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COMPUTING THE DECAY OF A SIMPLE REVERSIBLE
SUB-MARKOV SEMIGROUP

E. B. DAVIES

Abstract

Two different numerical methods for solving a non-self-adjoint
evolution equation are compared in this paper. If the initial function
lies in the domain of the operator, a recently proposed method that
combines pseudospectral ideas and semigroup theory is shown to be
considerably more accurate than a standard discretization method.
One example is worked out in detail, but the methods used are of
much wider applicability.

1. Introduction

We consider the evolution equation

f ′
t = Aft , (1)

where
(Af )(x) = b−1f ′′(x)− f ′(x)

subject to Dirichlet boundary conditions, and x ∈ (0, a). We start by assuming that the
equation acts in the space C0(0, a) of continuous functions on [0, a] that vanish at 0, a,
with the uniform (that is, supremum) norm ‖ · ‖∞. The operator A has eigenvalues

λn = −b
4

− π2n2

a2b
, for n = 1, 2, . . . ,

with corresponding eigenfunctions

φn(x) = eb(x−a)/2 sin(πnx/a).

The solution of the evolution equation is given by ft = Ttf0, where Tt = eAt is a strongly
continuous, reversible, sub-Markov semigroup on C0(0, a).

It is known that there is a non-negative continuous kernelK(t, x, y) on (0,∞)×[0, a]×
[0, a] such that

(Ttf )(x) =
∫ a

0
K(t, x, y)f (y) dy

for all t > 0 and f ∈ C0(0, a). Moreover, K(t, x, y) = 0 if x = 0, a or y = 0, a, because
of the Dirichlet boundary conditions. This formula may be used to extend the semigroup
to a variety of other spaces, including L2((0, a), dx). If we use the formula to extend Tt
to C[0, a], then the semigroup is not strongly continuous at t = 0 because the Dirichlet
boundary conditions imply that Ttf ∈ C0(0, a) for all t > 0.

If one considers the semigroup as acting in L2((0, a), e−bxdx), then A = A∗ and

‖Tt‖2 = eλ1t for all t � 0.
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Decay of a sub-Markov semigroup

The situation in C0(0, a) is very different. The operator Tt is a positivity-preserving con-
traction for all t � 0. The function

n(t) := ‖Tt‖∞ = sup{(Tt1)(x) : 0 < x < 1} (2)

satisfies 0 � n(t) � 1 for all t � 0, and is a monotonically decreasing function. It is also
submultiplicative in the sense that

n(s + t) � n(s)n(t)

for all s, t � 0. Moreover,
n(t) ∼ ceλ1t (3)

as t → ∞. In probabilistic terms, T ∗
t , considered as acting in L1((0, a), dx), describes a

drift to the left with speed 1 combined with a diffusion with parameter b and killing at 0, a.
If b is large, one should expect n(t) ∼ 1 for 0 � t < a and n(t) ∼ 0 for t > a. Indeed, for
the pure drift operator (b = +∞), one has exactly such behaviour.

One goal of this paper is to compare different numerical procedures for evaluating n(t).
This semigroup was already considered in [4], where we explained the possible advantages
of using a pseudospectral method for numerical computations. In this paper, we investigate
the example in much more detail. If we put a = 10 and b = 20, then it is sufficiently
singular to be interesting, but also exactly soluble, so that one can compare the different
methods with the correct values. Our conclusions are explained further in Section 11, but
may be summarized as follows. If the initial function f does not lie in the domain of the
operator, then all the methods considered for computing eAtf are slow or unreliable, or
depend upon using very high-precision arithmetic. This is not because of the failure of
standard algorithms described in [9, p. 384] and [11] for computing the exponentials of
large matrices, but because of the difficulty of choosing an appropriate basis. For more
regular f , however, the pseudospectral method is more accurate than that based upon the
most common type of discretization. We accept that more-refined discretizations do better,
but we expect that our new pseudospectral method will also be improved once its potential
has been established.

2. The spectral method

The calculations in this section use the spectral expansion

(Tt1)(x) =
∞∑
n=1

eλnt 〈1, φ∗
n〉

〈φn, φ∗
n〉

φn(x), (4)

where

φ∗
n(x) = e−bx/2 sin(πnx/a).

This method is not generally to be recommended. However, because all the relevant integrals
can be written down in closed form, one can easily evaluate (4), provided that one is prepared
to use very high-precision arithmetic. As a or b increases, the number of digits needed to
carry out the computation increases rapidly. The computations in this section are used to
provide a basis for assessing the other methods to be presented. Direct calculations show
that

〈1, φ∗
n〉 = aπn

1 − (−1)ne−ba/2

b2a2/4 + π2n2

and
〈φn, φ∗

n〉 = (a/2)e−ba/2.
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Decay of a sub-Markov semigroup

We summed the first 100 terms of the series (4) using Maple. Precise values of n(t),
obtained using the above spectral expansion, are given in Table 1.

