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We develop the time-dependent regularised 13-moment equations for general elastic
collision models under the linear regime. Detailed derivation shows the proposed
equations have super-Burnett order for small Knudsen numbers, and the moment equations
enjoy a symmetric structure. A new modification of Onsager boundary conditions is
proposed to ensure stability as well as the removal of undesired boundary layers.
Numerical examples of one-dimensional channel flows is conducted to verified our model.
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1. Introduction
The study of rarefied gas dynamics has evolved over more than a century, where
kinetic theory is crucial for accurately describing its fluid mechanics via a microscopic
explanation for macroscopic behaviour. The fundamental equation of the kinetic theory,
the Boltzmann equation, provides a detailed statistical description of the gas dynamics.
The development of Boltzmann solvers has progressed significantly in Bhatnagar, Gross &
Krook (1954); Bird (1970); Mieussens (2000); Dimarco & Pareschi (2014); Gamba et al.
(2017); Dimarco et al. (2018); Alekseenko, Martin & Wood (2022); Cai et al. (2024a),
nevertheless, accurately solving the Boltzmann equation for practical problems remains
a complex and resource-intensive task mainly due to its high-dimensionality, nonlinear
collisions and complex boundary conditions.
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Instead of directly solving the Boltzmann equation, many researchers focus on the
macroscopic moments of the distribution function and modify classical fluid equations,
such as the Navier–Stokes equations, to describe the mechanics of moderately rarefied
gases. Two classical techniques used to derive higher-order (in terms of Knudsen number)
macroscopic fluid equations from the Boltzmann equation are the Grad’s moment method
in Grad (1949) and the Chapman–Enskog expansion in Chapman & Cowling (1970).
Despite their successes in capturing near-equilibrium effects, the Grad’s 13-moment
equations may experience a loss of hyperbolicity and unphysical subshocks. Moreover,
the second-order Burnett and third-order super-Burnett equations, which are derived from
the Chapman–Enskog expansion, suffer from instability. Recent research addresses these
limitations by employing various regularisation techniques (Jin & Slemrod 2001; Müller
et al. 2003; Struchtrup & Torrilhon 2003; Bobylev 2006; Öttinger 2010; Han et al. 2019)
to enhance the accuracy and stability of the methods across a broader range of rarefied gas
dynamics. Besides the regularisation by the above two classical techniques, researchers
have also explored alternative ways to address their limitations and derive higher-order
equations such as the Onsager-consistent approaches (Agrawal, Kushwaha & Jadhav 2019;
Jadhav, Yadav & Agrawal 2023).

In this work we investigate the regularised version of Grad’s 13-moment equations
proposed in Struchtrup & Torrilhon (2003), which can be interpreted as a Chapman–
Enskog-like procedure applied to the Grad’s 13 moments. This regularisation, abbreviated
as R13, has been developed for both Maxwell (Struchtrup 2005b) and non-Maxwell
molecules (Struchtrup & Torrilhon 2013; Cai & Wang 2020) and validated across
diverse applications (Taheri & Bahrami 2012; Rana, Mohammadzadeh & Struchtrup 2015;
Timokhin et al. 2017). The R13 equations are attractive since the equations include only
second-order derivatives while attaining the super-Burnett order. Here the super-Burnett
order means that the super-Burnett equations, which are the result of the Chapman–
Enskog expansion up to the third order, can be derived from the R13 equations. Note that
the original super-Burnett equations contain fourth-order derivatives, causing significant
difficulties in the numerical discretisation and formulation of boundary conditions. Due
to the inclusion of corrections from higher-order moments through terms derived from
the Chapman–Enskog expansion, the R13 equations can describe various rarefaction
effects such as Knudsen boundary layers and heat fluxes from cold areas to hot areas
(Rana, Torrilhon & Struchtrup 2013). Also, the R13 equations are equipped with reliable
boundary conditions (Torrilhon & Struchtrup 2008; Struchtrup et al. 2017) and have been
shown to be robust in numerical simulations (Rana et al. 2013). Recently in Torrilhon
& Sarna (2017), Onsager boundary conditions are proposed to ensure the stability of
boundary value problems of linear R13 equations for Maxwell molecules. However, it
is not straightforward to generalise these Onsager boundary conditions to non-Maxwell
molecules, even in the linear case. The main reason is the loss of a symmetric structure
required by the Onsager boundary conditions (see Öttnger et al. (2023)). To remedy this,
in Cai et al. (2024b), the linear R13 equations for arbitrary elastic collision models were
rederived using a different method. The new derivation relies on the simpler form of the
Chapman–Enskog expansion for steady-state equations compared with the time-dependent
case, so that it cannot be applied directly to dynamic problems.

The purpose of this work is to seek possibilities to generalise the Onsager boundary
conditions to time-dependent R13 equations in the linear regime. This also requires
new derivations of R13 equations based on the linearised Boltzmann equation for the
distribution function f ,

∂ f

∂t
+ ξk

∂ f

∂xk
= 1

Kn
L f, (1.1)
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where L is a self-adjoint negative semidefinite linear operator; xk and ξk are position
and velocity variables, respectively; Kn is the Knudsen number defined as the ratio of
the mean free path of the molecules to macroscopic length scale. Note that here we have
used the summation convention: when the same index appears twice, it is assumed that
the sum applied for this index and the range is from 1–3. Due to the linearisation, the
model is mainly applicable for fluids with low speeds such as microflows, and numerical
experiments show good agreement with results obtained from the direct simulation Monte-
Carlo (DSMC) method (see Wu, Reese & Zhang 2014). In order that the Onsager boundary
conditions can be applied, the linear moment equations should take the form

A0
∂u
∂t

+ Ak
∂u
∂xk

= 1
Kn

Lu, (1.2)

where A0 is the symmetric mass matrix, Ak is the symmetric discretisation of operator
ξk and L is the discretisation of operator L that is symmetric negative semidefinite. The
matrix A0 is allowed to have zero eigenvalues to cover the parabolic scenarios such as the
linearised R13 equations, which has been used to study phenomena including evaporation
Claydon et al. (2017) and rarefied effects in flows around a sphere Beckmann et al. (2018).
It should be noted that the symmetric structure in the above matrices plays a key role in
obtaining the second law of thermodynamics for our moment equations. The similar idea
of maintaining symmetry to comply with thermodynamics has also been applied to the
derivation of other moment equations (Singh & Agrawal 2016; Yadav, Jonnalagadda &
Agrawal 2023).

When considering thermodynamics of (1.2) within a bounded domain Ω , the entropy
production from its boundary should be taken into account. This can be seen by
multiplying uᵀ on (1.2) and integrating over Ω , yielding

d
dt

∫
Ω

1
2

uᵀA0udx +
∫
∂Ω

1
2

uᵀAknkuds = 1
Kn

∫
Ω

uᵀLudx � 0, (1.3)

where n = (n1, n2, n3)
ᵀ denotes the outward normal vector at boundary ∂Ω . Hence, the

second law of thermodynamics can be achieved if the flux across the boundary is bounded,
i.e.

− uᵀnkAku � gᵀ
extMgext (1.4)

for a given matrix M and an external source vector gext = gext(t, x) from boundary
conditions. With the above entropic stability, the uniqueness of the solution of (1.2) can be
achieved.

The stable boundary conditions are studied in Sarna & Torrilhon (2018) and the authors
therein propose a specific form of boundary conditions that fulfils (1.4), which is called
the Onsager boundary conditions. To specify these boundary conditions, we can introduce
an orthogonal matrix P that decomposes moments u into two subsets uodd and ueven as

Pu =
(

uodd
ueven

)
, PnkAkPᵀ =

(
0 Aoe

Aeo 0

)
. (1.5)

The odd moments uodd consist of quantities that change sign when the normal vector n
is flipped, while the even moments ueven remain unchanged by this flipping. For example,
the normal velocity, shear stress and normal heat flux belong to uodd, whereas the density,
temperature and tangential velocity belong to ueven. The anti-diagonal block structure of
the matrix in (1.5) is due to the fact that the normal flux of an odd moment corresponds
to an even moment, and conversely, the normal flux of an even moment corresponds to
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an odd moment. The symmetricity of Ak implies that the matrix in (1.5) is symmetric
and, therefore, Aeo = Aᵀ

oe. The Onsager boundary conditions in Sarna & Torrilhon (2018)
suggest that, for a full row rank Aoe, the following form of boundary conditions

uodd = QAoe(gext − ueven), (1.6)

with matrix Q being negative semidefinite, yield (1.4) and, therefore, L2 stability is
obtained. However, as shown in Cai et al. (2024b), for general collision models, the matrix
Aoe can be rank deficient, which requires an extra step that reduces the number of boundary
conditions to the rank of Aoe. Such a technique is also required in this work.

Two major difficulties were encountered when we tried to derive time-dependent linear
R13 equations for general collision models. The first is to obtain the form (1.2) while
maintaining the super-Burnett order. To achieve this, instead of the classical approach that
uses the stress tensor and the heat flux in the equations, we change them to new variables
that better match the order of magnitude method. Such an approach can lead to both the
desired order of accuracy and the desired structure of equations, so that the technique
introduced in Öttinger et al. (2023) and tweaked in Cai et al. (2024b) can be employed
to derive the Onsager boundary conditions. However, the solution exhibits unphysical
boundary layers, giving us a second major difficulty in deriving the new model. To address
this problem, we revise the original boundary conditions by enforcing equalities setting the
coefficients of these boundary layers to zero. Both steady-state and unsteady examples are
presented to show the solutions of these new equations.

The rest of this paper is organised as follows. Our linearisation and non-
dimensionalisation of the Boltzmann equation and moment equations are introduced
in § 2. Section 3 introduces the variables and then shows our main results including
the explicit expressions of linear R13 equations with boundary conditions for general
elastic collision models. The derivation of R13 equations is given in § 4, where we also
demonstrate the super-Burnett order of the model. In § 5 we formulate the boundary
conditions, analyse the boundary layers and remove the unwanted layers by fixing the
boundary conditions. One-dimensional examples are shown in § 6 to validate our models.
We conclude our paper with a brief summary in § 7.

2. Linearisation and non-dimensionalisation
All the derivations in this work will be established on dimensionless and linearised
equations. In this section we state our approaches to both linearisation and non-
dimensionalisation. Note that each dimensionless variable in this section will be labelled
by adding a hat ‘ ·̂ ’ on top of the symbol denoting the variable, while such accents will be
removed for convenience in other sections.

2.1. Linearisation and non-dimensionalisation of the Boltzmann equation
In the original Boltzmann equation, the distribution function f (x, ξ , t) satisfies the
following integro-differential equation:

∂ f

∂t
+ ξk

∂ f

∂xk
= Q[ f, f ] :=

∫
R3

∫
S2

B(ξ − ξ1,ω)[ f (ξ ′
1) f (ξ ′)− f (ξ1) f (ξ)] dω dξ1.

(2.1)
Here B(·, ·) stands for the collision kernel, and

ξ ′ = ξ + ξ1

2
+ |ξ − ξ1|

2
ω, ξ ′

1 = ξ + ξ1

2
− |ξ − ξ1|

2
ω. (2.2)
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In this work we are interested in the linear regime where the distribution function is close
to a global Maxwellian with density ρ0, velocity v0, temperature θ0 and mass of a single
molecule m:

M0(ξ)= ρ0

m(2πθ0)3/2
exp

(
−|ξ − v0|2

2θ0

)
. (2.3)

We can then introduce a small quantity ε and write the distribution function f as

f (x, ξ , t)=M0(ξ)[1 + ε f̂ (x̂, ξ̂ , t̂)], (2.4)

where x̂, ξ̂ and t̂ are dimensionless variables defined by

x̂ = (x − v0t)/L , ξ̂ = (ξ − v0)/
√
θ0, t̂ = t/(L/

√
θ0). (2.5)

Plugging (2.4) into the Boltzmann equation yields

∂ f̂

∂ t̂
+ ξ̂k

∂ f̂

∂ x̂k
= ρ0L

m
√
θ0

Q[M̂0, f̂ M̂0] +Q[ f̂ M̂0, M̂0] + εQ[ f̂ M̂0, f̂ M̂0]
M̂0

, (2.6)

where M̂0 is the dimensionless Maxwellian distribution function

M̂0(ξ̂)= 1
(2π)3/2

exp

(
−|ξ̂ |2

2

)
. (2.7)

The linearised equation can then be obtained by discarding the O(ε) term in (2.6) and
defining

L̂[ f̂ ] := Q[M̂0, f̂ M̂0] +Q[ f̂ M̂0, M̂0]
B0M̂0

, Kn = m B0
√
θ0

ρ0L
. (2.8)

Here B0 is a constant with the same dimension as the collision kernel B(·, ·) to guarantee
that L̂ is dimensionless, and here we choose B0 such that

〈ξ̂1ξ̂2, L̂(ξ̂1ξ̂2)〉 = −1, (2.9)

where the inner product is defined by

〈 f̂ , ĝ〉 =
∫
R3

f̂ (ξ̂)ĝ(ξ̂)M̂0(ξ̂) dξ̂ . (2.10)

Note that the linearised Boltzmann equation satisfies the linearised H-theorem. In the
original Boltzmann equation (2.1), the entropy density and the entropy flux are defined by

η= −kB

∫
R3

f log f dξ , ψk = −kB

∫
R3
ξk f log f dξ , (2.11)

which satisfy the inequality

∂η

∂t
+ ∂ψk

∂xk
� 0, (2.12)

indicating the second law of thermodynamics. For the linearised Boltzmann equation, the
corresponding definitions are

η̂= −
∫
R3

| f̂ |2 dξ̂ , ψ̂k = −
∫
R3
ξk | f̂ |2 dξ̂ . (2.13)
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Since the linearised collision operator L̂ satisfies 〈 f̂ , L̂[ f̂ ]〉� 0 for any f̂ , the H-theorem
turns out to be the L2 stability of the linearised Boltzmann equation

∂η̂

∂ t̂
+ ∂ψ̂k

∂ x̂k
� 0. (2.14)

Later in our derivation of moment equations, this property will be preserved.

2.2. Linearisation and non-dimensionalisation of the conservation laws
The laws of mass, momentum and energy conservation can be derived by taking moments
of the Boltzmann equation, which yields

∂ρ

∂t
+ ∂(ρv j )

∂x j
= 0,

∂(ρvi )

∂t
+ ∂

∂x j
(ρviv j + ρθδi j + σi j )= 0,

∂

∂t

(
1
2
ρvivi + 3

2
ρθ

)
+ ∂

∂x j

(
5
2
ρθv j + 1

2
ρviviv j + σi jvi + q j

)
= 0. (2.15)

Here σi j denotes the stress tensor and q j denotes the heat flux. To linearise these equations,
we again assume that the fluid state is close to the equilibrium specified by density ρ0,
velocity v0,i and temperature θ0, and introduce dimensionless variables ρ̂, θ̂ , v̂i , σ̂i j and
q̂i by

ρ = ρ0(1 + ερ̂), θ = θ0(1 + εθ̂), vi = v0,i + ε
√
θ0v̂i , σi j = ερ0θ0σ̂i j , qi = ερ0θ

3/2
0 q̂i .

(2.16)
By substituting the above expressions together with (2.5) into the conservation laws,

and then dropping all the higher-order terms, we reach the linearised and dimensionless
conservation laws:

∂ρ̂

∂ t̂
+ ∂v̂ j

∂ x̂ j
= 0,

∂v̂i

∂ t̂
+ ∂ρ̂

∂ x̂i
+ ∂θ̂

∂ x̂i
+ ∂σ̂i j

∂ x̂ j
= 0,

∂θ̂

∂ t̂
+ 2

3
∂v̂ j

∂ x̂ j
+ 2

3
∂ q̂ j

∂ x̂ j
= 0.

