and (2, m2 � 5);

• t � 4, r = 2 and (2, 2).

Proof. We get a log-resolution of this pair by performing t successive suitable point
blow-ups with successive exceptional divisors E1, . . . , Et. If b : X ′ → X is the resulting
composition, one checks that, in this process,

KX′ = b∗(KX) +
t∑

h=1

hEh,

while

b∗(∆) = ∆′ +
( ∑

k

(
1 − 1

mk

))( t∑
h=1

hEh

)
,

where ∆′ is the strict transform of ∆. We thus see that the initial pair is klt if and only
if the coefficient of Et in KX′ + ∆′ − b∗(KX + ∆) is strictly greater than −1, i.e. if

∑
k

(
1 − 1

mk

)
< 1 +

1
t
.

The solutions are then easily determined. �

Proposition A 11. The examples found in Figure 1 show the full range of integral
pairs that are klt with a smooth ambient surface. We use the notation of [28].

Proof. To prove Proposition A 11 we are, thus, left with the case where X is smooth
and ∆ =

∑k=r
k=1(1 − 1/mk)Dk, the Dk being smooth at the origin. We know that r � 3.

When r = 1, any m1 leads to the klt situation. When r = 2, the possible situations are
described in Lemma A 10. We thus assume that r = 3, and that not all three components
are normal crossings.

We then show that (after reordering) D1 and D2 are tangent to order t � 2, while
D3 is transversal to them, and that 1/m1 + 1/m2 + 1/tm3 > 1. So one has that either
m1 = m2 = 2, m3 and t arbitrary, or 2 = t = m1 = m3 and m2 = 3.

Assume indeed that D1 and D2 have contact order t � 2. We first remark that D3

is transversal to them. If we assume this is not so, then after possible reordering of the
components, we may assume that the order of contact of D3 with D1 and D2 is at least t.
In this situation, the proof of Lemma A 10 still applies to show that

∑3
k=1(1 − 1/mk) <

1 + 1/t � 1 + 1/2, which is impossible since mk � 2 for all k.
The conclusion now simply follows from considering the orbifold étale cover ramified to

order m3 along D3, which replaces ∆ by ∆′, supported by two smooth components of mul-
tiplicities m1 and m2 and having contact order t′ = tm3. This implies, by Lemma A 10,
that 1/m1 +1/m2 +1/tm3 > 1 since the inequality

∑
k(1−1/mk) < 1+1/t′ is equivalent

to
∑

k1/mk + 1/t′ > 1 when r = 2. The solutions are the classical ones. �
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m1

m2

m3

(p,q)

m

(p)r

m n (2,q)
m

2

(2,3)

2
2

1
mi

> 1 1
m + 1
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q > 1 q odd∑i

1
m + 1

p + 1
q > 1

Figure 1. Germs of klt pairs with smooth base (and conditions on the coefficients).

A.4. The local fundamental groups

Proposition A 12. Let (X, ∆) be a two-dimensional germ of integral pair. If this
germ is klt, it has a finite local fundamental group.

Proof. If X is singular, this is Lemma A 4. When X is smooth, this is a direct con-
sequence of the construction of suitable orbifold étale covers, as explained above. �

To conclude, we briefly sum up the following proof.

Proof of Theorem 5.3. The previous proposition deals with (1) ⇒ (2), whereas
(3) ⇒ (1) is just Lemma A 5. Assume finally that (X, ∆) is a (two-dimensional) pair
with finite fundamental group. We consider the étale Galois cover

p : S∗ → X∗ \ |∆|

of X∗ \ |∆| corresponding to the finite group π1(X, ∆); the map p is easily seen to extend
as a finite map (still denoted by p)

p : S → X,

whose branch locus is exactly ∆ (with multiplicities). It remains to check that S is
smooth: it is a consequence of a classical result of Mumford [22], since the (local) funda-
mental group of S \ {s} is now trivial at any point s ∈ S. The action of the Galois group
can finally be linearized locally around each fixed point. �
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