The function n(t) was evaluated with Digits := 20 and then re-evaluated with Digits :=
25, 30, 35, . . . until it stabilized; the smallest stable value was recorded. We found that 100
terms were enough to make the sum stable for all the values of t considered except t = 1,
when 150 terms were used. The column of Table 1 labelled x provides the value of x at
which the supremum in (2) occurs. For t � 4, the value of x is not accurate: the function
concerned is almost equal to 1 over a substantial proportion of the interval (0, a).

We see, as expected, that there is little decay before t = 10, after which the norm
decreases rapidly. We adapt one of the standard definitions of the mixing time τ of a
Markov chain to our sub-Markov context, by taking it to be the solution of n(τ) = 1/4; see
[1, Chapter 4]. Our computations then show that 10 < τ < 11.

We emphasize that even if t > τ , the decay is not well approximated by the formula (3)
within the range of t considered. Table 2 presents values of

r(t) = log(n(t))− log(n(t − 1)) (5)

for various values of t .

Table 1: Values of n(t) computed using the spectral method; see Appendix A.1.

t n(t) x Digits

1 1.00000 8 45

2 1.00000 8 40

4 1.00000 8 35

6 0.99999 9.3 35

8 0.96593 9.722 35

10 0.39454 9.835 25

15 0.897 × 10−5 9.88 20

20 0.188 × 10−12 9.89 20

30 0.446 × 10−31 9.90 20

40 0.259 × 10−51 9.90 20

Table 2: Values of r(t) as defined by (5); see Appendix A.2.

t r(t)

20 −3.84938

30 −4.52004

40 −4.74733

50 −4.84919
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Decay of a sub-Markov semigroup

According to the spectral expansion,

lim
t→∞ r(t) = λ1 ∼ −5.00493,

but we see that the convergence to this value is very slow. This implies that up to the values
of t considered, many terms in the series are contributing towards the value of n(t). One
enters the asymptotic region of exponential decay only once eλ2t 
 eλ1t . This requires
3π2t > a2b or, given our choices of the constants, t > 70. We conclude that the formula
(3) is useless in any practical sense; the size of n(t) is unmeasurably small by the time the
formula becomes relevant.

We also computed the values of m(t) = ‖eAtf ‖∞, for f (x) = sin(πx/a), by the same
method. This function does not have the same intrinsic interest as n(t), but will be used to
study the extent to which the accuracy of the methods depends upon whether f is or is not
in the domain of A. The results are presented in Table 3, in which x is the value at which
(eAtf )(x) takes its maximum. Once again, the numerical evidence indicates that the values
are correct to the accuracy presented.

Table 3: Values of m(t) computed using the spectral method; see Appendix A.3.

t m(t) x

1 0.99508 6.0000

2 0.99018 7.0000

4 0.98045 9.0000

6 0.89058 9.7460

8 0.50619 9.8060

10 0.09263 9.8486

3. The discretization method

We compare the values of n(t) and of m(t), obtained above, with those obtained by a
discretization of the differential operatorA. The main issue is deciding how to replaceA by a
matrix. There is a huge literature on such matters, describing higher-order finite differences,
higher-order finite elements, non-uniform grids, and so forth, but the difficulties that we
will encounter apply to all of them. For this reason, we treat only the simplest discretization
in detail. We also emphasize that one should not expect that a method known to be efficient
when used for L2 approximations would also be efficient for L∞ approximations; this is
one source of the difficulties that arise for this problem.

We divide the interval (0, a) intoN subintervals of equal lengthh, so thatNh = a.We use
the centred difference method to replace the differential operatorA by the (N−1)×(N−1)
matrix

Mr,s =




−2/bh2, if r = s;
1/bh2 + 1/2h, if r = s + 1;
1/bh2 − 1/2h, if r = s − 1;
−0, otherwise.

(6)
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Decay of a sub-Markov semigroup

Ifh � 2/b, the off-diagonal entries are all non-negative. In addition, the row sums all vanish,
except for those for r = 1, N−1, which are negative. It follows by standard arguments (see
[2, Chapter 7] and [8]) that eMt are positivity-preserving contractions on l∞{1, (N − 1)}
for all t � 0, provided that h � 2/b. We define

ñN (t) = max
{(

eMt1
)
r

: 1 � r � N − 1
}
,

and we compute the exponential using Matlab’s expm algorithm; similar results would no
doubt be obtained with other standard exponential algorithms. We found no evidence of the
failure of expm: we are primarily interested in the best choice of the basis of trial functions,
not in the linear algebra performed after making this choice. However, we point out that if
the test function space has very high dimension (say 105 or more), the computation of the
matrix eAt is not a routine matter, because it is full.