(2.17)

Another approach to derive the same equations is to directly take moments of the
linearised Boltzmann equation. The relationship between the dimensionless moments
(ρ̂, θ̂ , etc.) and the dimensionless distribution function f̂ is

ρ̂ = 〈1, f̂ 〉, v̂i = 〈ξ̂i , f̂ 〉, θ̂ =
〈

1
3
|ξ̂ |2 − 1, f̂

〉
,

σ̂i j =
〈
ξ̂i ξ̂ j − 1

3
|ξ̂ |2δi j , f̂

〉
, q̂i =

〈
1
2
|ξ̂ |2ξ̂i , f̂

〉
. (2.18)

Thus, using the fact that 〈1, L̂[ f̂ ]〉 = 〈ξ̂i , L̂[ f̂ ]〉 = 〈|ξ̂ |2, L̂[ f̂ ]〉 = 0, one can take the inner
product of the linearised equation (1.1) and the polynomials 1, ξ̂i and |ξ̂ |2 to obtain the
moment equations (2.17).
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The two methods to formulate the conservation laws are essentially equivalent, since
taking moments and linearising equations are two commutable operations. In our
derivation of moment equations to be presented below, we follow the second approach
that takes moments of the linearised equations (1.1). Due to the presence of σ̂i j and q̂i
in (2.17), our purpose is to find a suitable closure that provides decent approximation to
the linearised Boltzmann equation when the Knudsen number Kn is small. Hereafter, the
accent ‘ ·̂ ’ will no longer be added to dimensionless variables.

3. Linear R13 equations
Here we present the final form of the R13 equations with wall boundary conditions, which
is the main conclusion of this paper. Since our selection of the 13 moments is slightly
different from classical literature, we introduce our choice of variables before listing out
the equations.

3.1. Choice of variables
The 13-moment equations were first proposed by Grad (1949), where the distribution
function was expanded into an infinite series using Hermite polynomials. The coefficients
of the polynomials were regarded as moments, and Grad chose to include the first 13
moments, namely the density (ρ), momentum (ρvi ), pressure (ρθ ), stress tensor (σi j ) and
heat flux (qi ), into his equations. In later developments of 13-moment systems, such a
choice of the 13 moments becomes a standard and is followed by most works (Myong
1999; Struchtrup & Torrilhon 2003; Zhu et al. 2015). In particular, for the regularised
13-moment equations for Maxwell molecules, such a choice of moments matches exactly
with the analysis using the order of magnitude method (Struchtrup(2005b, Chapter 8). It
is seen that for linear equations, these moments, denoted by 〈φ13, f 〉 with φ13 being a
13-dimensional vector of polynomials of ξ , fully describes the distribution function f up
to order O(Kn), which means for any polynomial r(ξ) satisfying 〈φ13, r〉 = 0, the moment
〈r, f 〉 has at least order O(Kn2) when performing asymptotic analysis. This property
leads to the super-Burnett order of R13 equations for Maxwell molecules, meaning that
the super-Burnett equations can be derived from the R13 equations by Chapman–Enskog
expansion. However, it is also known that this no longer holds for other types of molecules
(Struchtrup 2005a). Inspired by this fact, in our study of 13-moment equations for general
gas molecules, we adopt a different set of variables 〈φ̃13, f 〉, such that we can again obtain
〈r, f 〉 ∼ o(Kn) once 〈φ̃13, r〉 = 0. This will help achieve the super-Burnett order for the
moment equations.

The details on the construction of φ̃13 will be discussed in § 4. Here we only provide
some brief information necessary for the formulation of the moment equations. Our 13
moments also include conservative quantities such as the density (ρ), velocity (vi ) and
temperature (θ ). Note that the velocity and the temperature are conservative only under
linear settings. For the remaining 8 moments, they also include a trace-free 2-tensor and
a vector like in the classical case. For consistency, we denote the 2-tensor by σ̄i j and the
vector by q̄i . The relationship between these variables and the stress tensor (σi j ) and the
heat flux (qi ) will be given later in this section. The conservative variables ρ, vi and θ are
O(Kn0) moments, while the higher-order moments σ̄i j and q̄i are O(Kn) moments. Note
that the conservative moments are always defined using the distribution function f by

(ρ, vi , θ)=
〈(

1, ξi ,
1
3
ξkξk

)
, f

〉
, (3.1)
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where the definitions of σ̄i j and q̄i depend on the collision model. When Maxwell
molecules are considered, the definitions of σ̄i j and q̄i reduce to those of σi j and qi .

3.2. Moment equations and boundary conditions
In this section wel list the equations and boundary conditions derived for the
aforementioned variables. Like the generalised 13-moment equations derived in Struchtrup
(2005a), our equations will contain coefficients that depend on the type of gas molecules.
In the equations below, these constants will be denoted by ki and li . The equations are

∂ρ

∂t
+ ∇ · v = 0, (3.2)

∂θ

∂t
+ 2

3
∇ · v + 2

3
k0∇ · q̄ − k1Kn�θ + k2Kn∇ · (∇ · σ̄ )= 0, (3.3)

∂v

∂t
+ ∇ρ + ∇θ − k3Kn∇ · (∇v)stf − k4Kn∇ · (∇q̄)stf + k5∇ · σ̄ = 0, (3.4)

∂ q̄
∂t

+ 5
2

k0∇θ − 5
2

k4Kn∇ · (∇v)stf − 2k6Kn∇(∇ · q̄)

− 12
5

k7Kn∇ · (∇q̄)stf + k8∇ · σ̄ = − 1
Kn

2
3

l1q̄, (3.5)

∂ σ̄

∂t
+ 3k2Kn

(
∇2θ

)
stf

+ 2k5(∇v)stf + 4
5

k8(∇q̄)stf

− 2k9Kn∇ · (∇σ̄ )stf − k10Kn (∇(∇ · σ̄ ))stf = − 1
Kn

l2σ̄ . (3.6)

Here (·)stf refers to the symmetric and trace-free part of a given tensor, which is defined
entry wisely as (·)i j �→ ((·)stf)i j = (·)〈i j〉 for a matrix and (·)i jk �→ ((·)stf)i jk = (·)〈i jk〉 for
a 3-tensor. The detailed definition can be found in Struchtrup (2005b). The coefficients
ki and li have been computed for gas molecules whose intermolecular potential satisfies
inverse power laws. Values for these coefficients for some power indices are given in
Appendix B. Although these coefficients look arbitrary, our derivation in § 4 will reveal
that they are fully determined by the linearised and non-dimensionalised Boltzmann
collision operator, which depends only on the potential energy between two gas molecules.
In inverse-power-law models, only two parameters exist: the intensity coefficient of the
potential and the power η. After non-dimensionalisation, the intensity coefficient is
integrated into the Knudsen number and, thus, η is the only parameter that dictates all
the coefficients.

The first three equations (3.2), (3.3) and (3.4) are conservation laws of mass, energy and
momentum. By comparing (3.3) and (3.4) with the conservation laws expressed by the
stress tensor and the heat flux (see (2.17)), i.e.

∂θ

∂t
+ 2

3
∇ · v + 2

3
∇ · q = 0,

∂v

∂t
+ ∇ρ + ∇θ + ∇ · σ = 0, (3.7)

one can observe the relationship between σ̄ , q̄ and σ , q:

σ = k5σ̄ − k4Kn(∇q̄)stf − k3Kn(∇v)stf, q = k0q̄ − 3
2

k1Kn∇θ + 3
2

k2Kn∇ · σ̄ . (3.8)

Such a relationship allows us to calculate the stress tensor and heat flux once (3.2)–(3.6)
are solved. We remark that the moment equations (3.2)–(3.6) we derived are Galilean
invariant. The detailed proof can be found in Appendix A.
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Another important ingredient of the moment equations is the wall boundary conditions,
since the linear moment equations are often applied in channel flows, where the boundaries
play crucial roles in rarefaction effects. The boundary conditions we present here are
derived from the Maxwell boundary conditions for the Boltzmann equation, where the
reflected gas flow is a linear combination of specular and diffusive reflections. The
accommodation coefficient, denoted by χ , is the parameter describing the proportion of
diffusive reflection. For simplicity, we are going to use χ̃ = 2χ/(2 − χ) in our formulation
of boundary conditions.

We now focus on a specific point on the wall and let n be the outer unit normal vector
at this point. Meanwhile, we let τ1 and τ2 be the two tangential unit vectors that are
perpendicular to each other. When describing boundary conditions, we temporarily rotate
our coordinate system such that the three axes become n, τ1 and τ2. Correspondingly, the
three components of the velocity will be denoted by vn , vτ1 and vτ2 (similar for q̄), and the
components of σ̄ are written by σ̄nn, σ̄nτ1, σ̄nτ2, σ̄τ1τ1, σ̄τ1τ2, σ̄τ2τ2 . Moreover, we assume
that the temperature and velocity of the wall are θW and vW

i at this point. Under these
assumptions, the wall boundary conditions have the following form:

vn = 0, (3.9)

q̄n = χ̃

[
m11(θ − θW )+ m12σ̄nn − m13Kn

∂ q̄ j

∂x j
− m14Kn

∂ q̄〈n
∂xn〉

− m15Kn
∂v〈n
∂xn〉

]
, (3.10)

m26q̄n + m27Kn
∂θ

∂xn
− m28Kn

∂σ̄nj

∂x j
= χ̃

[
−m21(θ − θW )+ m22σ̄nn + m23Kn

∂ q̄ j

∂x j

+m24Kn
∂ q̄〈n
∂xn〉

+ m25Kn
∂v〈n
∂xn〉

]
, (3.11)

σ̄τi n = χ̃

[
m31(vτi − vW

τi
)+ m32q̄τi − m33Kn

∂σ̄τi j

∂x j
− m34Kn

∂σ̄〈τi n

∂xn〉
+ m35Kn

∂θ

∂xτi

]
,

i = 1, 2, (3.12)

m46σ̄τi n + m47Kn
∂v〈τi

∂xn〉
+ m48Kn

∂ q̄〈τi

∂xn〉
= −χ̃

[
−m41(vτi − vW

τi
)+ m42q̄τi

+ m43Kn
∂σ̄τi j

∂x j
+ m44Kn

∂σ̄〈τi n

∂xn〉
− m45Kn

∂θ

∂xτi

]
, i = 1, 2, (3.13)

m56σ̄τi n + m57Kn
∂v〈τi

∂xn〉
+ m58Kn

∂ q̄〈τi

∂xn〉
= −χ̃

[
−m51(vτi − vW

τi
)+ m52q̄τi

+ m53Kn
∂σ̄τi j

∂x j
+ m54Kn

∂σ̄〈τi n

∂xn〉
− m55Kn

∂θ

∂xτi

]
, i = 1, 2, (3.14)

m66q̄n + Kn
(

m67
∂σ̄〈nn

∂xn〉
+ m68

∂σ̄nj

∂x j
+ m69

∂θ

∂xn

)
= −χ̃

[
−m61(θ − θW )+ m62σ̄nn

+ m63Kn
∂ q̄ j

∂x j
+ m64Kn

∂ q̄〈n
∂xn〉

+ m65Kn
∂v〈n
∂xn〉

]
, (3.15)

Kn
(
∂σ̄〈τi τi

∂xn〉
+ 1

2
∂σ̄〈nn

∂xn〉

)
= −χ̃m71

(
σ̄τi τi + 1

2
σ̄nn

)
, i = 1, 2, (3.16)

Kn
∂σ̄〈τ1τ2

∂xn〉
= −χ̃m81σ̄τ1τ2 . (3.17)
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In these equations, mjk are constants depending on the molecular interactions. As
examples, we consider inverse-power-law models in which the repulsive force between
two gas molecules is proportional to the ηth power of the distance between them. For such
models, the values of the constants ki and mi j are tabulated in Appendix B for some power
indices.

It will become clear by its derivation that this set of boundary conditions satisfies the
general form of L2-stable boundary conditions (1.6), which implies the second law of
thermodynamics. The external contribution gext is given by the terms with wall velocity
vW

i and wall temperature θW .

3.3. Second law of thermodynamics
The derivation of the new R13 equations (3.2)–(3.6), to be detailed in the next section,
maintains the structure required by (1.2). Therefore, according to (1.3), the second law
of thermodynamics is automatically satisfied. In fact, the entropy inequality can also be
observed from (3.2) to (3.6) directly by straightforward calculations. Assume that the
spatial domain is R

3 and all quantities decay to zero when x tends to infinity. Then, by
calculating∫

R3

[
ρ · (3.1)+ 3

2
θ · (3.2)+ v · (3.3)+ 2

5
q̄ · (3.4)+ 1

2
σ̄ : (3.5)

]
dx, (3.18)

one obtains
d
dt

∫
R3

1
2

(
ρ2 + 3

2
θ2 + |v|2 + 2

5
|q̄|2 + 1

2
‖σ̄‖2

)
dx =

− Kn
∫
R3

(
3
2

k1|∇θ |2 + k3‖(∇v)stf‖2 + 4
5

k6‖∇q̄‖2 + 24
25

k7‖(∇q̄)stf‖2
)

dx

− Kn
∫
R3

(
k9|||(∇σ̄ )stf|||2 + 1

2
k10|∇ · σ̄ |2

)
dx − 1

Kn

∫
R3

(
4
15

l1|q̄|2 + 1
2

l2‖σ̄‖2
)

dx

+ 3 Knk2

∫
R3

∇θ · (∇ · σ̄ ) dx − 2 Knk4

∫
R3
(∇v)stf : (∇q̄)stf dx, (3.19)

where we have used | · |, ‖ · ‖ and ||| · ||| to denote the Frobenius norms of vectors, 2-tensors
and 3-tensors, respectively. We show later (at the end of § 4.3) that

(3k2)
2

4
� 3

2
k1 · 1

2
k10, k2

4 � k3 · 24
25

k7, (3.20)

which yields ∣∣∣∣3k2

∫
R3

∇θ · (∇ · σ̄ ) dx

∣∣∣∣�
∫
R3

(
3
2

k1|∇θ |2 + 1
2

k10|∇ · σ̄ |2
)

dx,∣∣∣∣2k4

∫
R3
(∇v)stf : (∇q̄)stf dx

∣∣∣∣�
∫
R3

(
k3‖(∇v)stf‖2 + 24

25
k7‖(∇q̄)stf‖2

)
dx. (3.21)

Thus,
d
dt

∫
R3

1
2

(
ρ2 + 3

2
θ2 + |v|2 + 2

5
|q̄|2 + 1

2
‖σ̄‖2

)
dx �

− Kn
∫
R3

(
4
5

k6‖∇q̄‖2 + k9|||(∇σ̄ )stf|||2
)

dx − 1
Kn

∫
R3

(
4
15

l1|q̄|2 + 1
2

l2‖σ̄‖2
)

dx,

(3.22)
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Since the coefficients k6, k9, l1 and l2 are all non-negative, the right-hand side of the
equation above is non-positive. The entropy density can thus be defined by

H = H0 − 1
2

(
ρ2 + 3

2
θ2 + |v|2 + 2

5
|q̄|2 + 1

2
‖σ̄‖2

)
, (3.23)

where H0 is an arbitrary constant. In the case of Maxwell molecules, this result echos the
conclusion in Struchtrup & Torrilhon (2007).

