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The present study examined the ontogeny of mitochondrial protein abundance in adipose tissue and lungs over the first month of life in the
sheep and the extent to which this may be altered by maternal undernutrition during the final month of gestation. The ontogeny of
uncoupling protein (UCP), voltage-dependent anion channel (VDAC) and cytochrome c abundance were determined in adipose tissue
and lungs sampled from near-term fetuses and young sheep aged 4 h, 1, 7 and 30 d. In adipose tissue, the abundance of UCP1, VDAC
and cytochrome c all peaked at 1 d of age and then decreased by 30 d of age, at which stage the brown adipose tissue-specific UCP1
was no longer detectable but UCP2 was clearly abundant. For the lungs, however, UCP2 and VDAC abundance both peaked 7 d after
birth and then decreased by 30 d of age. During postnatal development, therefore, a marked change in mitochondrial protein abundance
occurs within both adipose tissue and lungs. Maternal nutrient restriction had no effect on lamb growth or tissue weights at 30 d of age but
was associated with increased abundance of UCP2 and VDAC but not cytochrome c in both adipose tissue and lungs. These mitochondrial
adaptations within both adipose tissue and the lungs of offspring born to previously nutrient-restricted mothers may compromise adipose
tissue and lung function during periods of environmental stress.

Adipose tissue: Development: Lungs mitochondria: Proteins

Adaptation to cold exposure of the extra-uterine
environment is an important stimulus for the onset of
both independent breathing and thermoregulation
(Symonds et al. 1995). As a consequence the newborn
has a rapid rate of breathing and a high metabolic rate
(Andrews et al. 1989b). A critical response at birth is there-
fore the initiation of non-shivering thermogenesis through
the rapid appearance and activation of the brown adipose
tissue-specific uncoupling protein (UCP)1 (Clarke et al.
1997). This is important in preventing hypothermia and
maintaining a high rate of respiration. Other UCP have
now been identified which are members of the subfamily
of inner mitochondrial membrane carriers (Fleury et al.
1997; Gong et al. 1997; Ricquier & Bouillaud, 2000).
These include UCP2 which is highly abundant in the
lung (Pecqueur et al. 2001). The function of UCP2 remains
a subject of intense debate (Stuart et al. 2001) and it may
have a role in energy balance (Buemann et al. 2001),
reactive oxygen species production (Negre-Salvayre et al.
1997) and apoptosis (Voehringer et al. 2000). It is
established that UCP1 abundance peaks very soon after
birth and then is gradually lost and in sheep is no longer

detectable by 1 month of age. The extent to which the
ontogeny of UCP2 in the lung may show a parallel onto-
geny to that for UCP1 has not been established. It is also
unknown whether there is a parallel loss of other mitochon-
drial proteins in addition to UCP1 as adipose tissue func-
tion adapts from one of heat production to energy storage.

An important factor determining metabolic adaptation at
birth is the maternal nutritional and endocrine environment
(Symonds et al. 1995). Fetal or neonatal sheep of nutrient-
restricted mothers can have depleted adipose tissue stores
and show compromised lung development. Importantly a
50–60 % reduction in maternal food intake over the final
month of gestation does not have any inhibitory effect on
birth weight, despite a significant reduction in fetal
plasma glucose and insulin concentrations (Edwards et al.
2001; Yuen et al. 2002). Despite these fetal adaptations to
maternal undernutrition there appears to be no negative
effect on mitochondrial protein abundance. Neonatal
sheep that were nutrient-restricted over the final month of
gestation show a marked up regulation of specific mito-
chondrial proteins within adipose tissue (Budge et al.
2003). These include UCP1, voltage-dependent anion
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channel (VDAC) and cytochrome c which are all important
in the control of energy metabolism within the adipocyte.
The extent to which mitochondrial function in either
adipose tissue or the lung remains altered following
maternal undernutrition remains poorly understood. The
present study aimed to determine whether the ontogeny
of UCP, VDAC and cytochrome c was similar between
adipose tissue and the lung over the first month of life.
At the same time, the hypothesis was examined that
maternal nutrient restriction over the final month of ges-
tation results in a persistent up regulation of mitochondrial
proteins within these tissues.