Table 4 gives the values of ñN (t) for various t and N . One sees that the values obtained
are accurate for large enoughN . If one repeats the computation forN < 100, one observes a
dramatic loss in accuracy: one obtains ñ99(t) = 1.0050 for t = 1, 2, 4 and ñ90(t) = 1.0526
for t = 1, 2, 4, 6. The reason is that for suchN , all of the entriesMr,r+1 are negative. There
is therefore no built-in reason why ‖eMt‖∞ should be less than or equal to 1, and there is a
consequent lack of stability in the computations.

This well-known phenomenon confirms the need to be very cautious when discretizing
an evolution equation that contains two terms operating on very different time-scales: in
this case, a large hyperbolic term and a much smaller parabolic term. One can avoid the
problem in this case by using a backward difference approximation for the first-order term
instead of a centered difference approximation. However, we will see in the next section
that every discretization runs up against a fundamental difficulty for short times.

The case N = 100 is borderline: the matrix M is then lower triangular and bidiagonal.
The values of ‖eMt‖∞ computed using expm coincide with the exact values of the same
expression to nine decimal places for 1 � t � 10. This does not, of course, mean that they
coincide with the norms of eAt , which act in an infinite-dimensional space. We putN = 110
instead ofN = 100 in Table 4 because this provides considerably better accuracy with very
little extra cost.

If one increases the value of N , the results converge slowly to the true value of n(t), at
the cost of increasing the run-time of the computation; the memory requirements also grow
rapidly, because eAt is a full matrix. We obtained ñ500(10) = 0.39565 and ñ1000(10) =
0.39476.

Table 4: Values of ñN (t) computed using the discretization method; see Appendix A.4.

t ñ110(t) ñ200(t) ñ300(t) n(t)

1 1.00000 1.00000 1.00000 1.00000

2 1.00000 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000 1.00000

6 0.99999 0.99999 0.99999 0.99999

8 0.97139 0.96684 0.96632 0.96593

10 0.42446 0.40210 0.39763 0.39454
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Table 5 compares the true values ofm(t)with the values of m̃N(t)obtained using Matlab’s
expm algorithm with the same discretization of the interval (0, a), as before. We see that
the accuracy of the results is better than it was for n(t), but not very much so.

Table 5: Values of m̃N(t) computed using the discretization method; see Appendix A.5.

t m̃110(t) m̃200(t) m̃300(t) m(t)

1 0.99508 0.99508 0.99508 0.99508

2 0.99018 0.99018 0.99018 0.99018

4 0.98046 0.98045 0.98045 0.98045

6 0.90264 0.89307 0.89151 0.89058

8 0.52120 0.50999 0.50785 0.50619

10 0.10159 0.09448 0.09319 0.09263

4. Short-time asymptotics

In this section and the next, we show that the above approximation procedure cannot be
as accurate as Table 4 suggests. We start by pointing out that there is an unavoidable prob-
lem when seeking approximations for short enough times. These arise from the following
argument.

Lemma 1. The semigroup Tt = eAt on L∞(0, a) satisfies

‖Tt1 − 1‖∞ = 1

for all t > 0. If one regards Tt as acting in C0(0, a) provided with the uniform norm, then
one has

‖Tt − I‖ � 1

for all t > 0.

Proof. Since each Tt is a positivity-preserving contraction on L∞, we have 0 � Tt1 � 1
for all t > 0. The boundary conditions on A imply that Tt1 ∈ C0(0, a) for all t > 0, and it
follows that

‖Tt1 − 1‖∞ = 1.

If ‖Tt − I‖ < 1 as an operator on C0(0, a), the same holds for (Tt − I )∗ acting on
L1(0, a), regarded as a Banach subspace of C0(0, a)∗. By taking duals again, we deduce
that ‖Tt − I‖ < 1 when considered as an operator acting on L∞(0, a). This contradicts
‖Tt1 − 1‖∞ = 1.

Now suppose that some method of approximating Tt by a semigroup eMt acting in CN

has been devised. Suppose also that when estimating all vectors and operators with respect to
theL∞ norm inCN , we have ‖eMt‖ � 2 for 0 � t � 1, and that the function 1 ∈ L∞(0, a)
is represented by the sequence 1 ∈ C

N .
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Lemma 2. We have

‖eMt1 − 1‖∞ < 1/2, (7)

provided that
0 < t � 1

4‖M‖ .
In the particular case of the discrete approximation of Section 3 the bound (7) holds,
provided that

0 < t � bh2

16
.

Proof. The first statement follows from

∥∥eMt1 − 1
∥∥∞ =

∥∥∥∥
∫ t

0
eMsM1 ds

∥∥∥∥∞
� 2t‖M‖∞.

The second uses the extra fact that

‖M‖∞ = 4

bh2 .