For bounded domains, with boundary conditions (3.9)–(3.17), we can also show
that the entropy may increase only due to the incoming fluxes from the boundary.
The derivation is similar to the unbounded case, while boundary terms appear when
performing integration by parts, for which the boundary conditions need to be applied to
make further simplifications. For any bounded domain Ω , the conclusion has the form

− d
dt

∫
Ω

H dx �
∫
∂Ω

θW (C1θ + C2q̄n + C3σ̄nn) ds

+
∫
∂Ω

[vW
τ1
(C4vτ1 + C5q̄τ1 + C6σ̄nτ1)+ vW

τ2
(C4vτ2 + C5q̄τ2 + C6σ̄nτ2)] ds, (3.24)

where the constants C1–C6 depend only on the coefficients in the equations and the
boundary conditions. In (3.24) the right-hand side only contains terms related to vW and
θW , meaning that the entropy can increase only due to the velocities and temperatures of
the walls, which does not violate the second law of thermodynamics.

4. Derivation of R13 equations
In this section we detail our derivation of the time-dependent R13 equations. To begin
with, we first explain how the 13 variables used in our equations are chosen based on the
collision model.

4.1. Choice of variables
As described in the previous section, our choice of the 13 variables is different from Grad’s
13-moment equations. To explain how the new variables are defined, we start from the
following definition of trace-free moments, which has been utilised in the derivation of
steady-state R13 equations (Cai et al. 2024b):

wn
i1···il = 〈ψn

i1···il , f 〉. (4.1)

Here ψn
i1···il is a polynomial defined by

ψn
i1···il (ξ)= L̄(l+1/2)

n

( |ξ |2
2

)
ξ〈i1 · · · ξil 〉, (4.2)

and L̄(l+1/2)
n is the normalised Laguerre polynomial

L̄(l+1/2)
n (x)=

√ √
π

2l+1n!Γ (n + l + 3/2)
x−(l+1/2)

(
d

dx
− 1
)n

xn+l+1/2. (4.3)

These moments can be viewed as generalisations of Grad’s 13 moments, and they are
related to Grad’s moments by

ρ =w0, vi = √
3w0

i , θ = −
√

2
3
w1, σi j = √

15w0
i j , qi = −

√
15
2
w1

i . (4.4)
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By taking moments of the Boltzmann equation (1.1), one can derive evolution equations
for the moments wn

i1···il :

∂wn
i1···il
∂t

+
(√

2(n + l)+ 3
∂wn

i1···il j

∂x j
− √

2n
∂wn−1

i1···il j

∂x j

)

+ l

2l + 1

(√
2(n + l)+ 1

∂wn
〈i1···il−1

∂xil 〉
−√2(n + 1)

∂wn+1
〈i1···il−1

∂xil 〉

)
= 1

Kn

+∞∑
n′=0

alnn′wn′
i1···il .

(4.5)

Here the coefficients alnn′ on the right-hand side are given by

alnn′ = (2l + 1)!!
l! 〈ψn

i1···il ,Lψn′
i1···il 〉, (4.6)

where we do not take summation over the indices i1, . . . , il , and the choice of these
indices does not affect the value of alnn′ due to the rotational invariance of the linearised
collision operator. By the self-adjointness of L, one can observe that alnn′ = aln′n . Due to
the conservation of mass, momentum and energy, it holds that

a00n = a0n0 = a01n = a0n1 = a10n = a1n0 = 0. (4.7)

For inverse-power-law models, the computation of these coefficients are provided in Cai
& Torrilhon (2015).

To select appropriate moments in our equations, we apply the Chapman–Enskog
expansion to the moment equations, which requires assuming that Kn is a small parameter
and applying the following asymptotic expansion:

wn
i1···il =w

n|0
i1···il + Knwn|1

i1···il + Kn2w
n|2
i1···il + Kn3w

n|3
i1···il + · · · . (4.8)

The conservative variablesw0,w0
i andw1 are regarded as O(1) variables. Straightforward

analysis leads to the following results:

wn|0 =wn|1 = 0, n � 2; w
n|0
i = 0, n � 1; (4.9)

w
n|0
i1···il =w

n|1
i1···il = 0, l = 3; w

n|0
i1···il =w

n|1
i1···il =w

n|2
i1···il = 0, l � 4; (4.10)

w
n|1
i = β

(1),n
1

∂w1

∂xi
, n � 1; w

n|1
i j = β

(1),n
2

∂w0〈i
∂x j〉

; (4.11)

wn|2 = γ
(2),n
0

∂w
1|1
j

∂x j
, n � 2; w

n|2
i = γ

(1),n
t1

∂w
1|1
i

∂t
+ γ

(1),n
s1

∂w
0|1
i j

∂x j
, n � 2; (4.12)

w
n|2
i j = γ

(1),n
t2

∂w
0|1
i j

∂t
+ γ

(1),n
s2

∂w
1|1
〈i

∂x j〉
, n � 1; w

n|2
i jk = γ

(2),n
3

∂w
0|1
〈i j

∂xk〉
. (4.13)

The coefficients β and γ are all constants depending on the collision term. Note that
(4.11) implies the Navier–Stokes law and the Fourier law, and these equations lead to the
following linear relationship between the moments:

w
n|1
i = β

(1),n
1

β
(1),1
1

w
1|1
i , n � 1; w

n|1
i j = β

(1),n
2

β
(1),0
2

w
n|0
i j . (4.14)

1009 A60-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.215


Journal of Fluid Mechanics

By the definition of wn
i1···il (see (4.1)), the above equations indicate that

〈
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i , f

〉
∼ O(Kn2), n � 1;

〈
ψn

i j − β
(1),n
2

β
(1),0
2

ψ0
i j , f

〉
∼ O(Kn2).

(4.15)
Meanwhile, (4.9) yields

〈ψn, f 〉 ∼ O(Kn2), n � 2; 〈ψn
i1···il , f 〉 ∼ O(Kn2), l � 3. (4.16)

Recall that we want to choose the 13 variables of the our equations to be 〈φ̃13, f 〉 with φ̃13
satisfying 〈r, f 〉 ∼ o(Kn) whenever 〈φ̃13, r〉 = 0. A straightforward approach is to select
φ̃13 to be a basis of (S(2))⊥, with S

(2) being the linear span of all polynomials appearing
in (4.15) and (4.16):

S
(2) = span

{
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i

∣∣∣∣∣ n � 1

}
⊕ span

{
ψn

i j − β
(1),n
2

β
(1),0
2

ψ0
i j

∣∣∣∣∣ n � 0

}

⊕ span{ψn | n � 2} ⊕ span{ψn
i1···il | l � 3}. (4.17)

This leads to the following choice of φ̃13:

ψ0, ψ1, ψ0
i , φ1

i , φ0
i j . (4.18)

Here ψ0, ψ1 and ψ0
i correspond to conservative moments, and φ1

i and φ0
i j , corresponding

to non-equilibrium variables, are defined by

φ1
i =

+∞∑
n=1

c1,n
1 ψn

i , φ0
i j =

+∞∑
n=0

c0,n
2 ψn

i j , (4.19)

with the coefficients c1,n
1 and c0,n

2 satisfying

c1,n
1 = β

(1),n
1

β
(1),1
1

c1,1
1 , c0,n

2 = β
(1),n
2

β
(1),0
2

c0,0
2 . (4.20)

Thus, the 13 moments in our equations include

ρ, θ, vi , q̄i = 〈φ1
i , f 〉, σ̄i j = 〈φ0

i j , f 〉. (4.21)

In (4.19) the constants c1,1
1 and c0,0

2 can be chosen as arbitrary non-zero numbers, and here
we choose them such that when the collision model reduces Maxwell molecules (η= 5),
q̄i and σ̄i j reduce to qi and σi j . More precisely, we choose negative c1,1

1 and positive c0,0
2

such that
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+∞∑
n=1

(
c1,n

1

)2 = 15
2
,

+∞∑
n=0

(
c0,n

2

)2 = 15. (4.22)

Note that the definitions of q̄i and σ̄i j depend on the collision model since the coefficients
c1,n

1 and c0,n
2 are determined by β(1),n1 and β(1),02 , and these constants will vary when the

collision model changes.

4.2. Second-order variables
To derive a model with the super-Burnett order, second-order moments are needed
as auxiliary variables. The choice of these variables also follows the requirement of
orthogonality, meaning that we want to find a vector function ψ̃(ξ) such that:

(i) 〈φ̃13, ψ̃〉 = 0;
(ii) for any function r(ξ) such that 〈r, ψ̃〉 = 0, it holds that 〈r, f 〉 ∼ o(Kn2);

(iii) the number of components of ψ̃ should be as low as possible.

To find ψ̃ , we need the following linear relationship between the second-order terms of
moments:

wn|2 = dn
02w

2|2, n � 2; w
n|2
i = dn

12w
2|2
i + dn

13w
3|2
i , n � 2;

w
n|2
i j = dn

21w
1|2
i j + dn

22w
2|2
i j , n � 1; w

n|2
i jk = dn

30w
0|2
i jk , n � 0, (4.23)

where

dn
02 = γ

(2),n
0

γ
(2),2
0

, dn
30 = γ

(2),n
3

γ
(2),0
3

,

dn
12 = γ

(1),n
t1 γ

(1),3
s1 − γ

(1),n
s1 γ

(1),3
t1

γ
(1),3
s1 γ

(1),2
t1 − γ

(1),2
s1 γ

(1),3
t1

, dn
13 = γ

(1),n
s1 γ

(1),2
t1 − γ

(1),n
t1 γ

(1),2
s1

γ
(1),3
s1 γ

(1),2
t1 − γ

(1),2
s1 γ

(1),3
t1

,

dn
21 = γ

(1),n
t2 γ

(1),2
s2 − γ

(1),n
s2 γ

(1),2
t2

γ
(1),2
s2 γ

(1),1
t2 − γ

(1),1
s2 γ

(1),2
t2

, dn
22 = γ

(1),n
s2 γ

(1),1
t2 − γ

(1),n
t2 γ

(1),1
s2

γ
(1),2
s2 γ

(1),1
t2 − γ

(1),1
s2 γ

(1),2
t2

. (4.24)

These equations can be derived from (4.12), (4.13) by cancelling the differential terms.
The equations in (4.23) reveal that low-order parts of the moments can be cancelled by
linear combinations:

wn − dn
02w

2 ∼ o
(

Kn2
)
, n � 2;(

wn
i − Knwn|1

i

)
− dn

12

(
w2

i − Knw2|1
i

)
− dn

13

(
w3

i − Knw3|1
i

)
∼ o

(
Kn2
)
, n � 2;(

wn
i j − Knwn|1

i j

)
− dn

21

(
w1

i j − Knw1|1
i j

)
− dn

22

(
w2

i j − Knw2|1
i j

)
∼ o

(
Kn2
)
, n � 1;

wn
i jk − d30w

0
i jk ∼ o

(
Kn2
)
, n � 0.

(4.25)

Note that the correctness of (4.12) and (4.13) (and thus, (4.23) and (4.25)) replies only on
the relation (4.14), and does not require the specific choice of wn|1

i and wn|1
i j as described

in (4.11). Therefore, in (4.25) we can follow (4.15) to select
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Knwn|1
i =

〈
β
(1),n
1

β
(1),1
1

ψ1
i , f

〉
, n � 1; Knwn|1

i j =
〈
β
(1),n
2

β
(1),0
2

ψ0
i j , f

〉
, n � 0, (4.26)

so that we can find a linear space S
(3) such that 〈r, f 〉 ∼ o(Kn2) for all r ∈ S

(3). The
definition of S(3) is

S
(3) = span

{
ψn − dn

02ψ
2 | n � 3

}

⊕ span

{(
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i

)
− dn

12

(
ψ2

i − β
(1),2
1

β
(1),1
1

ψ1
i

)
− dn

13

(
ψ3

i − β
(1),3
1

β
(1),1
1

ψ1
i

) ∣∣∣∣∣ n � 4

}

⊕ span

{(
ψn

i j − β
(1),n
2

β
(1),0
2

ψ0
i j

)
− dn

21

(
ψ1

i j − β
(1),1
2

β
(1),0
2

ψ0
i j

)
− dn

22

(
ψ2

i j − β
(1),2
2

β
(1),0
2

ψ0
i j

) ∣∣∣∣∣ n � 3

}

⊕ span
{
ψn

i jk − d30ψ
0
i jk | n � 1

}
⊕ span

{
ψn

i1···il | l � 4
}
. (4.27)

The second-order variables are chosen to be a basis of S(2) ∩ (S(3))⊥.
The function space S

(2) ∩ (S(3))⊥ has the form

S
(2) ∩ (S(3))⊥ = span{φ2, φ2

i , φ
3
i , φ

1
i j , φ

2
i j , φ

0
i jk}, (4.28)

where

φ2 =
+∞∑
n=2

c2,n
0 ψn, φ2

i =
+∞∑
n=2

c2,n
1

(
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i

)
, φ3

i =
+∞∑
n=2

c3,n
1

(
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i

)
,

φ1
i j =

+∞∑
n=1

c1,n
2

(
ψn

i j − β
(1),n
2

β
(1),0
2

ψ0
i j

)
, φ2

i j =
+∞∑
n=1

c2,n
2

(
ψn

i j − β
(1),n
2

β
(1),0
2

ψ0
i j

)
, φ0

i jk =
+∞∑
n=0

c0,n
3 ψn

i jk .

(4.29)

The coefficients c�,nk can be represented as functions of β(�),nk , and the details can be
found in Appendix D. Here we only emphasise that the choice has been made such that
〈φ2

i , φ
3
i 〉 = 〈φ1

i j , φ
2
i j 〉 = 0, and in the case of Maxwell molecules, φ2,3

i =ψ
2,3
i and φ1,2

i j =
ψ

1,2
i j . Equation (4.28) indicates that the minimum number of second-order variables is

24 (= 1 + 3 + 3 + 5 + 5 + 7). These variables will be denoted by

u2 := 〈φ2, f 〉, u2
i := 〈φ2

i , f 〉, u3
i := 〈φ3

i , f 〉,
u1

i j := 〈φ1
i j , f 〉, u2

i j := 〈φ2
i j , f 〉, u0

i jk := 〈φ0
i jk, f 〉. (4.30)

REMARK 1. A similar procedure has been applied in Cai, Torrilhon & Yang (2024b) to
obtain second-order variables in the case of steady-state equations. When time derivatives
are absent, we have simpler relationships wn|2

i = dn
12w

2|2
i and wn|2

i j = dn
21w

1|2
i j in place

of (4.23), resulting in only 16 second-order variables. In Struchtrup & Torrilhon (2013),
when time-dependent R13 equations were derived for hard-sphere molecules, only 29 (=
13 + 16) equations were considered. However, the resulting equations may not hold the
symmetry as in (1.2). In this paper we are going to include all the 37 (= 13 + 24) equations
in our derivation to achieve the L2 stability.
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4.3. Derivation of R13 equations
By the analysis above, the distribution function f can be separated into four parts
according to the order of magnitude

f = f (0) + f (1) + f (2) + f (r), (4.31)

where f (k) is the projection of f onto the function space V
(k), defined by

V
(0) = span{ψ0, ψ1, ψ0

i }, V
(1) = (V(0))⊥ ∩ (S(2))⊥,

V
(2) = S

(2) ∩ (S(3))⊥, V
(r) = S

(3). (4.32)

It is clear that f (0), f (1) and f (2) represent, respectively, the zeroth-, first- and second-
order parts of f , and f (r) represents the remaining part of f that has order o(Kn2). For
simplicity, we use P(k) to denote the projection operator onto V

(k). A key observation
in our derivation is that the super-Burnett equations can be derived from the following
equations without using f (r):

∂

∂t

⎛
⎝ f (0)

f (1)

0

⎞
⎠+

⎛
⎝∂xiP(0)ξi f (0) + ∂xiP(0)ξi f (1) + ∂xiP(0)ξi f (2)

∂xiP(1)ξi f (0) + ∂xiP(1)ξi f (1) + ∂xiP(1)ξi f (2)

∂xiP(2)ξi f (0) + ∂xiP(2)ξi f (1)

⎞
⎠

= 1
Kn

⎛
⎝ 0
P(1)L f (1) +P(1)L f (2)

P(2)L f (1) +P(2)L f (2)

⎞
⎠ . (4.33)

This form is similar to Grad’s moment equations with truncation up to the second order,
but the temporal and spatial derivatives of f (2) in the last equation are removed, allowing
us to express f (2) using f (0) and f (1) according to the last equation:

f (2) =
[
P(2)L|V(2)

]−1 (
∂xiP(2)ξi f (0) + ∂xiP(2)ξi f (1) −P(2)L f (1)

)
. (4.34)

Thus, the second-order part f (2) can be eliminated from the equations, and the resulting
equations contain only f (0) and f (1), which can be represented as 13-moment equations.