Methods

Ontogeny of adipose tissue and lung mitochondrial
development

Perirenal adipose tissue (which constitutes about 80 % of
adipose tissue in a newborn lamb) and lungs were sampled
from near-term fetuses (145 d gestation, n 4) and lambs
born normally at term (148 d gestation, n 20) to Border
Leicester cross Swaledale ewes. The lambs were sampled
at either 4 h, 1, 7 or 30 d after birth (n 5 per sampling
age) following euthanasia with an overdose of the barbitu-
rate pentobarbital sodium (200 mg/kg, Euthatal; RMB
Animal Health, Stoke, Staffordshire, UK). The tissues
were rapidly dissected, weighed and then placed in liquid
N2 and stored at 2808C until analysed. All ewes were
fed 100 % of their total metabolisable energy requirements
(taking into account requirements for both ewe mainten-
ance and growth of the conceptus in order to produce a
4·5 kg lamb at term; Agricultural Research Council, 1980).

Maternal nutritional manipulation of adipose tissue
development

Fourteen 2-year-old primiparous Border Leicester cross
Swaledale ewes of similar weight and condition score
and confirmed as bearing twins were entered into the
study. Of the ewes, six were fed and consumed 100 % of
total metabolisable energy requirements at each stage
of gestation (see earlier) to serve as controls whilst
the remaining eight ewes were nutrient-restricted and
consumed 60 % of total metabolisable energy requirements
for the final month of gestation. The diet comprised
chopped hay and concentrate and was provided in a 3:1
weight ratio for which the composition of the concentrate
was (g/kg): barley, 707; soya, 200; molassed meal, 50;
minerals, 25; limestone, 25; phosphate, 7; calcium magne-
sate, 2·5; vitamin E, 0·3. The gross composition of the hay
and concentrate are given in Table 1. All animals had
continual access to a mineral lick.

All ewes lambed normally at term and each ewe then
reared a single lamb until it was 30 d old when it was
tissue sampled as described earlier. The other twin was
euthanased within 6 h of birth. Throughout lactation ewes
were fed hay ad libitum and up to 1 kg concentrate. All
operative procedures and experimental protocols had the
required Home Office approval as designated by the
Animals (Scientific Procedures) Act (1986).

Laboratory procedures

Mitochondria were prepared from each tissue as described
by Symonds et al. (1992) and protein content determined
by the method of Lowry et al. (1951). Abundance of cyto-
chrome c was determined on 10mg mitochondrial protein
using an antibody (‘Santa Cruz’, Santa Cruz, CA, USA)
at a dilution of 1 in a 1000. VDAC abundance was deter-
mined using an ovine-specific antibody prepared ‘in house’
and used at a dilution of 1 in 2000. VDAC peptide was pur-
ified from the kidney of a newborn lamb based on the
method of Schermer et al. (1996) as described for UCP1
and subjected to hydroxyapatite chromatography. Rabbits
were then immunised with the resulting VDAC protein
(100mg was used for the initial immunisation followed
by three booster immunisations of 75mg) and anti-sera
samples were collected after 9 months. UCP1 content
in brown adipose tissue was measured as described by
Schermer et al. (1996). Abundance of UCP2 was
determined using the same antibody as described by
Pecqueur et al. (2001) at a dilution of 1 in 10 000, which
was raised against human UCP2. A single band was
detected at the same molecular weight as the UCP2 peptide
in postnatal adipose tissue and lung samples (Fig. 1).