We can compare the above estimates with the results obtained by computing

ρ(t) = ∥∥eMt1 − 1
∥∥∞ (8)

for small t > 0, using the method of the last section. When computing Table 6, we put
a = 10, b = 20 and h = 1/20, so that N = 200. According to Lemma 2, ρ(t) < 1/2 for
0 � t � 1/320 ∼ 0.003, but Table 6 shows that this also holds for 0 � t � 0.02. Neither
result is compatible with the behaviour of Tt as proved in Lemma 1.

The results demonstrate that the discretization does not have acceptable behaviour with
respect to the L∞ norm for small t > 0. This being the case, one has to be very cautious
about accepting results obtained using it for larger t .

Table 6: Values of ρ(t) as defined by (8); see Appendix A.6.

t ρ(t)

0 0

0.01 0.248

0.02 0.420

0.03 0.541

0.04 0.630

0.05 0.697

0.1 0.866

0.2 0.960

0.5 0.997

1.0 0.99992
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The above difficulty cannot be avoided by using a different type of discretization. The
two lemmas above show that the same problem must arise for small t > 0. If any numerical
procedure generates a substantial error over a very short time, there is no obvious basis for
believing it for longer times, unless one can find a reason why the error should die out over
longer times. In the next section, we show that this problem is not purely theoretical.

5. Bounds on the actual errors

Table 4 gives the impression that for a = 10, b = 20 and h = 1/20, the discretization
method gives fairly accurate results for 1 � t � 10. On the other hand, the results of
Section 4 show that it is not reliable for t < 1. In this section we show that the discretization
method is not as accurate as Table 4 suggests for any t > 0. We show this in Table 7, which
presents the values of

σN(t) = ∥∥eMNt1 − PNeM2N t1
∥∥∞ (9)

for N = 200, N = 300 and various t , where MN is defined by (6).
The projection PN is needed in the above equation because the two matrices act in

spaces of different dimensions. In order to make the comparison, one should regard C2N−1

as obtained by sampling a function inC0(0, a) at the points x = ra/2N for 1 � r � 2N−1;
the projection PN from C2N−1 onto CN−1 is then obtained by discarding the odd sampling
points.

Table 7: Values of σN(t) as defined by (9); see Appendix A.7.

t σ200(t) σ300(t)

0.1 0.0251 0.0100

0.5 0.0265 0.0102

1 0.0267 0.0103

2 0.0267 0.0103

4 0.0267 0.0103

6 0.0267 0.0103

8 0.0259 0.0100

10 0.0142 0.0056

Table 7 shows that the error is present even for small t , and then persists as t increases.
By plotting the differences eMNt1 − PNeM2N t1, one finds that for every t in the range,
the error is concentrated near the ends of the interval (0, a). This is as expected, since the
difficulty is associated with the fact that the initial function 1 does not lie in the domain of
the operator A: it does not satisfy the boundary conditions at 0, a.

6. A trigonometric approximation method

One can apply expm to a matrix obtained from a trigonometric basis. The fact that
a substantial proportion of the off-diagonal entries of the matrix M defined in (10) are
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negative suggests that the use of M will not give good results unless the dimension of the
test function space is very large. There is also a second reason to doubt the likely accuracy
of this method.

Let

en(x) = √
2/a sin(πnx/a),

and put

M(m, n) = 〈Aen, em〉 (10)

for 1 � m, n � N . Then one has to compute

n
†
N(t) := max

{
N∑
m=1

βnen(x) : 0 � x � a

}

where β = expm(t ∗M) ∗ α ∈ C
N and α ∈ C

N is given by

αn = 〈1, en〉 =
√

2a

πn

(
1 − (−1)n

)
.

These coefficients decrease slowly, and so one needs a large value ofN to get a good initial
approximation.

Table 8 shows the results of using this method to compute the norm n
†
N(t) for variousN

and t . The results confirm the above expectations.

Table 8: Values of n†
N(t) computed using the trigonometric method; see Appendix A.8.

t n
†
100(t) n

†
200(t) n

†
300(t) n(t)

1 1.02322 1.00254 1.00067 1.00000

2 1.02320 1.00253 1.00067 1.00000

4 1.02320 1.00253 1.00067 1.00000

6 1.02320 1.00253 1.00066 0.99999

8 0.99069 0.96959 0.96669 0.96593

10 0.39513 0.39680 0.39364 0.39454

7. The pseudospectral method

In this section we consider the same problem, using the recently introduced pseudospec-
tral expansion of [4]. The advantage of this method is that it uses a test function space
adapted to the operator in question, leading to the hope that it may be of much smaller
dimension than the use of finite element methods would need for comparable accuracy. For
background material on pseudospectra, we refer to [3, 6, 7, 12, 13, 14]. The basic idea is to
approximate the initial function by a linear combination of approximate (that is, pseudo-)
eigenfunctions eσ . These are required to satisfy ‖eσ‖ = 1 and

inf{‖eσ − w‖ + ‖Aw − zσw‖ : w ∈ Dom(A)} < ε

for some pre-assigned ‘acceptable’ error ε > 0.
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As ε decreases, the eσ might become more singular, with the result that using true
eigenfunctions (that is, putting ε = 0) is numerically infeasible. The computation of suitable
pseudoeigenfunctions is a part of the theory of pseudospectra; given ε > 0, they are typically
determined by one or more continuous parameters, and one includes a finite number of true
eigenfunctions in the family if the norms of the corresponding spectral projections are of
order 1.