The reason why (4.33) has the super-Burnett order will be detailed in the next
subsection. Here we apply this result to derive the R13 equations. The derivation requires
explicit formulations of f (0), f (1) and f (2):

f (0) = ρψ0 −
√

3
2
θψ1 + √

3viψ
0
i ,

f (1) = 2
5

q̄iφ
1
i + 1

2
σ̄i jφ

0
i j ,

f (2) = u2φ2 + 3u2
i φ

2
i + 3u3

i φ
3
i + 15

2
u1

i jφ
1
i j + 15

2
u2

i jφ
2
i j + 35

2
u0

i jkφ
0
i jk .

(4.35)

Then, (4.33) can be converted to moment equations by the Galerkin method. For example,
the equation of σ̄i j can be obtained by

〈φ0
i j , f (1)〉 + ∂

∂xk
〈φ0

i j , ξk( f (0) + f (1) + f (2))〉 = 〈φ0
i j ,L( f (1) + f (2))〉, (4.36)

and the equation of u2
i is

∂

∂xk
〈φ2

i , ξk( f (0) + f (1))〉 = 〈φ2
i ,L( f (1) + f (2))〉. (4.37)
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All these inner products can be computed explicitly, and the complete 37-moment
equations are

∂ρ

∂t
+ ∂v j

∂x j
= 0, (4.38)

∂θ

∂t
+ 2

3
∂v j

∂x j
+ 2

3
c1,1

1
∂ q̄ j

∂x j
−
√

10
3

(
c2,1

1

∂u2
j

∂x j
+ c3,1

1

∂u3
j

∂x j

)
= 0, (4.39)

∂vi

∂t
+ ∂ρ

∂xi
+ ∂θ

∂xi
+ c0,0

2
∂σ̄i j

∂x j
+ √

15

(
c1,0

2

∂u1
i j

∂x j
+ c2,0

2

∂u2
i j

∂x j

)
= 0, (4.40)

∂ q̄i

∂t
+ 5

2
c1,1

1
∂θ

∂xi
−

√
2

6
A45

∂σ̄i j

∂x j
−
√

5
6

(
A49

∂u1
i j

∂x j
+ A4,10

∂u2
i j

∂x j
+ A46

∂u2

∂xi

)

= 1
Kn

(
1
3
L (11)

1 q̄i −
√

5
6
L (12)

1 u2
i −

√
5
6
L (13)

1 u3
i

)
, (4.41)

∂σ̄i j

∂t
+ 2c0,0

2
∂v〈i
∂x j〉

− 2
√

2
15

A45
∂ q̄〈i
∂x j〉

+ 2√
15

(
A57

∂u2〈i
∂x j〉

+ A58
∂u3〈i
∂x j〉

+ A5,11
∂u0

i jk

∂xk

)

= 1
Kn

(
2
15

L (00)
2 σ̄i j + 2√

15
L (01)

2 u1
i j + 2√

15
L (02)

2 u2
i j

)
,

(4.42)

−
√

2
15

A46
∂ q̄ j

∂x j
= 1

Kn
L (22)

0 u2, (4.43)

−
√

15
2

c2,1
1
∂θ

∂xi
+
√

1
15

A57
∂σ̄i j

∂x j
= 1

Kn

(
−
√

2
15

L (21)
1 q̄i + L (22)

1 u2
i + L (23)

1 u3
i

)
,

(4.44)

−
√

15
2

c3,1
1
∂θ

∂xi
+
√

1
15

A58
∂σ̄i j

∂x j
= 1

Kn

(
−
√

2
15

L (31)
1 q̄i + L (32)

1 u2
i + L (33)

1 u3
i

)
,

(4.45)
√

15c1,0
2
∂v〈i
∂x j〉

−
√

2
15

A49
∂ q̄〈i
∂x j〉

= 1
Kn

(√
1
15

L (10)
2 σ̄i j + L (11)

2 u1
i j + L (12)

2 u2
i j

)
, (4.46)

√
15c2,0

2
∂v〈i
∂x j〉

−
√

2
15

A4,10
∂ q̄〈i
∂x j〉

= 1
Kn

(√
1
15

L (20)
2 σ̄i j + L (21)

2 u1
i j + L (22)

2 u2
i j

)
,

(4.47)√
1
15

A5,11
∂σ̄〈i j

∂xk〉
= 1

Kn
L (00)

3 u0
i jk . (4.48)

The coefficients Ai j are a series of cl,n
k , with their expressions provided in Appendix E.

It is now clear that the second-order variables defined in (4.30) can be solved according
to (4.43)–(4.48). Plugging the results into (4.39)–(4.42) yields our final equations (3.2)–
(3.6). Here we would like to write down the explicit expressions for a few coefficients in
(3.2)–(3.6):
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k1 = −5
(

c2,1
1 c3,1

1

) (L (22)
1 L (23)

1

L (32)
1 L (33)

1

)−1 (
c2,1

1

c3,1
1

)
, (4.49)

k2 = −
√

2
3

(
c2,1

1 c3,1
1

) (L (22)
1 L (23)

1

L (32)
1 L (33)

1

)−1 (
A57
A58

)
, (4.50)

k3 = −15
(

c1,0
2 c2,0

2

) (L (11)
2 L (12)

2

L (21)
2 L (22)

2

)−1 (
c1,0

2

c2,0
2

)
, (4.51)

k4 = √
2
(

A49 A4,10
) (L (11)

2 L (12)
2

L (21)
2 L (22)

2

)−1 (
c1,0

2

c2,0
2

)
, (4.52)

k7 = − 5
36

(
A49 A4,10

) (L (11)
2 L (12)

2

L (21)
2 L (22)

2

)−1 (
A49

A4,10

)
, (4.53)

= − 2
15

(
A57 A58

) (L (22)
1 L (23)

1

L (32)
1 L (33)

1

)−1 (
A57
A58

)
. (4.54)

Since the matrices (
L (22)

1 L (23)
1

L (32)
1 L (33)

1

)
and

(
L (11)

2 L (12)
2

L (21)
2 L (22)

2

)
(4.55)

are symmetric and negative definite, we can obtain (3.20) by the Cauchy–Schwarz
inequality, which completes the proof of the H-theorem (3.22).

4.4. Verification of the super-Burnett order
To show that (4.33) have super-Burnett order, we rewrite the Boltzmann equation in the
form

∂

∂t

⎛
⎜⎜⎝

f (0)

f (1)

f (2)

f (r)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝
A(00) A(01) A(02) A(0r)

A(10) A(11) A(12) A(1r)

A(20) A(21) A(22) A(2r)

A(r0) A(r1) A(r2) A(rr)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

f (0)

f (1)

f (2)

f (r)

⎞
⎟⎟⎠

= 1
Kn

⎛
⎜⎜⎝

0 0 0 0
0 L(11) L(12) L(1r)

0 L(21) L(22) L(2r)

0 L(r1) L(r2) L(rr)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

f (0)

f (1)

f (2)

f (r)

⎞
⎟⎟⎠ , (4.56)

where

A(kl) f (l) = ∂

∂xi
A(kl)

i f (l), A(kl)
i =P(k)ξiP(l), L(kl) f (l) =P(k)L f (l), (4.57)

and they satisfy

〈g(k),A(kl)
i g(l)〉 = 〈A(lk)

i g(k), g(l)〉, 〈g(k),L(kl)g(l)〉 = 〈L(lk)g(k), g(l)〉 (4.58)

for all g(k) ∈V
(k) and g(l) ∈V

(l).
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It is well known that the super-Burnett equations can be derived via three Maxwellian
iterations applied to the Boltzmann equation, which begin with the initial value

f (1)0 = f (2)0 = f (r)0 = 0, (4.59)

and proceeds from the j th iteration to the ( j + 1)th iteration according to

∂

∂t

⎛
⎜⎝

f (1)j

f (2)j

f (r)j

⎞
⎟⎠+

⎛
⎝A(10) A(11) A(12) A(1r)

A(20) A(21) A(22) A(2r)

A(r0) A(r1) A(r2) A(rr)

⎞
⎠
⎛
⎜⎜⎜⎝

f (0)

f (1)j

f (2)j

f (r)j

⎞
⎟⎟⎟⎠= 1

Kn

⎛
⎝L(11) L(12) L(1r)

L(21) L(22) L(2r)

L(r1) L(r2) L(rr)

⎞
⎠
⎛
⎜⎝

f (1)j+1

f (2)j+1

f (r)j+1

⎞
⎟⎠ .

(4.60)
The super-Burnett equations can be written in the form

∂ f (0)

∂t
+A(00) f (0) +A(01) f (1)3 +A(02) f (2)3 +A(02) f (3)3 = 0. (4.61)

To show that (4.33) have the super-Burnett order, we just need to demonstrate that the
derivation of super-Burnett equations does not involve any operators that do not appear in
(4.33). Below, we carry out the derivation step by step in the following subsections.

4.4.1. First Maxwellian iteration
Setting j = 0 in (4.60) and using the initial data f (1)0 = f (2)0 = f (r)0 = 0, we obtain

⎛
⎝A(10) f (0)

A(20) f (0)

A(r0) f (0)

⎞
⎠= 1

Kn

⎛
⎝L(11) L(12) L(1r)

L(21) L(22) L(2r)

L(r1) L(r2) L(rr)

⎞
⎠
⎛
⎜⎝

f (1)1

f (2)1

f (r)1

⎞
⎟⎠ . (4.62)

By Gaussian elimination,

⎛
⎝ A(10) f (0)[A(20) −L(21)(L(11))−1A(10)] f (0)[A(r0) −L(r1)(L(11))−1A(10)] f (0)

⎞
⎠= 1

Kn

⎛
⎝L(11) L(12) L(1r)

L(22)∗ L(2r)∗
L(r2)∗ L(rr)∗

⎞
⎠
⎛
⎜⎝

f (1)1

f (2)1

f (r)1

⎞
⎟⎠ ,

(4.63)
where

L(22)∗ =L(22) −L(21)(L(11))−1L(12), L(2r)∗ =L(2r) −L(21)(L(11))−1L(1r),

L(r2)∗ =L(r2) −L(r1)(L(11))−1L(12), L(rr)∗ =L(rr) −L(r1)(L(11))−1L(1r). (4.64)

Note that throughout the iterations, we always have f (2)j ∼ o(Kn) and f (r)j ∼ o(Kn2),
which requires

A(20) −L(21)(L(11))−1A(10) =A(r0) −L(r1)(L(11))−1A(10) = 0. (4.65)

Thus, the result of the first Maxwellian iteration can be written as

f (1)1 = Kn(L(11))−1A(10) f (0), f (2)1 = 0, f (r)1 = 0. (4.66)

For simplicity, we define S(10)
1 = (L(11))−1A(10), so that f (1)1 = KnS(10)

1 f (0).
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4.4.2. Second Maxwellian iteration
Setting j = 0 in (4.60) and using the result of the first Maxwellian iteration, we get

∂

∂t

⎛
⎝KnS(10)

1 f (0)

0
0

⎞
⎠+

⎛
⎜⎜⎜⎝
(
A(10) + KnA(11)S(10)

1

)
f (0)(

A(20) + KnA(21)S(10)
1

)
f (0)(

A(r0) + KnA(r1)S(10)
1

)
f (0)

⎞
⎟⎟⎟⎠

= 1
Kn

⎛
⎝L(11) L(12) L(1r)

L(21) L(22) L(2r)

L(r1) L(r2) L(rr)

⎞
⎠
⎛
⎜⎝

f (1)2

f (2)2

f (r)2

⎞
⎟⎠ . (4.67)

Next, we perform the following operations.

(i) Replace the time derivative with the spatial derivative using

∂ f (0)

∂t
+A(00) f (0) = O(Kn), (4.68)

where the O(Kn) part can be discarded and it does not affect the order of accuracy.
(ii) Apply Gaussian elimination and (4.65) to obtain⎛

⎜⎜⎜⎝
[
A(10) + KnA(11)S(10)

1 − KnS(10)
1 A(00)

]
f (0)

Kn
[
A(21)S(10)

1 −L(21)(L(11))−1
(
A(11)S(10)

1 − S(10)
1 A(00)

)]
f (0)

Kn
[
A(r1)S(10)

1 −L(r1)(L(11))−1
(
A(11)S(10)

1 − S(10)
1 A(00)

)]
f (0)

⎞
⎟⎟⎟⎠

= 1
Kn

⎛
⎝L(11) L(12) L(1r)

L(22)∗ L(2r)∗
L(r2)∗ L(rr)∗

⎞
⎠
⎛
⎜⎝

f (1)2

f (2)2

f (r)2

⎞
⎟⎠ . (4.69)

(iii) Apply Gaussian elimination again to eliminate L(r2)∗ . Then the last equation in the
system becomes

KnB(r0) f (0) = 1
Kn

(
L(rr)∗ −L(r2)∗ (L(22)∗ )−1L(2r)∗

)
f (r)2 , (4.70)

with

B(r0) =
(
A(r1) −L(r2)∗ (L(22)∗ )−1A(21)

)
S(10)

1

−
(
L(r1) −L(r2)∗ (L(22)∗ )−1L(21)

)
(L(11))−1

(
A(11)S(10)

1 − S(10)
1 A(00)

)
. (4.71)

Due to the fact that f (r)2 ∼ o(Kn2), the operator B(r0) has to be zero, and thus f (r)2 = 0,
and f (1)2 and f (2)2 can be solved from (4.69). The results are

f (1)2 = KnS(10)
1 f (0) − Kn2(L(11))−1L(12)(L(22)∗ )−1A(11)S(10)

1 f (0) + Kn2
(
L(11)

)−1

×
(
I −L(12)(L(22)∗ )−1L(21)(L(11))−1

) (
A(11)S(10)

1 − S(10)
1 A(00)

)
f (0), (4.72)

f (2)2 = Kn2(L(22)∗ )−1
[
A(21)S(10)

1 −L(21)(L(11))−1
(
A(11)S(10)

1 − S(10)
1 A(00)

)]
f (0).