In order to confirm that the band detected in ovine
samples with the UCP2 antibody was UCP2, representative
samples were run on the same gel together with mitochon-
dria prepared from brown adipose tissue sampled from
wild-type and UCP2 knockout mice, produced as described
by Pecqueur et al. (2001). Under these conditions, a band
with an identical molecular weight to UCP2 was detected
in all samples, except that which had been prepared from
the brown adipose tissue of UCP2 knockout mice. The
antibody raised against UCP2 cross-reacts with UCP1 so
it was not possible to determine the abundance of UCP2
in mitochondria that possessed UCP1. Specificity of
detection was confirmed using non-immune rabbit serum.
A range of molecular-weight markers was included on
all gels. Densitometric analysis was performed on each

Table 1. Composition of concentrate and chopped hay (g/kg)

Concentrate Chopped hay

DM 857 849
Total crude protein 229 90
Crude fibre 60 374
Digestibility (%) 85·5 59·0
Metabolisable energy (MJ/kg DM) 12·7 9·1
Ash 70 69

Fig. 1. Representative CCD-camera image of uncoupling protein
(UCP)2 in mitochondria prepared from lung (L) and white adipose
tissue (WAT) sampled from 30-d-old sheep and brown adipose
tissue from UCP2 wild type (þ /þ ) and knockout (2 /2) mice. The
protein detected for liver (Liv) is not at the correct molecular weight
and is therefore not UCP2.
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membrane following image detection using a Fujifilm
LAS-1000 cooled CCD camera (Fuji Photo Film Co. Ltd,
Tokyo, Japan) and results expressed in densitometric
units. All gels were run in duplicate and a reference
sample (an appropriate ovine mitochondrial sample) was
included on each to allow comparison between gels.

Statistical analysis

All data are presented as mean values with their standard
errors. Statistical analysis with respect to significant differ-
ences (P,0·05) between values obtained from the different
ages of sheep or between control and nutrient-restricted
groups was carried out using the Mann–Whitney U test.

Results

Ontogeny of mitochondrial proteins in adipose tissue and
lungs

Both VDAC and cytochrome c were detected in all adipose
tissue samples and their relative abundance per mg mito-
chondrial protein peaked at 1 d of postnatal age (Figs. 2
(A) and (B)) before declining significantly (P,0·01) by
7 d of age, an adaptation continuing up to 30 d of postnatal
age. Similarly, UCP1 abundance rose (P,0·05) between
145 d gestation and 1 d after birth. It was no longer detect-
able at 30 d of age (Fig. 2 (C)) when UCP2 was clearly
abundant, having an identical molecular weight to UCP2
run on the same gel (Fig. 1).

In lung mitochondria both VDAC and cytochrome c were
detected at all sampling ages. The abundance of cyto-
chrome c remained unchanged with age, whereas there
was a significant (P,0·05) decrease in the abundance of
VDAC between 145 d gestation and 1 d after birth
(Fig. 3). A further increase (P,0·05) followed at 7 d
with a decrease at 30 d of postnatal age. In contrast,
UCP2 was only detectable in postnatal lung mitochondria
in which there was a distinct peak (P,0·01) in abundance
at 7 d.

Effect of maternal nutrition on mitochondrial protein
abundance in adipose tissue

There was no difference between groups in lamb body or
organ weights at birth or at 1 month of age (Table 2).
Both adipose tissue and lungs of lambs born to nutrient-
restricted ewes had a higher abundance of VDAC and
UCP2 (Fig. 4) but not cytochrome c (results not shown).

Discussion

The present study has demonstrated that there is a marked
divergence in ontogeny of mitochondrial protein abun-
dance between adipose tissue and the lung. In addition, it
has been shown that the abundance of specific mitochon-
drial proteins involved in cellular metabolism are up
regulated for at least the first 30 d after birth, following
maternal nutrient restriction in late gestation. For adipose
tissue, as established for UCP1, both VDAC and
cytochrome c were highly abundant on the first day

of birth and their subsequent decrease with postnatal age
was closely correlated with the loss of UCP1. VDAC and
cytochrome c were still, however, present in white adipose
tissue when UCP2 was also detectable (i.e. 30 d of age),
confirming that each protein is present in white as well
as brown adipose tissue. In the lung, although VDAC
was present at a high concentration in the fetal lung,
UCP2 was not detected until after birth and its abundance
peaked at 7 d of age, coincident with a rise in VDAC but
not cytochrome c. The abundance of each mitochondrial
protein then decreased between 7 and 30 d of age.
Importantly, this adaptive loss of mitochondrial proteins