In the present example, suitable unnormalised pseudoeigenfunctions were obtained in
[4], and are of the form

eσ (x) = e(−b/2+bδ+iσ )(a−x) − e(−b/2−bδ−iσ )(a−x),

where N = 2M + 1, δ = 1/2 − c/(ab) and σ ∈ R. Note that the eσ satisfy the boundary
conditions exactly at x = a, but only approximately at x = 0 (we assume a choice such as
c = 20). This is an overcomplete family, and one has to choose some discrete subfamily
before starting computations. An analogy with the theory of Fourier series suggests taking
σ = 2πm/a, where m ∈ Z. We will show later that the use of overcomplete families of
eσ yields approximations of comparable accuracy, but in this section we make the above
choice.

As in [4], we approximate ft = Ttf for f = 1 by

gt = E (φt ) ∈ L2(0, a). (11)

In this equation, E : C
N −→ L2(0, a) is obtained by concatenating the set of pseudo-

eigenfunctions

em(x) = e(−b/2+bδ+2πim/a)(a−x) − e(−b/2−bδ−2πim/a)(a−x),

where N = 2M + 1, δ = 1/2 − c/(ab) and −M � m � M . Specifically,

(Eψ)(x) =
M∑

m=−M
ψmem(x),

for all ψ ∈ C
N . Finally,

(φt )m = eµmtφm ∈ C
N,

where

φ = E\f. (12)

We have changed the differential operator A slightly from what is considered in [4], and
so the em are concentrated around x = a rather than around x = 0. The pseudo-eigenvalues
µn are given by

µm = b−1 (−b/2 + bδ + 2πim/a)2 + (−b/2 + bδ + 2πim/a) .

The test functions depend upon the parameter c, which must satisfy 0 < c < ab/2.
They are of order 1 near x = a, and of order e−c near x = 0. The computation becomes
more accurate as c increases, at the cost of being more ill-conditioned. For c = 35 it breaks
down, because each of the test functions used is then of order 10−16 near x = 0, and hence
appears to be equal to 0 when using double precision arithmetic; it is therefore impossible
to obtain a good initial approximation to f = 1 at t = 0.

We approximated n(t) for a = 10 and b = 20 by putting f0 = 1 and evaluating

nN(t) := ‖gt‖∞.
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We put c = 20, although other similar values lead to similar results. We replaced (0, a)
by 104 equally spaced points, and used the trapezium rule for evaluating integrals when
computing E; this was a significant source of error, and no doubt a more sophisticated
procedure could be devised. We computed the values of nN(t) for N = 101 and t from 1
to 10. Table 9 presents the computed values.

The same values were obtained with considerably smaller N for 0 � t � 6. For t � 8,
the results were not stable to the accuracy shown, even when N was increased to 400. Note
that there is no structural reason why this numerical method should yield values in the range
[0, 1], so the fact that this is the case itself provides evidence that the approximation method
is working; for the discretization method, this was a structural feature of the approximation,
and therefore proves nothing about its accuracy. Almost all of the run-time is spent com-
puting φ using (12). On comparing Tables 4 and 9, we conclude that for the initial function
f = 1 the discretization method is to be preferred, although neither is very accurate.

Table 9: Values of nN(t) computed using the pseudospectral method; see Appendix A.9.

t n101(t) n(t)

1 1.00000 1.00000

2 1.00000 1.00000

4 1.00000 1.00000

6 0.99999 0.99999

8 0.970 0.96593

10 0.422 0.39454

Table 10: Values ofmN(t) computed using the pseudospectral method; see Appendix A.10.

t m81(t) m(t)

1 0.99508 0.99508

2 0.99018 0.99018

4 0.98045 0.98045

6 0.89058 0.89058

8 0.50629 0.50619

10 0.09346 0.09263

The situation is very different for the initial function f (x) = sin(πx/a). Table 10
presents the values of mN(t) computed using the pseudospectral method for a = 10,
b = 20, c = 20 and N = 81. For t � 6, similar accuracy could be obtained for much
smaller values of N . It is clear that the pseudospectral method is much more accurate in
this case than it was when computing n(t).
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8. Overcomplete families

If {em}∞m=1 is a sequence of vectors in an abstract Hilbert space H , one can try to expand a
general vector f ∈ H as a norm-convergent series f = ∑∞

m=1 φmem. This cannot succeed
for all f unless the sequence is complete – that is, unless its linear span is dense in H . If the
sequence is overcomplete (that is, it remains complete after the removal of some member),
then the expansion is not unique, so there cannot be a canonical formula for determining the
coefficients φm. Historically, most effort has therefore been devoted to minimal complete
sequences of vectors, and in particular to Riesz bases.