(4.73)
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For conciseness, below we write these equations in the following simpler form:

f (1)2 = KnS(10)
1 f (0) + Kn2S(10)

2 f (0), f (2)2 = Kn2S(20)
2 f (0). (4.74)

4.4.3. Third Maxwellian iteration
Similarly, the third Maxwellian iteration requires to find f (1)3 , f (2)3 and f (3)3 from (4.60)
with j = 2. However, for the purpose of deriving super-Burnett equations, only the first
equation is needed. Here we rewrite this equation below:

∂

∂t

(
KnS(10)

1 f (0) + Kn2S(20)
2 f (0)

)
+A(10) f (0) + KnA(11)S(10)

1 f (0) + Kn2
(
A(11)S(10)

2 +A(12)S(20)
2

)
f (0)

= 1
Kn

(
L(11) f (1)3 +L(12) f (2)3 +L(1r) f (r)3

)
. (4.75)

Further simplification again requires the time derivatives to be replaced without affecting
the order of magnitude. This can be done by using

∂

∂t

(
KnS(10)

1 f (0) + Kn2S(20)
2 f (0)

)
= −KnS(10)

1 A(00) f (0)

− Kn2(S(10)
1 A(01)S(10)

1 + S(20)
2 A(00)) f (0) + O(Kn3), (4.76)

which leads to

L(11) f (1)3 +L(12) f (2)3 +L(1r) f (r)3 = KnA(10) f (0) + Kn2
(
A(11)S(10)

1 − S(10)
1 A(00)

)
f (0)

+ Kn3
(
A(11)S(10)

2 +A(12)S(20)
2 − S(20)

2 A(00) − S(10)
1 A(01)S(10)

1

)
f (0). (4.77)

4.4.4. Super-Burnett equations
By the adjointness (4.58) and the equalities (4.65), we have

A(02) =A(01)(L(11))−1L(12), A(0r) =A(01)(L(11))−1L(1r). (4.78)

Thus, the super-Burnett equations (4.61) can be reformulated as

∂ f (0)

∂t
+A(00) f (0) +A(01)(L(11))−1

(
L(11) f (1)3 +L(12) f (2)3 +L(1r) f (r)3

)
= 0. (4.79)

The final super-Burnett equations can be found by plugging (4.77) into the above equation.
Such a derivation of super-Burnett equations shows that the final equations depend only

on the operators

A(00),A(01),A(02),A(10),A(11),A(12),A(20),A(21),L(11),L(12),L(21),L(22), (4.80)

and the operators

A(0r),A(1r),A(22),A(2r),A(r0),A(r1),A(r2),A(rr),L(1r),L(2r),L(r1),L(r2),L(rr) (4.81)

do not appear in the final equations. Therefore, we can set these operators to be zero, and
the resulting equations still have the super-Burnett order. Meanwhile, the time derivative
∂t f2 does not participate in the derivation, which can also be set to zero without affecting
the super-Burnett order.
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5. Onsager boundary conditions
In microflows, boundary conditions play a key role in describing the rarefaction effect.
In this work we focus mainly on the wall boundary condition, and we restrict ourselves
to Maxwell’s accommodation model in Maxwell (1879), where it is assumed that all
gas molecules hitting the wall are reflected either specularly or diffusively, according to
the accommodation coefficient of the wall, which specifies the probability of diffusive
reflection. In this section we follow the notation used in (3.9)–(3.17) and use n, τ1 and
τ2 instead of 1, 2 and 3 as indices of vectors or tensors. Thus, Maxwell’s wall boundary
conditions for the Boltzmann equation (1.1) can be formulated as

f (ξn, ξτ1, ξτ2)= χ fW (ξn, ξτ1, ξτ2)+ (1 − χ) f (−ξn, ξτ1, ξτ2), ξn < 0. (5.1)

Here χ is the accommodation coefficient, and we have omitted the spatial and temporal
variables since the boundary condition is valid for any boundary point x and time t ,
and there are no spatial or temporal derivatives involved. The function fW describes the
diffusive reflection, which depends on the wall velocity vW and the wall temperature θW .
Under the linearised setting, it has the form

fW (ξ)= ρW + vW,τ1ξτ1 + vW,τ2ξτ2 + 1
2
θW (|ξ |2 − 3), (5.2)

where

ρW = √
2π〈(ξn)+, f 〉 − θW

2
, (5.3)

which is chosen such that 〈ξn, f 〉 = 0, meaning that the normal component of the velocity
is zero.

In Cai et al. (2024b), the boundary condition (5.1) has been equivalently reformulated
to

Podd f = 2χ
2 − χ

PoddC( fW −Peven f ), (5.4)

where

Poddg(ξn, ξτ1, ξτ2)=
g(ξn, ξτ1, ξτ2)− g(−ξn, ξτ1, ξτ2)

2
, (5.5)

Peveng(ξn, ξτ1, ξτ2)=
g(ξn, ξτ1, ξτ2)+ g(−ξn, ξτ1, ξτ2)

2
, (5.6)

Cg(ξn, ξτ1, ξτ2)=
{

g(ξn, ξτ1, ξτ2) if ξn < 0,
0 if ξn > 0.

(5.7)

Such formulation of the boundary condition better fits Grad’s theory of boundary
conditions for moment equations (Grad 1949), where it is required that all boundary
conditions should only be imposed on odd moments. A direct application of Galerkin’s
method on (5.4) leads to Grad’s boundary conditions. However, these boundary conditions
may not satisfy the stability requirement (1.4). Our boundary conditions (3.9)–(3.17) are
based on the theory of Onsager boundary conditions developed in Sarna & Torrilhon
(2018), Öttinger et al. (2023) and Cai et al. (2024b), which can be demonstrated to satisfy
the general form (1.6). In particular, we follow the formulation in Cai et al. (2024b) that
rewrites (5.4) as

Podd f = 2χ
2 − χ

Sξn( fW −Peven f ), (5.8)
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where S =PoddCξ−1
n . Thus, the operator (2χ/(2 − χ))S corresponds to the negative

semidefinite matrix Q, and ξn corresponds to the matrix Aoe. More details on the
discretisation will be given in the following subsections.

REMARK 2. Note that existing Onsager boundary conditions such as those derived in
Sarna & Torrilhon (2018) and Cai et al. (2024b) cannot be directly applied to our systems.
The primary reason is that our system generally requires more boundary conditions than
previous R13 equations, due to a larger number of moments considered in our derivation.
For instance, the boundary conditions for R13 equations with Maxwell molecules consist
of 10 equations at each boundary point (Sarna & Torrilhon 2018). However, in our system,
the equations of θ and v become parabolic, requiring three more boundary conditions to
determine the solution. This motivates us to derive the boundary conditions from scratch
and guarantee reliable matching between the equations and boundary conditions.

5.1. Onsager boundary conditions
The abstract form of the R13 equations (4.33) shows that all operators in the Boltzmann
equation are approximated by operators in V=V

(0) ⊕V
(1) ⊕V

(2). If we rewrite the
Boltzmann equation (1.1) as

∂

∂t
(I f )+ ∂

∂xk
(ξk f )= 1

Kn
L f, (5.9)

then the identity operator I is approximated by P(01) :=P(0) +P(1), the velocity operator
ξk is approximated by

Ak =P(01)ξkP(01) +P(2)ξkP(01) +P(01)ξkP(2) (5.10)

and the collision operator L is approximated by (P(1) +P(2))L(P(1) +P(2)). Similarly,
when deriving boundary conditions for moment equations, operators in (5.8) are also
approximated by using operators on V.

We first study the operator Peven, which extracts the even part of a function with respect
to ξn . The discretisation of Peven is simply its restriction on V. Note that all the basis
functions of V are given in (4.35), from which it is not difficult to observe that

Veven :=PevenV= span{ψ0, ψ1, ψ0
τ1
, ψ0

τ2
; φ1

τ1
, φ1

τ2
, φ0

τ1τ1
, φ0

τ2τ2
, φ0

τ1τ2
; φ2, φ2

τ1
, φ2

τ2
,

φ3
τ1
, φ3

τ2
, φ1

τ1τ1
, φ1

τ2τ2
, φ1

τ1τ2
, φ2

τ1τ1
, φ2

τ2τ2
, φ2

τ1τ2
, φ0

τ1τ1τ1
, φ0

τ1τ1τ2
, φ0

τ1τ2τ2
, φ0

τ2τ2τ2
}. (5.11)

It is clear that fW ∈Veven. Thus, the velocity operator ξn should be discretised as the
restriction of An on Veven. We denote its range by Vodd :=AnVeven. By straightforward
calculation,

Vodd = span
{
ψ0

n ; φ1
n, φ

0
nτ1
, φ0

nτ2
; φ1

nτ1
, φ1

nτ2
, φ2

nτ1
, φ2

nτ2
, φ0

nτ1τ2
, φ0

nτ1τ1
+ 1

2
φ0

nnn, φ
2
n

+ c3,1
1

c2,1
1

φ3
n, μ1φ

0
nnn +μ2

(
φ3

n − c3,1
1

c2,1
1

φ2
n

)}
, (5.12)

where

μ1 = 3A5,11

⎡
⎣1 +

(
c3,1

1

c2,1
1

)2
⎤
⎦ , μ2 = 2

(
A58 − c3,1

1

c2,1
1

A57

)
. (5.13)
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Note that the basis functions listed in (5.12) are orthogonal basis functions, and the
orthogonality will simplify our derivations of boundary conditions. The discretisation the
operator S is then a straightforward application of Galerkin’s method with the subspace
Vodd.

We would like to comment that Vodd ⊕Veven is only a proper subspace of V, or
equivalently, Vodd �=PoddV. The reason is that the operator An has a null space being
a subspace of PoddV. This can be seen by focusing on the xn derivatives in (4.44), (4.45)
and (4.48), and find that by the linear combination

A5,11

(
c3,1

1 × (4.29)− c2,1
1 × (4.30)

)
− 5

3

(
c3,1

1 A57 − c2,1
1 A58

)
× (4.33) (5.14)

the xn derivative will be cancelled out. This indicates that

An

(
3A5,11

(
c3,1

1 φ2
n − c2,1

1 φ3
n

)
− 175

6

(
c3,1

1 A57 − c2,1
1 A58

)
φ0

nnn

)
= 0, (5.15)

which reveals the null space of An . The function space Vodd defined in (5.12) is orthogonal
to the null space of An .

Practically, all the boundary conditions are written as

〈φi
odd, fodd〉 = 2χ

2 − χ

∑
j

〈φi
odd, Cξ−1

n φ
j
odd〉〈φ j

odd,An( fW − feven)〉
〈φ j

odd, φ
j
odd〉

, j = 1, . . . , 12,

(5.16)
where φ j

odd refers to the j th basis function of Vodd (see (5.12)), and fodd and feven are,
respectively, the projection of f onto the function space Vodd and Veven. Note that this
formula requires the orthogonality of the basis {φ j

odd}. Calculation of the integrals in (5.16)
requires specifying the collision model. Here we only provide the general form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn
q̄n

u2
n + c3,1

1

c2,1
1

u3
n

σ̄τ1n
σ̄τ2n

u1
τ1n

u1
τ2n

u2
τ1n

u2
τ2n

u0
nnn + μ2

μ1

(
u3

n − c3,1
1

c2,1
1

u2
n

)
u0
τ1τ1n + 1

2 u0
nnn

u0
τ1τ2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2χ
2 − χ

Z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vn

Q̄n

U 2
n + c3,1

1

c2,1
1

U 3
n

Σ̄τ1n

Σ̄τ2n

U 1
τ1n

U 1
τ2n

U 2
τ1n

U 2
τ2n

U 0
nnn + μ2

μ1

(
U 3

n − c3,1
1

c2,1
1

U 2
n

)
U 0
τ1τ1n + 1

2U 0
nnn

U 0
τ1τ2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.17)

where the capitalised variables are given by
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Vn = (ρW − ρ)+ (θW − θ)− c0,0
2 σ̄nn − √

15(c1,0
2 u1

nn + c2,0
2 u2

nn),

Q̄n = 5
2

c1,1
1 (θW − θ)+

√
2

6
A45σ̄nn +

√
5
6
(A46u2 + A49u1

nn + A4,10u2
nn),

U 2
n =

√
15
3

(√
2

2
c2,1

1 (θ − θW )− 1
15

A57σ̄nn

)
,

U 3
n =

√
15
3

(√
2

2
c3,1

1 (θ − θW )− 1
15

A58σ̄nn

)
,

Σ̄τi n = c0,0
2

(
vW
τi

− vτi

)
+

√
2

15
A45q̄τi − 1√

15

(
A57u2

τi
+ A58u3

τi
+ 2A5,11u0

τi nn

)
, i = 1, 2,

U 1
τi n =

√
15

15

(
c1,0

2 (vW
τi

− vτi )+
√

2
15

A49q̄τi

)
, i = 1, 2,

U 2
τi n =

√
15

15

(
c2,0

2 (vW
τi

− vτi )+
√

2
15

A4,10q̄τi

)
, i = 1, 2,

U 0
τi τ j n = 2

√
15

1575
A5,11

(
2
5
δi j σ̄nn − σ̄τi τ j

)
, i, j = 1, 2,

U 0
nnn = −2

√
15

875
A5,11σ̄nn, (5.18)

and the structure of the matrix Z is (“∗” means a non-zero entry)

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0
∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0
∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0
0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0
0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0
0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ 0 ∗ 0 ∗ 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0
∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 0 0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

z0 ζ
ᵀ
0

ζ1 Z1

)
. (5.19)

The matrix Z is the discrete form of the operator S =PoddCξ−1
n , and is therefore similar to

a symmetric and positive definite matrix. To complete the derivation, we still need to take
into account the condition vn = 〈ξn, f 〉 = 0, since Vn depends on ρW (see (5.3)), which
has to be determined by this condition. Instead of solving ρW , an equivalent way is to
solve Vn from the first equation of (5.17), and then plug the result into other equations.
Such an equivalence is due to the fact that ρW appears only in Vn in all the quantities
defined in (5.18). This leads to boundary conditions that have the same form as (5.17), but
the matrix Z is replaced by (

0 0
0 Z1 − z−1

0 ζ1ζ
ᵀ
0

)
. (5.20)

1009 A60-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

21
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.215


B. Lin, H. Wang, S. Yang and Z. Cai

Since the Schur complement of a symmetric and positive definite matrix is still symmetric
and positive definite, we can guarantee that the above matrix can still be viewed as a
positive semidefinite operator.

Such boundary conditions satisfy all the properties required by the L2 stability.
However, spurious boundary layers are observed in the solution, which will be detailed
in the next subsection.

5.2. One-dimensional problems and spurious boundary layers
To show the boundary layers in the solution, we consider the steady-state one-dimensional
flow in which

v2 = v3 = q̄2 = q̄3 = σ̄13 = σ̄23 = 0, σ̄22 = σ̄33. (5.21)

These conditions come from the assumption that the distribution function satisfies

f (x, ξ1, ξ2, ξ3, t)= f̃ (x, ξ1,

√
ξ2

2 + ξ2
3 , t) for every x and t , meaning that f is

axisymmetric about the axis ξ2 = ξ3 = 0. Under this assumption, only five variables remain
and the equations have the form

∂v

∂x
= 0, (5.22)

2
3
∂v

∂x
+ 2

3
k0
∂ q̄

∂x
− k1Kn

∂2θ

∂x2 + k2Kn
∂2σ̄

∂x2 = 0, (5.23)

∂ρ

∂x
+ ∂θ

∂x
− 2

3
k3Kn

∂2v

∂x2 − 2
3

k4Kn
∂2q̄

∂x2 + k5
∂σ̄

∂x
= 0, (5.24)

5
2

k0
∂θ

∂x
− 5

3
k4Kn

∂2v

∂x2 − 2k6Kn
∂2q̄

∂x2 − 8
5

k7Kn
∂2q̄

∂x2 + k8
∂σ̄

∂x
= −2

3
1

Kn
l1q̄, (5.25)

2k2Kn
∂2θ

∂x2 + 4
3

k5
∂v

∂x
+ 8

15
k8
∂ q̄

∂x
− 6

5
k9Kn

∂2σ̄

∂x2 − 2
3

k10Kn
∂2σ̄

∂x2 = − 1
Kn

l2σ̄ . (5.26)

Here time derivatives have been removed so that the solution of the equations correspond
to the steady state of the fluid. In the one-dimensional case, the boundary conditions are
reduced to

v = 0, (5.27)

q̄ = snχ̃

[
m̂11(θ − θW )+ m̂12σ̄ − m̂13Kn

∂ q̄

∂x
− 2

3
m̂14Kn

∂ q̄

∂x
− 2

3
m̂15Kn

∂v

∂x

]
, (5.28)

m̂26q̄ + m̂27Kn
∂θ

∂x
− m̂28Kn

∂σ̄

∂x

= snχ̃

[
−m̂21(θ − θW )+ m̂22σ̄ + m̂23Kn

∂ q̄

∂x
+ 2

3
m̂24Kn

∂ q̄

∂x
+ 2

3
m̂25Kn

∂v

∂x

]
, (5.29)

−m̂66q̄ − Kn
(

3
5

m̂67
∂σ̄

∂x
+ m̂68

∂σ̄

∂x
+ m̂69

∂θ

∂x

)

= snχ̃

[
−m̂61(θ − θW )+ m̂62σ̄ + m̂63Kn

∂ q̄

∂x
+ 2

3
m̂64Kn

∂ q̄

∂x
+ 2

3
m̂65Kn

∂v

∂x

]
, (5.30)
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where sn = 1 at the right boundary and sn = −1 at the left boundary. The coefficient m̂i j
is computed from the Onsager boundary conditions (5.17), which are not equal to the mi j
in our final boundary conditions, as shown in (3.9)–(3.17).