Fig. 2. Ontogeny of (A) voltage-dependent anion channel (VDAC),
(B) uncoupling protein (UCP)1 and (C) cytochrome c in perirenal
adipose tissue between late gestation (144 d gestation, 23 d before
birth) and 1 month of age in the sheep. ND, not detectable.
Values are means with their standard errors (n 4–5 per time point).
a,b,c,x,yMean values with unlike superscript letters were significantly
different: a v. b and b v. c (P,0·05); a v. x and a v. y (P,0·01).
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in both lungs and adipose tissue at 30 d was markedly
delayed in lambs born to ewes that were nutrient-restricted
over the final month of gestation despite no differences in
tissue, organ or body weights.

Maternal nutrition and the programming of adipose tissue
and lung development

The increased abundance of both UCP2 and VDAC in adi-
pose tissue mitochondria at 1 month of age of lambs born
to nutrient-restricted ewes extends previous measurements
made in adipose tissue soon after birth (Budge et al. 2003).
This adaptation does not appear to be tissue-specific but
includes the lungs. A greater abundance of mitochondrial
proteins at birth within the primary tissues involved in
metabolic adaptation to the extra-uterine environment can
be interpreted as a beneficial response in order to prevent
hypothermia. It may, however, have deleterious conse-
quences in terms of adipose tissue deposition and lung
function as metabolic rate continues to decline up to 2
months of age (Symonds et al. 1989). The exact mechan-
isms mediating these responses within the fetus clearly
warrant further investigation. Restricted maternal nutrition
during pregnancy normally results in a reduction in plasma
concentrations of a range of anabolic hormones including
insulin, insulin-like growth factors and thyroid hormones
(Bauer et al. 1995; Clarke et al. 1998) which can all regu-
late adipose tissue development (Symonds et al. 1995). It
also results in a short-term rise in maternal, but not fetal,
plasma cortisol (Edwards & McMillen, 2001). The extent
to which endocrine adaptations of this type may directly
impact on mitochondrial development within the fetus
has not yet been determined. It is established that an
intact fetal adrenal gland is critical for the maturation of
both the fetal lungs (Fowden et al. 1998) and fetal brown
adipose tissue (Mostyn et al. 2003), but this role does
not appear to include the prepartum rise in either VDAC
or cytochrome c within adipose tissue.

In the present study, maternal food intake was reduced to
60 % of total metabolisable energy requirements calculated
to produce a 4·5 kg lamb (Agricultural Research Council,
1980). The lack of any inhibitory effect on birth weight
is in accord with other studies using a comparable magni-
tude of nutrient restriction (Edwards et al. 2001; Yuen et al.
2002). This is despite a consistent reduction in fetal plasma
glucose and a concomitant resetting of the sensitivity of the
fetal hypothalamic–pituitary axis to hypoglycaemia
(Edwards et al. 2001). Compensatory responses to
maternal, and fetal, undernutrition are therefore occurring
to maintain fetal growth. One consequence of these adap-
tations is an up regulation of mitochondrial protein abun-
dance, which is dissociated from any effects on tissue
growth. A higher abundance of UCP2 may have adverse

Table 2. Total body, perirenal adipose tissue and lung weights of sheep at birth and 30 d of age

(Mean values with their standard errors)

Group. . .
Control Nutrient-restricted

Age (d). . .
0 30 0 30

Mean SE Mean SE Mean SE Mean SE

Body (kg) 4·05 0·25 15·75 1·21 3·60 0·25 14·50 1·40
Adipose tissue (g) 17·9 1·7 151·3 15·4 19·9 1·5 165·4 11·4
Lungs (g) 79·7 10·0 191·2 25·4 68·5 4·5 169·7 22·1