In this section we show that expansions in terms of overcomplete sequences are feasible
numerically, and that they are sometimes more accurate than traditional expansions. We
explain this first by reference to ordinary Fourier series, and apply it to our differential
operator only in the next section.

Given u > 0 and m ∈ Z, let em,u ∈ L2(0, 1) be the function

em,u(x) = e2πimx/u. (13)

If u = 1, this is the familiar complete orthonormal Fourier basis. If 0 < u < 1, it is not
complete, and if u > 1, it is overcomplete. Given a smooth function on [0, 1], the standard
Fourier expansion converges slowly unless the function is periodic. However, if u > 1,
such a function can be extended to a smooth periodic function on [0, u], and the standard
Fourier expansion of this extended function in L2(0, u) converges rapidly. Restricting back
to L2(0, 1), we see that there exists a rapidly converging expansion of f in terms of en,u
for any u > 1. The nonuniqueness of the extension of f from [0, 1] to [0, u] might seem
to be a barrier to the application of this method, but it can be resolved by the following
regularized least-squares approximation method, with parameter δ; see [10].

Given any finite sequence of vectors {em}Mm=1 with ‖em‖ � 1 in a Hilbert space H ,
f ∈ H , a positive weight w on {1, . . . ,M} and δ > 0, we define

EM(f ) = min

{∥∥∥∥f −
M∑
m=1

φmem

∥∥∥∥
2

+ δ〈wφ, φ〉 : φ ∈ C
M

}
, (14)

where we henceforth also use w to denote the diagonal matrix whose diagonal entries are
w1, . . . , wM .

Lemma 3. EM(f ) is minimized by a unique φ ∈ C
M which depends linearly on f . It may

be written in the (Matlab) form φ = Ẽ\(f ⊕ 0), where the linear operator Ẽ is defined
by (16). The condition number of Ẽ (the ratio of its largest and smallest singular values)
satisfies

cond(Ẽ) �
(
δw2 +M

δw1

)1/2

, where w1 = min{w} and w2 = max{w}. (15)

Proof. If E : C
M −→ H is defined by

Eψ =
M∑
m=1

ψmem,

then the variation of parameters method shows that the minimum on the right-hand side
of (14) is achieved for

φ = (E∗E + δw)−1E∗f,

which depends linearly upon f .
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One can alternatively characterize φ as the vector in C
M that minimizes ‖Ẽφ−(f ⊕0)‖,

where Ẽ : C
M −→ H ⊕ C

M is defined by

Ẽφ = (Eφ)⊕ (
δ1/2w1/2φ

)
. (16)

Every entry of the matrixE∗E has magnitude at most 1, so ‖E∗E‖ � M . It then follows
from (16) that

δw1‖φ‖2 �
∥∥Ẽφ∥∥2 � (δw2 +M)‖φ‖2

for all φ, so the condition number of Ẽ satisfies (15).

The advantage of using Ẽ instead of E is that for an overcomplete family, E is very
badly conditioned. For small positive δ > 0, one obtains almost as good a result using Ẽ,
which is a better conditioned matrix. In examples it appears that δ = 10−10 often yields an
acceptable result.

There are two advantages of choosing a weight w other than w = 1. It allows one to
discriminate progressively against undesirable choices of em: for example, highly oscillatory
test functions. Secondly, in our applications we are interested in ‖φ‖1, not in the quantity
‖w1/2φ‖2, which arises in (16). Using the obvious inequality

‖φ‖1 �
∥∥w−1/2

∥∥
2

∥∥w1/2φ
∥∥

2,

we see that the two norms may be of the same order of magnitude if

∞∑
m=1

w−1
m < ∞.

We illustrate the power of these ideas by reference to the Fourier-type example at the
start of this section. We chose f ∈ L2(0, 1) to be f (x) = √

3x, so that ‖f ‖2 = 1. We
put δ = 10−10 and w = 1, and we let m range from −10 to 10. We replaced (0, 1) by 104

equally spaced points, and we used the trapezium rule for evaluating integrals as before.
Table 11 shows how the error ‖f − Eφ‖2 and ‖φ‖2 depend upon the choice of u. We see
that for 0 < u < 1 the error is large, corresponding to the fact that the sequence (13) is then

Table 11: Approximation errors for the overcomplete Fourier expansion method;
see Appendix A.11.

u ‖f − Eφ‖2 ‖φ‖2

0.8 0.4443 0.9019

0.9 0.3574 0.9407

1.0 0.1201 0.9928

1.1 8.196 × 10−3 1.0014

1.2 7.291 × 10−4 1.0150

1.5 2.473 × 10−6 1.0688

2.0 3.225 × 10−9 1.1814

2.5 2.591 × 10−11 1.3099
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incomplete. For u > 1, the error is much smaller than it is for the complete orthonormal set
corresponding to u = 1.