The one-dimensional equations (5.22)–(5.30) can be solved analytically. First, it is
straightforward to get v(x)= 0 from (5.22) and (5.27). Second, by noting that variable ρ
only appears in (5.24), we can solve other equations and then plug other variables into
(5.24). Third, (5.23) reveals that ∂ q̄/∂x = (3/2k0)Kn(k1(∂

2θ/∂x2))− (k2(∂
2σ̄ /∂x2)),

which indicates that

q̄(x)= 3
2k0

Kn
(

k1
∂θ

∂x
− k2

∂σ̄

∂x

)
+ Cq̄ , (5.31)

with the constant Cq̄ to be determined. Plugging q̄(x) into (5.25) and integrating the
equation, we find that

Kn2
(
−k6 − 4

5
k7

)
3
k0

(
k1
∂2θ

∂x2 − k2
∂2σ̄

∂x2

)
+ 5

2
k0θ + k8σ̄ = − l1

k0
(k1θ − k2σ̄)+ C1

q̄ x + C2
q̄ ,

(5.32)
where C1

q̄ = −(2l1/3Kn)Cq̄ and C2
q̄ are two constants to be determined. Similarly,

plugging (5.31) into (5.26) yields

2k2Kn
∂2θ

∂x2 + 4k8

5k0
Kn
(

k1
∂2θ

∂x2 − k2
∂2σ̄

∂x2

)
−
(

6
5

k9 + 2
3

k10

)
Kn
∂2σ̄

∂x2 = − 1
Kn

l2σ̄ . (5.33)

We can then define

ξ = Kn
∂θ

∂x
, ξ ′ = Kn

∂σ̄

∂x
, (5.34)

and reformulate (5.32) and (5.33) as

Kn

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−
(

k6 + 4
5 k7

)
3k1
k0

(
k6 + 4

5 k7

)
3k2
k0

0 0

2k2 + 4k8k1
5k0

−
(

6
5 k9 + 2

3 k10 + 4k8k2
5k0

)
0 0

⎞
⎟⎟⎟⎠ ∂

∂x

⎛
⎜⎝
ξ

ξ ′
θ

σ̄

⎞
⎟⎠

+

⎛
⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 5

2 k0 + l1k1
k0

k8 − l1k2
k0

0 0 0 l2

⎞
⎟⎟⎠
⎛
⎜⎝
ξ

ξ ′
θ

σ̄

⎞
⎟⎠=

⎛
⎜⎜⎝

0
0

C1
q̄ x + C2

q̄
0

⎞
⎟⎟⎠ . (5.35)

By multiplying the inverse of the matrix in front of the first-order derivatives, the above
equation has the following structure:

Kn
∂

∂x

⎛
⎜⎝
ξ

ξ ′
θ

σ̄

⎞
⎟⎠+

⎛
⎜⎝

0 0 b11 b12
0 0 b21 b22

−1 0 0 0
0 −1 0 0

⎞
⎟⎠
⎛
⎜⎝
ξ

ξ ′
θ

σ̄

⎞
⎟⎠=

⎛
⎜⎜⎝

c1(C1
q̄ x + C2

q̄)

c2(C1
q̄ x + C2

q̄)

0
0

⎞
⎟⎟⎠ . (5.36)

In general, given the following ordinary differential equation (ODE) system

Kn
∂g

∂x
+ Ag = r(x), (5.37)
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η λ1 λ2

5 9.1287 × 10−1 –
7 9.2648 × 10−1 1.2696 × 101

10 9.2989 × 10−1 7.6747
17 9.2904 × 10−1 5.6909
∞ 9.2248 × 10−1 4.2387

Table 1. Eigenvalues in the general solution (5.40) for some inverse-power-law models with power index η.

its solution is

g(x)= e−Ax/Kng(0)+ 1
Kn

∫ x

0
eA(s−x)/Knr(s)ds. (5.38)

In our case, the matrix in (5.36) has four distinct eigenvalues ±λ1 and ±λ2 with

λ j =

√
(−1) j

√
b2

11 − 2b22b11 + b2
22 + 4b12b21 − b11 − b22

√
2

, j = 1, 2. (5.39)

The solution of (5.36) therefore has the form

κ1 sinh
(
λ1x

Kn

)
+ κ2 cosh

(
λ1x

Kn

)
+ κ3 sinh

(
λ2x

Kn

)
+ κ4 cosh

(
λ2x

Kn

)
+ κ5x + κ6,

(5.40)
where the hyperbolic sines and cosines denote the Knudsen layers. Since λ1 �= λ2, two
boundary layers will be present in the general solution. In particular, when the magnitude
of the eigenvalues is large or the Knudsen number is small, the solution would exhibit
boundary layers.

For Maxwell molecules (η= 5), the above procedure of solving one-dimensional
equations can be further simplified from the third step (see (5.31). By noting that k1 =
k2 = 0, one can get ∂ q̄/∂x = 0 and therefore, (5.31) becomes q̄(x)= Cq̄ . Equation (5.33)
becomes a second-order ODE for σ̄ , so that the general solution of σ̄ (x) contains only one
boundary layer. Furthermore, (5.32) is in absence of second-order derivatives, and thus,

θ(x)= 2
5k0

(
C1

q̄ x + C2
q̄ − k8σ̄ (x)

)
, (5.41)

showing that the boundary layer of θ has the same thickness as that of σ̄ . In general, when
the type of molecules gets closer to Maxwell molecules, the second boundary layer will get
thinner, which explains why there is only one boundary layer left for Maxwell molecules.

The thinness of the second boundary layer also indicates the largeness of the
corresponding eigenvalue λ2. To illustrate the magnitude of eigenvalues, we compute
them according to (5.39) for various inverse-power-law models and summarise the results
in table 1. For Maxwell molecules, only λ1 is provided. The table clearly shows that
all models share one similar eigenvalue λ1 and each of the non-Maxwell cases has an
additional larger eigenvalue λ2. This eigenvalue λ2 approaches infinity when η tends to 5.

The one-dimensional solutions on the domain (−0.5, 0.5), with Knudsen number Kn =
0.2 and accommodation coefficients χ = 1, are depicted in figure 1. The figure verifies
that the larger eigenvalue λ2 in non-Maxwell cases induces additional boundary layers
compared with the Maxwell solutions. These boundary layers are non-physical according
to previous results (see Hu, Yang & Cai 2020; Cai et al. 2024b) for the same problem.
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(a) (b)

Figure 1. Plots of q̄ and θ for the one-dimensional problem (5.22)–(5.30). Results are shown for (a) θW = 0
and (b) θW = 0.2.

In the next subsection we propose a revision to the Onsager boundary conditions derived in
§ 5.1 to remove the boundary layers, leading to our final boundary conditions (3.9)–(3.17).

5.3. Removal of undesired boundary layers
Our discussion will be based on the following general form of one-dimensional symmetric
hyperbolic equations: (

0 Aoe
Aeo 0

)
∂

∂x

(
uo
ue

)
=
(

Loo 0
0 Lee

)(
uo
ue

)
. (5.42)

Here Aeo = Aᵀ
oe, and Loo and Lee are symmetric and negative semidefinite matrices. As

noted in § 5.1, the operator An has a non-trivial null space being a subspace of PoddV.
Accordingly, in order to mimic this property, we assume that the matrix Aoe is rank
deficient, and its singular value decomposition is

Aoe = (U1 U2
) (Λr 0

0 0

)(
Vᵀ

1
Vᵀ

2

)
, (5.43)

where r denotes the rank of Aoe and

Λr =

⎛
⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...
...
. . .

...

0 0 · · · λr

⎞
⎟⎟⎠ , λ1 � λ2 � · · ·� λr > 0. (5.44)

Inspired by the preliminary section in Jiang, Sun & Toh (2013), we define

vo = Uᵀ
1uo, ve = Vᵀ

1ue. (5.45)

By straightforward calculation, it can be shown that vo and ve satisfy the differential
equations

∂

∂x

(
vo
ve

)
=
(

0 Λ−1
r L̃ee

Λ−1
r L̃oo 0

)(
vo
ve

)
, (5.46)
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where

L̃oo = Uᵀ
1LooU1 − Uᵀ

1LooU2(U
ᵀ
2LooU2)

−1Uᵀ
2LooU1,

L̃ee = Vᵀ
1LeeV1 − Vᵀ

1LeeV2(V
ᵀ
2LeeV2)

−1Vᵀ
2LeeV1. (5.47)

It is obvious that L̃oo and L̃ee are Schur complements of negative semidefinite matrices,
and therefore, are also negative semidefinite matrices. Note that here we require the
invertibility of Uᵀ

2LooU2 and Vᵀ
2LeeV2, which is satisfied in the R13 equations derived

in previous sections.
The following lemma reveals the eigenpairs of the matrix in (5.46).

LEMMA 1. If {λ, (rᵀo, rᵀe )ᵀ} is an eigenpair of the matrix in (5.46), then
{−λ, (−rᵀo, rᵀe )ᵀ} is also an eigenpair of it.

Proof. From

(
0 Λ−1

r L̃ee

Λ−1
r L̃oo 0

)(
ro
re

)
= λ

(
ro
re

)
, (5.48)

one sees that Λ−1
r L̃eere = λro and Λ−1

r L̃ooro = λre. Then

(
0 Λ−1

1 L̃ee

Λ−1
1 L̃oo 0

)(−ro
re

)
=
(

Λ−1
r L̃eere

−Λ−1
r L̃ooro

)
=
(
λro

−λre

)
= −λ

(−ro
re

)
, (5.49)

which completes the proof.

By the above lemma, the eigenvalue decomposition of the matrix in (5.46) is

(
0 Λ−1

r L̃ee

Λ−1
r L̃oo 0

)
= Rr

⎛
⎜⎜⎜⎜⎜⎝

λ̃1
−λ̃1

. . .

λ̃r

−λ̃r

⎞
⎟⎟⎟⎟⎟⎠R−1

r , (5.50)

where λ̃1 � λ̃2 � · · ·� λ̃s > 0 = λ̃s+1 = · · · = λ̃r for some s � r , and

Rr = (Rs R0
)

(5.51)

with

Rs =
(

ro1 −ro1 . . . ros −ros
re1 re1 . . . res res

)
. (5.52)

For simplicity, we define Lᵀ
r = R−1

r so that Lr has the form
(
Ls L0

)
with

Ls =
(

lo1 −lo1 . . . los −los
le1 le1 . . . les les

)
. (5.53)
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If we assume the simulation domain is (0, 1) without loss of generality, the solution of
such a linear system has the form

v(x)=
(

vo(x)
ve(x)

)
= Rr

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ̃1x

e−λ̃1x

. . .

eλ̃r x

e−λ̃r x

⎞
⎟⎟⎟⎟⎟⎟⎠

Lᵀ
r v(0)

=
s∑

j=1

(
eλ̃ j x

(
roj
rej

)
(lᵀoj, lᵀej)+ e−λ̃ j x

(−roj
rej

)
(−lᵀoj, lᵀej)

)
v(0)+ R0Lᵀ

0v(0)

=
s∑

j=1

(
2 cosh(λ̃ j x)

(
rojl

ᵀ
ojvo(0)

rejl
ᵀ
ejve(0)

)
+ 2 sinh(λ̃ j x)

(
rojl

ᵀ
ejve(0)

rejl
ᵀ
ojvo(0)

))
+ R0Lᵀ

0v(0).

(5.54)

The rank r for Maxwell molecules is 3 less than the rank of the non-Maxwell cases. In
fact, for non-Maxwell gases, the values of λr , λr−1 and λr−2 are very close to 0, and
thus λ̃1,2,3 � 1, which exhibits additional boundary layers. Note that when the system is
reduced to the one-dimensional case as in § 5.2, only one large eigenvalue is left.

To remove the boundary layers in the non-Maxwell cases, we revise the boundary
condition to eliminate the corresponding terms in (5.54). For simplicity, we only introduce
the removal of the boundary layer associated with λ̃1. The other two layers are removed
similarly. The idea is to enforce the following equalities in our boundary conditions:

lᵀo1vo(0)= lᵀo1vo(1)= 0. (5.55)

This is sufficient to get rid of the terms involving cosh(λ̃1x) and sinh(λ̃1x) in (5.54). The
reason will be explained as follows.

We can follow (5.54) to write the solution using boundary conditions at x = 1 as

v(x)=
r∑

j=1

(
2 cosh(λ̃ j (x − 1))

(
rojl

ᵀ
ojvo(1)

rejl
ᵀ
ejve(1)

)
+ 2 sinh(λ̃ j (x − 1))

(
rojl

ᵀ
ejve(1)

rejl
ᵀ
ojvo(1)

))

+ R0Lᵀ
0v(1). (5.56)

Plugging the following equalities into (5.56) gives

cosh(λ̃1(x − 1))= cosh(λ̃1x) cosh(−λ̃1)+ sinh(λ̃1x) sinh(−λ̃1),

sinh(λ̃1(x − 1))= sinh(λ̃1x) cosh(−λ̃1)+ cosh(λ̃1x) sinh(−λ̃1), (5.57)

and matching the coefficients of cosh(λ̃1x) and sinh(λ̃1x) in (5.54), one can show that(
ro1(l

ᵀ
o1vo(1) cosh(−λ̃1)+ lᵀe1ve(1) sinh(−λ̃1))

re1(l
ᵀ
e1ve(1) cosh(−λ̃1)+ lᵀo1vo(1) sinh(−λ̃1))

)
=
(

ro1lᵀo1vo(0)

re1lᵀe1ve(0)

)
,

(
ro1(l

ᵀ
o1vo(1) sinh(−λ̃1)+ lᵀe1ve(1) cosh(−λ̃1))

re1(l
ᵀ
e1ve(1) sinh(−λ̃1)+ lᵀo1vo(1) cosh(−λ̃1))

)
=
(

ro1lᵀe1ve(0)

re1lᵀo1vo(0)

)
. (5.58)

We can now apply lᵀo1vo(0)= lᵀo1vo(1)= 0 to the above equation, and it is not difficult to
derive lᵀe1ve(0)= lᵀe1ve(1)= 0. Therefore, all the terms involving cosh(λ̃1x) and sinh(λ̃1x)
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in (5.54) or (5.56) disappear so that the corresponding boundary layers are not present in
the solution.

The above derivation shows that (5.55) is a sufficient condition to suppress boundary
layers. Moreover, it is straightforward to generalise such a condition to multidimensional
cases by imposing lᵀo1vo = 0 for vo at all boundary points. Recall that the Onsager
boundary conditions take a form of (1.6), which can be reformulated as

vo = Q̃Λ( g̃ext − ve). (5.59)

To impose lᵀo1vo = 0, we choose to modify the symmetric matrix Q̃ such that

lᵀo1Q̃ = 0. (5.60)

However, (5.60) is an underdetermined linear system. To make it uniquely solvable, we
add the following constraints.