Fig. 3. Ontogeny of (A) voltage-dependent anion channel (VDAC),
(B) uncoupling protein (UCP)2 and (C) cytochrome c in lungs
between late gestation (144 d gestation, 23 d before birth) and
1 month of age in the sheep. ND, not detectable. Values are means
with their standard errors (n 4–5 per time point). a,b,x Mean values
with unlike superscript letters were significantly different: a v.
b (P,0·05); a v. x and b v. x (P,0·01).
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consequences as this can result in enhanced susceptibility
to infection and death from toxoplasmosis (Arsenijevic
et al. 2000). It has also been shown that in obese women
UCP2 gene exon 8 may affect susceptibility to obesity
through an interaction with leptin (Cassell et al. 1999).
Enhanced abundance of both UCP2 and VDAC could
result in an accelerated rate of apoptosis (Voehringer
et al. 2000).

It remains to be examined whether the adaptations that
have been observed at 30 d of age are transient or persist
into later life. Epidemiological studies have indicated that
a similar magnitude of maternal nutrient restriction as
adopted in the present study can predispose the resulting
offspring to obesity or chronic lung disease in adulthood
(Barker et al. 1991; Roseboom et al. 2000). These long-
term consequences appear to be related to maternal under-
nutrition rather than intra-uterine growth retardation
although it remains to be established if these long-term
adaptations are linked.

Postnatal development of adipose tissue and the lung

The peak in abundance of both VDAC and UCP2 within
the lung at 7 d of age are coincident with the time at
which the metabolic stimulus to breathing begins to decline
(Andrews et al. 1989b). This is associated with a decrease
in breathing frequency and a concomitant rise in the
recruitment of laryngeal braking, the function of which is
to extend expiratory time, thereby increasing the time for
gaseous exchange within the lung (Andrews et al.
1989a). It has been established that recruitment of this
mechanism is markedly reduced in lambs born to nutri-
ent-restricted ewes (Symonds et al. 1993). A change in
breathing pattern may be related to the greater abundance
of mitochondrial proteins, particularly UCP2, within
lungs that could contribute to an adverse abundance of
reactive oxygen species (Arsenijevic et al. 2000).

The function of VDAC has been most extensively
studied in muscle for which deletion of the VDAC gene
in mice indicates it has a role in ADP transport. Loss of
the VDAC gene has tissue-specific effects resulting in
greater mitochondrial sensitivity to ADP in the heart and
gastrocnemius compared with decreased sensitivity within
the soleus (Anflous et al. 2001). VDAC may have a signifi-
cant influence on the supply of ADP in brown adipose
tissue although this has yet to be confirmed. The parallel
decline in UCP1, VDAC and cytochrome c with increasing
postnatal age was not unexpected as whole-body metabolic
rate similarly declines over this period and shivering in
skeletal muscle rather than non-shivering thermogenesis
in brown adipose tissue becomes the dominant response
to cold exposure (Symonds et al. 1989).

In conclusion, the similar ontogeny for UCP1, VDAC
and cytochrome c suggests that these mitochondrial pro-
teins may all be important in ensuring brown adipose
tissue maintains a maximal rate of thermogenesis at the
critical time after birth. Parallel changes in these mitochon-
drial proteins are coincident with the transition of brown to
white adipose tissue. In the lung UCP2 and VDAC abun-
dance peak 1 week after birth and then decline up to
1 month of age. Critically the rate of change in VDAC

Fig. 4. Effect of maternal nutrient restriction over the final month of
gestation on the abundance of voltage-dependent anion channel
(VDAC; A and C), and uncoupling protein (UCP)2 (B and D)
in perirenal adipose tissue (A and B) and lungs (C and D) sampled
from 1-month-old sheep born to mothers that consumed 60 (nutri-
ent-restricted; NR) or 100 % (control) of metabolisable energy
requirements for maternal metabolism and fetal growth over the
final month of gestation. Values are means with their standard
errors (n 6–8 per group). *Mean value was significantly different
from that for the control group (P,0·05).
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and UCP2 within both these tissues can be significantly
altered by maternal undernutrition in late gestation.
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