If f ∈ C∞[0, 1] and u > 1, then f may be extended (in several ways) to a smooth
function f̃ on R that is periodic with period u. Neglecting a scale factor, the sequence
{em}∞m=−∞ may be extended to the standard Fourier sequence {ẽm}∞m=−∞ for L2(0, u). The
Fourier coefficients of f̃ in L2(0, u) with respect to the standard Fourier basis decrease at
a super-polynomial rate, and one may then apply the following lemma.

Lemma 4. Let H be contained in H̃ , and let {em}∞m=1 be the orthogonal projections onto
H of a complete orthonormal sequence {ẽm}∞m=1 in H̃ . Let f be the orthogonal projection
of some f̃ ∈ H̃ onto H , and let φ ∈ C

M be the sequence that minimizes EM(f ). Then

EM(f ) �
∞∑

m=M+1

|〈f̃ , ẽm〉|2 + δ

M∑
m=1

wm|〈f̃ , ẽm〉|2.

Proof. This is a routine computation, once one replaces the minimizing φ in EM(f ) by the
sequence φm = 〈f̃ , ẽm〉, 1 � m � M .

9. More on semigroup approximation

In the Fourier example just discussed, the value u = 1 at which the sequence passed
from being incomplete to being overcomplete was known a priori. When applying the
pseudospectral approximation method to a general one-parameter semigroup, the sequence
of vectors en is generated numerically, and it is not possible to ensure that they form a Riesz
basis. One can try to take enough vectors to ensure overcompleteness, and then confirm
success a posteriori by observing the small size of ‖Eφ − f ‖.

The following modification of [4, Theorem 5] shows how to approximate a semigroup
using an overcomplete sequence of pseudoeigenvectors. In [4], we assumed that φ = E\f ,
but this fact was not used. For the right-hand side of (18) to be small, we need that ‖f −Eφ‖
and ε‖φ‖1 should both be small. If the vectors e1, . . . , eN are part of an infinite overcomplete
sequence, this may be achieved by putting φ = Ẽ\(f ⊕ 0), as described in the last section.

Theorem 5. Let Tt be a one-parameter semigroup on B satisfying ‖Tt‖ � Meγ t for
all t � 0. Let ε > 0, and let {en}Nn=1 be a finite sequence of normalized approximate
eigenvectors of A in B, in the sense that ‖en‖ = 1 and

inf{‖en − w‖ + ‖Aw − λnw‖ : w ∈ Dom(A)} < ε (17)

for all n, where Re(λn) � γ for all n. LetE : C
N −→ B be defined byEψ = ∑N

n=1 ψnen.
Given φ ∈ C

N , let (φt )n = eλntφn. Then

‖Ttf − Eφt‖ < ‖f − Eφ‖Meγ t + ε‖φ‖1(1 +M +Mt) eγ t . (18)

Proof. Using (17), let wn ∈ Dom(A) satisfy

‖en − wn‖ + ‖Awn − λnwn‖ < ε

for each n.
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Then for any t > 0, we have∥∥Tten − eλnt en
∥∥ �

∥∥eλnt (en − wn)
∥∥+ ‖Tt (en − wn)‖ + ∥∥Ttwn − eλntwn

∥∥
< ε(1 +M)eγ t +

∥∥∥∥
∫ t

0
Tt−seλns(Awn − λnwn)ds

∥∥∥∥
� ε(1 +M)eγ t +

∫ t

0
Meγ (t−s)eγ s‖Awn − λnwn‖ds

� ε(1 +M +Mt)eγ t .

Hence

‖Ttf − Eφt‖ � ‖Ttf − TtEφ‖ + ‖TtEφ − Eφt‖

� ‖f − Eφ‖Meγ t +
N∑
n=1

|φn|
∥∥Tten − eλnt en

∥∥
� ‖f − Eφ‖Meγ t + ε‖φ‖1(1 +M +Mt) eγ t .

We repeated the calculations of Section 7, but with the new definition φ = Ẽ\(f ⊕ 0)
instead of (12). Referring back to (16), we put w(s) = 1 + s2 and chose the constant δ to
be 10−10. Putting N = 81, we denoted the result by m̆u(t), where u denotes the value of
an overcompleteness parameter u. We computed m̆u(t) for t = 1, . . . , 10, and for various
values of u. The (unnormalized) pseudoeigenfunctions are now given by

em(x) = e(−b/2+bδ+2πim/ua)(a−x) − e(−b/2−bδ−2πim/ua)(a−x),

so the case u = 1 can be compared directly with the results of Table 8, which usesE instead
of Ẽ.