(i) The revised Q̃ must be symmetric.
(ii) An element of Q̃ should remain zero if it is zero for all non-Maxwell gas molecules.

(iii) An element Qi j = 2χ/2 − χ〈φi
odd, Cξ−1

n φ
j
odd〉/〈φ j

odd, φ
j
odd〉 (refer to (5.16)) of Q̃

should remain unchanged if both φi
odd and φ j

odd belong to Vodd ∩ (Vmodified)
⊥, where

Vmodified = span

{
φ2

nτ1
, φ2

nτ2
, φ2

n + c3,1
1

c2,1
1

φ3
n

}
(5.61)

is a subspace of the Vodd in (5.12).

The rationale for proposing constraint (iii) is that Vmodified = ∅ in the case of Maxwell gas,
which does not exhibit any non-physical boundary layers. The additional basis functions
in Vmodified introduce these layers in the non-Maxwell cases. Therefore, we only modify
those elements deduced from Vmodified.

After imposing these conditions, the matrix Q̃ is uniquely determined. Currently, we do
not have theoretical guarantee of the semidefiniteness of the revised Q̃, but this turns out
to be true in all cases done in our tests. The symmetry and semidefiniteness of Q̃ indicates
that the structure (1.6) is well maintained after the modification, and thus, does not ruin
the L2 stability or the second law of thermodynamics.

To demonstrate the effect of this modification, we reconsider the example described in
§ 5.2, with the boundary conditions changed to the new ones introduced in this section by
replacing m̂i j with mi j in (5.27)–(5.30). The results are plotted in figure 2. A comparison
with figure 1 clearly demonstrates that the non-physical boundary layers have been
removed.

6. One-dimensional simulations
In this section we apply our model to the example for one-dimensional channel flows in
Hu et al. (2020) and Cai et al. (2024b). We show the analytic solutions of the steady-state
equations of our model and make a comparison with the results computed by DSMC from
Bird’s code (Bird 1994) in § 6.1. After that, the numerical solutions of our time-dependent
model will be demonstrated in § 6.2 using the finite element method.

The gas flow between two infinitely large parallel plates is considered in the one-
dimensional channel flows. Both of the two plates are perpendicular to the x2 axis, and the
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Figure 2. Plots of q̄ and θ for the one-dimensional problem (5.22)–(5.30) with modified coefficient
m̂i j → mi j . Results are shown for (a) θW = 0 and (b) θW = 0.2.

two plates are assumed to move along the x1 axis with constant velocities. The distance of
the two plates is taken as 1, and the coordinates are established such that the simulation
domain is x2 ∈ (−0.5, 0.5). The temperature and velocity of the left plates (x2 = −0.5)
are denoted as θW

l and vW
l , respectively, and similarly, the temperature and velocity of

the right plates (x2 = 0.5) are denoted as θW
r and vW

r , respectively. Under this setting, all
the moments are functions only of x2, and therefore, the moment equations for the one-
dimensional channel flows can be obtained via dropping all partial derivatives with respect
to x1 and x3. Furthermore, as two plates move along the x1 axis, the distribution function
enjoys symmetry f (x, ξ1, ξ2, ξ3, t)= f (x, ξ1, ξ2,−ξ3, t) so that the moments that are
odd in ξ3 vanish. As a result,

v3 = q̄3 = σ̄13 = σ̄23 = 0. (6.1)

Therefore, in the one-dimensional channel flows, the 13 moments are reduced to 9
moments: ρ, θ , v1, v2, q̄1, q̄2, σ̄11, σ̄12, σ̄22. In addition, both plates are assumed to be
completely diffusive, where the accommodation coefficient is always chosen as χ = 1.

6.1. Steady-state examples
To compare with the example in §§ 5.2 and 5.3, we consider a steady-state problem here.
In fact, (5.22)–(5.26) can be regarded as a portion of the one-dimensional steady-state
channel flow considered here by using the following replacements: x → x2, v→ v2, q̄ →
q̄2 and σ̄ → σ̄22. Boundary conditions (5.27)–(5.30) also share the same form of boundary
conditions considered here by using the above replacements. We adopt the coefficients
θW

l = 0 and θW
r = 0.2, consistent with the example presented in § 5.2.

To compare our solutions with the DSMC results, we show the results by using the
Knudsen number Kn defined by the ratio of the mean free path to the characteristic length
as in Bird (1994). The relationship between Kn and the parameter Kn in this paper is

Kn =
√
π

2
15Kn

(5 − 2ω)(7 − 2ω)
, ω= 1

2
+ 2
η− 1

. (6.2)

Moreover, we plot the actual heat flux q2 instead of q̄2 (see (3.8)) in this example, since
q2 is obtained from the DSMC results. To observe the effect of the Knudsen number,
we choose two different Kn and plot the results for both original and fixed boundary
conditions in figures 3 and 4. Our results are depicted as the blue, yellow and green solid
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Figure 3. Results of the steady-state example when Kn = 0.1. (a, b) Coefficients m̂i j are used, (b, c) modified
coefficients mi j are used. The DSMC solutions are given by dotted lines of the same colours.

lines corresponding to η= 5, 10 and ∞. The relevant solutions obtained by DSMC are
presented by dotted lines of the same colours.

The solids lines of the R13 equations generally agree with the dotted lines of the
DSMC results, and this agreement is more pronounced for smaller Kn, which validates our
equations. Moreover, as the DSMC results display no boundary layer, the effectiveness of
our modified Onsager boundary conditions is again validated by the successful removal
of the undesired boundary layers. Furthermore, compared with the results in figure 1, the
width of the undesired boundary layers decreases as the Knudsen number decreases, which
is consistent with our analysis of the solution in (5.40). Also, it can be observed that the
temperature jump gets more significant as the Knudsen number increases.

6.2. Time-dependent examples
After validating the steady-state equations, it would be more compelling to verify the
derived model in the time-dependent case, as this is the primary focus of this work.
However, it would be challenging to obtain the analytic time-dependent solution, therefore,
we aim to solve the time-dependent equations using the finite element method.

The numerical set-up is described as follows. We use a uniform mesh with a mesh
size of 1/1000 and apply the finite element method with piecewise linear functions. The
Crank–Nicolson method is used for temporal discretisation with a uniform time step
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Figure 4. Results of steady-state example when Kn = 0.05. (a, b) Coefficients m̂i j are used, (b, c) modified
coefficients mi j are used. The DSMC solutions are given by dotted lines of the same colours.

of 1/4000. The initial value for θ is set to (θW
l + θW

r )/2, while the initial values for all
other moments are set to 0. Boundary coefficients are taken from Cai et al. (2024b), which
will be specified in the following two cases.

6.2.1. Couette flow
In the planar Couette flow, the two plates move in opposite directions and maintain the
same temperature. We choose θW

l = θW
r = 0 and vW

l = −vW
r = −0.2. Results are depicted

in figure 5, where non-physical boundary layers can still be observed in the solution
of time-dependent equations using the previous Onsager boundary conditions, although
the width of these layers is very thin in this example. These thin layers are successfully
removed at various time steps using our modified boundary conditions.

6.2.2. Fourier flow
In the planar Fourier flow, the two plates are stationary, implying that vW

l = vW
r = 0, and

the gas dynamics between the plates are driven by the temperature difference. We set
θW

l = 0 and θW
r = 0.2. The results in figure 6 demonstrate that the previous Onsager

boundary conditions produce non-physical boundary layers, which can be eliminated
using our modified boundary conditions. Additionally, these layers are more pronounced
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Figure 5. Results of the Couette flow. (a–d) Onsager boundary conditions are used. (e–h) Our modified
boundary conditions are used.

for longer computational times, suggesting our modified boundary conditions would be
more important in long-time simulations of the proposed R13 equations.

7. Conclusion
This work provides a new perspective of the derivation of time-dependent regularised 13-
moment equations from linear kinetic equation under general elastic collision models.
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Figure 6. Results of the Fourier flow. (a–d) Previous Onsager boundary conditions are used. (e–h) Our
modified boundary conditions are used.

Compared with previous works such as Hu et al. (2020) and Cai et al. (2024b), our
equations possess not only the super-Burnett order, but also a symmetric structure that is
useful for deriving Onsager boundary conditions. In the linear regime, our equations can
well approximate the Boltzmann equation with moderate Knudsen numbers and preserve
the conservation laws and the dissipation of entropy. Another contribution of this work is
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the technique to remove undesired boundary layers, which needs to be applied since these
layers are obviously unphysical.

Due to the symmetry of the equations and the Onsager boundary conditions, we expect
that our equations also admit a symmetric weak form, which extends the weak form of R13
equations for Maxwell molecules (Theisen & Torrilhon (2021)). We are currently working
on the finite element methods for our equations in the multidimensional case. Note that
it is claimed in Rana et al. (2013) that R13 equations can provide satisfactory predictions
up to Knudsen number 0.5, and this needs to be tested for our equations with modified
boundary conditions in multidimensional applications. Meanwhile, the work on applying
this approach to nonlinear kinetic equations is also ongoing.

Funding. Zhenning Cai was supported by the Academic Research Fund of the Ministry of Education of
Singapore under grant A-8002392-00-00.

Declaration of interests. The author reports no conflict of interest.

Appendix A. Galilean invariance of moment equations
To demonstrate the Galilean invariance of our moment equations, we need to prove the
following invariant properties.

i. Translational invariance: given any vref ∈R
3, under translation

x′ = x + tvref, ρ
′(x′, t)= ρ(x, t), θ ′(x′, t)= θ(x, t),

v′(x, t)= v(x′, t)+ vref, q̄′(x′, t)= q̄(x, t), σ̄ ′(x′, t)= σ̄ (x, t), (A.1)

(3.2)–(3.6) retain their form.
ii. Rotational invariance: given any orthogonal matrix R ∈R

3×3, under rotation

x′ = Rx, ρ′(x′, t)= ρ(x, t), θ ′(x′, t)= θ(x, t),

v′(x′, t)= Rv(x, t), q̄′(x′, t)= Rq̄(x, t), σ̄ ′(x′, t)= Rσ̄ (x, t)Rᵀ, (A.2)

(3.2)–(3.6) retain their form.

Since the equations rely solely on the derivatives of v rather than on v itself, the
translational invariance can be readily verified in our linear equations. Consequently, we
focus on the proof of the rotational invariance in this appendix.

For (3.2), we have

∂v′
i

∂x ′
i
= ∂v′

i

∂xk

∂xk

∂x ′
i

= Ri j
∂v j

∂xk
Rik = ∂v j

∂xk
δ jk = ∂v j

∂x j
, (A.3)

which implies that ∇x′ · v′ = ∇x · v. Therefore, (3.2) retains its form under the rotational
transformation.

For (3.3), we first calculate the derivative of σ̄ as

∂σ̄ ′
i j

∂x ′
j

= ∂σ̄ ′
i j

∂xk

∂xk

∂x ′
j
= Ril R jl ′

∂σ̄ll ′

∂xk
R jk = Rilδkl ′

∂σ̄ll ′

∂xk
= Ril

∂σ̄lk

∂xk
, (A.4)

and then we arrive at the relationship

∂2σ̄ ′
i j

∂x ′
i∂x ′

j
= Ril

∂2σ̄lk

∂xk∂xk′
Rik′ = ∂2σ̄lk

∂xk∂xk′
δlk′ = ∂2σ̄k′k

∂xk∂xk′
, (A.5)
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which implies that ∇x′ · (∇x′ · σ̄ ′)= ∇x · (∇x · σ̄ ). Similar to (A.3), we can prove that
∇x′ · q̄′ = ∇x · q̄. In addition, �x′θ ′ =�xθ according to the rotational invariance of the
Laplacian operator. As a result, (3.3) is also rotational invariant.

For (3.4), one can easily see that

∂v′

∂x′ = R
∂v

∂x
, ∇x′ρ′ = R∇xρ, ∇x′θ ′ = R∇xθ. (A.6)

In addition, we have ∇x′ · σ̄ ′ = R∇x · σ̄ by (A.4). For the term ∇ · (∇v)stf, we use the fact
that

(∇v)stf = 1
2
(∇v + (∇v)ᵀ)− 1

3
tr(∇v)I,

∇x′v′ = R∇xvRT (A.7)

and the cyclic property of trace operator to show that (∇x ′v′)stf = R(∇xv)stfRT . Therefore,
we have

∂

∂x ′
j
[(∇x ′v′)stf]i j = R jk

∂

∂xk
Ril [(∇xv)stf]ll ′ R jl ′ = Ril

∂

∂xk
[(∇xv)stf]lk, (A.8)

which implies that ∇x′ · (∇x′v′)stf = R∇x · (∇xv)stf. Similarly, we can prove such a
relationship for q̄. Combining these two equalities of v and q̄ in conjunction with (A.4)
and (A.6), we have verified the rotational invariance of (3.4). The rotational invariance of
(3.5) can be similarly proved as (3.4).

For (3.6), similar to (A.7), one can prove that ∇x′ q̄′ = R∇x q̄RT and (∇x ′ σ̄ ′)stf =
R(∇x σ̄ )stfRT . For the term (∇(∇ · σ̄ ))stf, it holds that

[∇x′(∇x′ · σ̄ ′)]i j = ∂2σ̄ ′
ik

∂x ′
j∂x ′

k
= R jk′ Ril Rkl Rkl ′′

∂2σ̄ll ′

∂xk′∂xl ′′

= R jk′ Rilδll ′′
∂2σ̄ll ′

∂xk′∂xl ′′
= Ril

∂2σ̄ll ′

∂xk′∂xl
R jk′, (A.9)

which implies that (∇x′(∇x′ · σ̄ ′))stf = R(∇x(∇x · σ̄ ))stfRᵀ upon using the formula of (·)stf
in (A.7). Furthermore, it is evident that (∇2

x′θ ′)stf = R(∇2
xθ)stfRᵀ. Therefore, the rotational

invariance of (3.6) has been verified.
Overall, our moment equations (3.2)–(3.6) satisfy the rotational invariance and, by

encompassing the translational invariance, consequently satisfy the Galilean invariance.

Appendix B. Tables of coefficients in the inverse-power-law model
Table 2 lists the coefficients ki and li of the moment equations in (3.2)–(3.6) for some
choices of parameter η in the inverse-power-law model, and tables 3 and 4 list the
coefficients mi j of the corresponding boundary conditions (3.9)–(3.17).

Appendix C. Computation of the coefficients β and γ in the asymptotic analysis
This appendix establishes the relationship between the coefficients alnn′ and β and γ in
(4.9)–(4.13). For any fixed l, we consider alnn′ as an infinite matrix. We can then define
b(n0)

lnn′ as the inverse of a submatrix of alnn′ :

+∞∑
n′=n0

alnn′b(n0)
ln′n′′ = δnn′′, for all n, n′′ = n0, n0 + 1, . . . . (C.1)
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η k0 k1 k2 k3 k4

5 1 0 0 0 0
7 9.9785 × 10−1 3.0773 × 10−3 1.2550 × 10−5 2.6072 × 10−3 4.8885 × 10−2

10 9.9396 × 10−1 8.7436 × 10−3 4.5818 × 10−5 7.4080 × 10−3 8.1805 × 10−2

17 9.8883 × 10−1 1.6341 × 10−2 1.0021 × 10−4 1.3840 × 10−2 1.1124 × 10−1

∞ 9.7971 × 10−1 3.0261 × 10−2 2.0798 × 10−4 2.5607 × 10−2 1.5056 × 10−1

η k5 k6 k7 k8 k9
5 1 1 1 1 1
7 9.9794 × 10−1 8.9911 × 10−1 9.7119 × 10−1 8.6773 × 10−1 9.6577 × 10−1

10 9.9420 × 10−1 8.4173 × 10−1 9.5624 × 10−1 7.7962 × 10−1 9.4997 × 10−1

17 9.8926 × 10−1 7.9687 × 10−1 9.4576 × 10−1 7.0221 × 10−1 9.4062 × 10−1

∞ 9.8041 × 10−1 7.4535 × 10−1 9.3584 × 10−1 6.0171 × 10−1 9.3491 × 10−1

η k10 l1 l2
5 0 1 1
7 2.8590 × 10−7 9.9420 × 10−1 9.9545 × 10−1

10 1.1896 × 10−6 9.8385 × 10−1 9.8727 × 10−1

17 2.8475 × 10−6 9.7049 × 10−1 9.7666 × 10−1

∞ 6.3621 × 10−6 9.4741 × 10−1 9.5812 × 10−1

Table 2. Coefficients in moment equations (3.2)–(3.6) for some power indices η in the inverse-power-law
model.

Due to the conservation of mass, momentum and energy, the quantities b(0)0nn′ , b(1)0nn′ and
b(0)1nn′ do not exist (see (4.7)). Since the collision operator L is negative semidefinite and
has a kernel of five dimensions, all other coefficients b(n0)

lnn′ with non-negative l, n, n′ and
n0 are well defined. These coefficients have been defined in Cai et al. (2024b) where R13
equations for steady-state flows are derived.

In practice, the infinite matrices alnn′ are truncated and b(n0)
lnn′ are obtained by taking the

inverse directly. Then the coefficients β and γ in (4.9)–(4.13) are given by

β
(1),n
1 = b(1)11n, β

(1),n
2 = b(0)20n,

γ
(2),n
0 =

+∞∑
n′=2

b(2)0nn′
(√

2n′ + 3b(1)11n′ −
√

2n′b(1)11,n′−1

)
b(1)111

,

γ
(1),n
t1 =

∞∑
n′=2

b(2)1nn′b
(1)
11n′

b(1)111

, γ
(1),n
s1 =

∞∑
n′=2

b(2)1nn′
(√

2n′ + 5b(0)20n′ −
√

2n′b(0)20,n′−1

)
b(0)200

,

γ
(1),n
t2 =

∞∑
n′=2

b(1)2nn′b
(0)
20n′

b(0)200

, γ
(1),n
s2 = 2

5

∞∑
n′=1

b(1)2nn′
(√

2n′ + 5b(1)11n′ − √
2(n′ + 1)b(1)11,n′+1

)
b(1)111

,

γ
(2),n
3 = 3

7

+∞∑
n′=0

b(0)3nn′

b(0)200

(√
2n′ + 7b(0)20n′ −

√
2(n′ + 1)b(0)20,n′+1

)
. (C.2)

These results are obtained by asymptotic analysis. The derivation is similar to the steady-
state case. Here we omit the details and refer interested readers to Cai et al. (2024b).
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η m11 m12 m13 m14 m15

5 2/
√

2π 1/2
√

2π 8/5
√

2π 48/25
√

2π 0
7 8.2699 × 10−1 1.7756 × 10−1 5.9524 × 10−1 7.7155 × 10−1 4.0454 × 10−2

10 8.4706 × 10−1 1.6277 × 10−1 5.7153 × 10−1 7.7914 × 10−1 6.9432 × 10−2

17 8.6507 × 10−1 1.4961 × 10−1 5.5359 × 10−1 7.8843 × 10−1 9.6598 × 10−2

∞ 8.8890 × 10−1 1.3234 × 10−1 5.3390 × 10−1 8.0443 × 10−1 1.3481 × 10−1

η m21 m22 m23 m24 m25
5 – – – – –
7 4.9821 × 10−3 1.9210 × 10−2 3.5585 × 10−3 4.6126 × 10−3 2.4185 × 10−4

10 7.5057 × 10−3 3.1012 × 10−2 4.9556 × 10−3 6.7557 × 10−3 6.0203 × 10−4

17 9.2216 × 10−3 4.0714 × 10−2 5.6679 × 10−3 8.0723 × 10−3 9.8900 × 10−4

∞ 1.0730 × 10−2 5.2344 × 10−2 5.9826 × 10−3 9.0140 × 10−3 1.5106 × 10−3

η m26 m27 m28
5 – – –
7 2.9445 × 10−2 1.1082 × 10−1 4.5197 × 10−4

10 5.0347 × 10−2 1.9074 × 10−1 9.9954 × 10−4

17 7.0089 × 10−2 2.6780 × 10−1 1.6422 × 10−3

∞ 9.8823 × 10−2 3.8322 × 10−1 2.6338 × 10−3

η m31 m32 m33 m34 m35
5 1/

√
2π 1/5

√
2π 0 2/

√
2π 0

7 4.0358 × 10−1 7.2977 × 10−2 5.8325 × 10−8 7.8808 × 10−1 7.6807 × 10−6

10 4.0655 × 10−1 6.8340 × 10−2 2.4645 × 10−7 7.8723 × 10−1 2.8477 × 10−5

17 4.0908 × 10−1 6.4237 × 10−2 5.9816 × 10−7 7.9036 × 10−1 6.3150 × 10−5

∞ 4.1227 × 10−1 5.8927 × 10−2 1.3613 × 10−6 8.0020 × 10−1 1.3351 × 10−4

η m41 m42 m43 m44 m45
5 1/

√
2π 11/5

√
2π 0 2/

√
2π 0

7 3.4342 × 10−1 8.5528 × 10−1 5.6647 × 10−8 7.6541 × 10−1 7.4598 × 10−6

10 3.0441 × 10−1 8.4194 × 10−1 2.3349 × 10−7 7.4584 × 10−1 2.6980 × 10−5

17 2.6826 × 10−1 8.3207 × 10−1 5.5187 × 10−7 7.2919 × 10−1 5.8263 × 10−5

∞ 2.1746 × 10−1 8.2380 × 10−1 1.2025 × 10−6 7.0683 × 10−1 1.1793 × 10−4

η m46 m47 m48
5 0 0 24/5
7 1.2222 × 10−1 2.4505 × 10−1 4.7008
10 2.0315 × 10−1 4.0914 × 10−1 4.6366
17 2.7309 × 10−1 5.5322 × 10−1 4.5779
∞ 3.6056 × 10−1 7.3790 × 10−1 4.4916

Table 3. Part 1 of the coefficients in boundary conditions (3.9)–(3.17) for some power indices η in the
inverse-power-law model.

Appendix D. Computation of the coefficients c�,n
k

The expressions of c1,n
1 and c0,n

2 have been introduced in (4.20) and (4.22). In this appendix
we focus on the coefficients appearing in (4.29).

The coefficients c2,n
0 must be chosen such that 〈φ2, ψn − dn

02ψ
2〉 = 0 for all n � 3. This

leads to

c2,n
0 = dn

02c2,2
0 , for all n � 3. (D.1)
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η m51 m52 m53 m54 m55

5 – – – – –
7 3.4282 × 10−2 8.5377 × 10−2 5.6547 × 10−9 7.6406 × 10−2 7.4466 × 10−7

10 5.2206 × 10−2 1.4439 × 10−1 4.0044 × 10−8 1.2791 × 10−1 4.6270 × 10−6

17 6.4303 × 10−2 1.9945 × 10−1 1.3228 × 10−7 1.7479 × 10−1 1.3966 × 10−5

∞ 7.3794 × 10−2 2.7955 × 10−1 4.0806 × 10−7 2.3986 × 10−1 4.0020 × 10−5

η m56 m57 m58
5 – – –
7 2.7746 × 10−2 5.5632 × 10−2 4.7964 × 10−1

10 6.0867 × 10−2 1.2259 × 10−1 8.1033 × 10−1

17 1.0110 × 10−1 2.0482 × 10−1 1.1154
∞ 1.7187 × 10−1 3.5174 × 10−1 1.5445

η m61 m62 m63 m64 m65
5 2/5

√
2π 7/5

√
2π 8/25

√
2π 48/125

√
2π 0

7 1.5598 × 10−1 6.0144 × 10−1 1.1141 × 10−1 1.4441 × 10−1 7.5718 × 10−3

10 1.5101 × 10−1 6.2395 × 10−1 9.9703 × 10−2 1.3592 × 10−1 1.2112 × 10−2

17 1.4747 × 10−1 6.5107 × 10−1 9.0636 × 10−2 1.2909 × 10−1 1.5815 × 10−2

∞ 1.4418 × 10−1 7.0335 × 10−1 8.0389 × 10−2 1.2112 × 10−1 2.0298 × 10−2

η m66 m67 m68 m69
5 0 2 0 0
7 2.1284 × 10−7 2.0460 9.0196 × 10−8 3.5825 × 10−7

10 1.6606 × 10−6 2.0707 3.0801 × 10−7 2.8135 × 10−6

17 5.1333 × 10−6 2.1281 6.3694 × 10−7 8.7714 × 10−6

∞ 1.5172 × 10−5 2.2756 1.2781 × 10−6 2.6311 × 10−5

η m71 m81
5 1/2

√
2π 1/2

√
2π

7 2.0678 × 10−1 2.0678 × 10−1

10 2.0996 × 10−1 2.0996 × 10−1

17 2.1152 × 10−1 2.1152 × 10−1

∞ 2.1169 × 10−1 2.1169 × 10−1

Table 4. Part 2 of the coefficients in boundary conditions (3.9)–(3.17) for some power indices η in the
inverse-power-law model.

We choose the coefficient c2,2
0 such that c2,2

0 > 0 and

+∞∑
n=2

|c2,n
0 |2 = 1. (D.2)

In our implementation, we truncate this infinite series up to n = 20.
The coefficients c2,n

1 and c3,n
1 must be chosen such that, for all n � 4, 〈φ2

i , ϕ
n
1 〉 =

〈φ3
i , ϕ

n
1 〉 = 0,

ϕn
1 =

(
ψn

i − β
(1),n
1

β
(1),1
1

ψ1
i

)
− dn

12

(
ψ2

i − β
(1),2
1

β
(1),1
1

ψ1
i

)
− dn

13

(
ψ3

i − β
(1),3
1

β
(1),1
1

ψ1
i

)
. (D.3)
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Therefore, the coefficients c2,n
1 and c3,n

1 must satisfy

c2,n
1 − dn

12c2,2
1 − dn

13c2,3
1 +

(
β
(1),n
1

β
(1),1
1

− β
(1),2
1

β
(1),1
1

dn
12 − β

(1),3
1

β
(1),1
1

dn
13

) +∞∑
n′=2

β
(1),n′
1

β
(1),1
1

c2,n′
1 = 0,

c3,n
1 − dn

12c3,2
1 − dn

13c3,3
1 +

(
β
(1),n
1

β
(1),1
1

− β
(1),2
1

β
(1),1
1

dn
12 − β

(1),3
1

β
(1),1
1

dn
13

) +∞∑
n′=2

β
(1),n′
1

β
(1),1
1

c3,n′
1 = 0 (D.4)

for all n � 4. The linear systems for c2,n
1 and c3,n

1 are actually the same, and we just need
to find linearly independent solutions for them. Note that we need to find all coefficients
c2,n

1 and c3,n
1 for n � 2, while the linear equations (D.4) are defined only for n � 4, the

solutions are expected to form a two-dimensional linear space. Then c2,n
1 and c3,n

1 should
form a basis of the space. In our implementation, we choose c2,n

1 and c3,n
1 such that:

i. the norms of φ2
i and φ3

i are equal to 1;
ii. 〈φ2

i , φ
3
i 〉 = 0;

iii. c2,2
1 > 0, c2,3

1 = 0 and c3,3
1 > 0.

The last condition is to guarantee that when the collision model tends to Maxwell
molecules, we have φ2

i →ψ2
i and φ3

i →ψ3
i . To solve (D.4), the system is again truncated

up to n = 20.
The determination of c1,n

2 and c2,n
2 is similar to that of c2,n

1 and c3,n
1 . The equations that

c1,n
2 and c2,n

2 satisfy are

c1,n
2 − dn

21c1,1
2 − dn

22c1,2
2 +

(
β
(1),n
2

β
(1),0
2

− β
(1),1
2

β
(1),0
2

dn
21 − β

(1),2
2

β
(1),0
2

dn
22

) +∞∑
n′=1

β
(1),n′
2

β
(1),0
2

c1,n′
2 = 0,

c2,n
2 − dn

21c2,1
2 − dn

22c2,2
2 +

(
β
(1),n
2

β
(1),0
2

− β
(1),1
2

β
(1),0
2

dn
21 − β

(1),2
2

β
(1),0
2

dn
22

) +∞∑
n′=1

β
(1),n′
2

β
(1),0
2

c2,n′
2 = 0.

(D.5)

To determine these coefficients, we require that:

i. the norms of φ1
i j and φ2

i j are equal to 1;
ii. 〈φ1

i j , φ
2
i j 〉 = 0;

iii. c1,1
2 > 0, c1,2

2 = 0 and c2,2
2 > 0.

When the collision model tends to Maxwell molecules, we have φ1
i j →ψ1

i j and φ2
i j →ψ2

i j .

The determination of c0,n
3 is similar to that of c2,n

0 . The solution is

c0,n
3 = d30c0,0

3 , (D.6)

where c0,0
3 is selected to be positive and satisfies

+∞∑
n=0

|c0,n
3 |2 = 1. (D.7)
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Appendix E. Expressions of Ai j

The expressions of Ai j explicitly depends on the coefficients c�,nk , which are given as
follows:

A45 = 3
+∞∑
n=1

c1,n
1

(√
2n + 5c0,n

2 − √
2nc0,n−1

2

)
, (E.1)

A46 =
+∞∑
n=1

c1,n
1

(√
2n + 3c2,n

0 −√2(n + 1)c2,n+1
0

)
, (E.2)

A49 = 3
+∞∑
n=1

c1,n
1

(√
2n + 5c1,n

2 − √
2nc1,n−1

2

)
, (E.3)

A4,10 = 3
+∞∑
n=1

c1,n
1

(√
2n + 5c2,n

2 − √
2nc2,n−1

2

)
, (E.4)

A57 = 3
+∞∑
n=0

c0,n
2

(√
2n + 5c2,n

1 −√2(n + 1)c2,n+1
1

)
, (E.5)

A58 = 3
+∞∑
n=0

c0,n
2

(√
2n + 5c3,n

1 −√2(n + 1)c3,n+1
1

)
, (E.6)

A5,11 = 15
2

+∞∑
n=0

c0,n
2

(√
2n + 7c0,n

3 − √
2nc0,n−1

3

)
, (E.7)

A67 =
+∞∑
n=2

c2,n
0

(√
2n + 3c2,n

1 − √
2nc2,n−1

1

)
, (E.8)

A68 =
+∞∑
n=2

c2,n
0

(√
2n + 3c3,n

1 − √
2nc3,n−1

1

)
, (E.9)

A79 = 3
+∞∑
n=1

c2,n
1

(√
2n + 5c1,n

2 − √
2nc1,n−1

2

)
, (E.10)

A7,10 = 3
+∞∑
n=1

c2,n
1

(√
2n + 5c2,n

2 − √
2nc2,n−1

2

)
, (E.11)

A89 = 3
+∞∑
n=1

c3,n
1

(√
2n + 5c1,n

2 − √
2nc1,n−1

2

)
, (E.12)

A8,10 = 3
+∞∑
n=1

c3,n
1

(√
2n + 5c2,n

2 − √
2nc2,n−1

2

)
, (E.13)

A9,11 = 15
2

+∞∑
n=0

c1,n
2

(√
2n + 7c0,n

3 − √
2nc0,n−1

3

)
, (E.14)

A10,11 = 15
2

+∞∑
n=0

c2,n
2

(√
2n + 7c0,n

3 − √
2nc0,n−1

3

)
. (E.15)
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