We see from Table 12 that the results are not useful for u = 0.5. If u � 1, they are not
heavily dependent upon the value of u. If one puts δ = 10−15, Matlab considers the matrix
Ẽ to be ill-conditioned, and the graph of the sequence φ that it obtains is very irregular.

Table 12: Values of m̆u(t) for various choices of the overcompleteness constant u;
see Appendix A.10.

t m̆0.5(t) m̆1(t) m̆1.5(t) m̆2(t) m(t)

1 0.96672 0.99508 0.99508 0.99508 0.99508

2 0.93801 0.99018 0.99018 0.99018 0.99018

4 0.85509 0.98045 0.98045 0.98045 0.98045

6 0.07462 0.89058 0.89058 0.89058 0.89058

8 0.00028 0.50623 0.50626 0.50635 0.50619

10 0.00002 0.09319 0.09196 0.09335 0.09263
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10. Fractional powers of A

In this section we show that the pseudospectral method can be used to approximate a
variety of other functions f (A), provided that one has a prior estimate of ‖f (A)‖. We will
investigate one particular case.

If e−At is a one-parameter contraction semigroup on B, then e−Aαt is also a one-
parameter contraction semigroup for all 0 < α < 1. The definition of the fractional power
is a little involved, except when A has purely discrete spectrum, in which case one has the
property that if Af = λf , then Re(λ) � 0 and Aαf = λαf . In the general case, one has
the formula

e−Aαtf =
∫ ∞

0
ρ(s, t, α)e−Asf ds,

where ρ is a positive density with ∫ ∞

0
ρ(s, t, α) ds = 1

for all t > 0 and 0 < α < 1; see [15, p. 259]. This formula implies immediately that if
e−At are positivity-preserving contractions on C0(X) or on Lp(X) for any 1 � p � ∞,
then the same applies to e−Aαt . If also e−At1 ∈ C0(X) for all t > 0, then the same applies
to e−Aαt , from which we deduce that∥∥e−Aαt1 − 1

∥∥∞ = 1

for all t > 0. In other words, the short-time approximation problems for e−At also occur for
e−Aαt . In other respects, however, the semigroup e−Aαt has quite different properties. Its
generator is not a local operator, and the corresponding Markov process has discontinuous
sample paths. The transition from approximately Markov behaviour to rapid decay is less
sharp, the smaller the value of α.

One can apply the methods of Section 3 to the new semigroup simply by replacing (11)
by

gt = E

(
M∑

m=−M
e−µαmtφm

)

whereE,φm andµm are defined as before, except for a change of sign inµm. The justification
for doing this depends upon the following lemma. We expect that the proof can be extended
to other values of α.

Lemma 6. Let e−At be a one-parameter contraction semigroup acting on B. If ‖u‖ = 1,
Re(µ) � 0 and

‖u− w‖ + ‖Aw − µw‖ < ε < 1/2,

then ∥∥e−A1/2t u− e−µ1/2t u
∥∥ < 2ε + 2ε1/2t, (19)

for all t > 0.

Proof. We first observe that the left-hand side of (19) is bounded above by 2ε + β, where

β := ∥∥e−A1/2tw − e−µ1/2tw
∥∥.
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The formula

e−Asw − e−µsw =
∫ s

0
e−Au−µ(s−u)(µw − Aw) du,

together with the crude bound ‖w‖ < 1 + ε, implies that∥∥e−Asw − e−µsw
∥∥ < min{εs, 2(1 + ε)}

for all s > 0. It follows that

β =
∥∥∥∥
∫ ∞

0
ρ(s, t, 1/2) (e−Asw − e−µsw) ds

∥∥∥∥
�
∫ ∞

0
ρ(s, t, 1/2)

∥∥e−Asw − e−µsw
∥∥ ds

�
∫ ∞

0
ρ(s, t, 1/2)min{εs, 2(1 + ε)} ds.

We estimate this with the aid of the formula

ρ(s, t, 1/2) = t

2
√
πs3

e−t2/4s .

See [2, Section 2.4] or [6, Section 3.8]. Unfortunately, no explicit formula of this type is
available for other values of α. We obtain

β �
∫ ∞

0

t

2
√
πs3

min{εs, 2(1 + ε)} ds

=
∫ ∞

0

1

2
√
πu3

min{εut2, 2(1 + ε)} du

=
√

8(1 + ε)

π
ε1/2t.

11. Conclusions

We showed in Section 4 that the numerical computation of eAt1 is an intrinsically hard
problem for small t > 0, and we confirmed that the difficulty is genuine in Tables 6 and 7.
The discretization method is better than the pseudospectral method for the initial function
f = 1, but both are rather inaccurate for trial function spaces of a few hundred dimensions.
The ultimate reason for these problems is the lack of continuity of the semigroup eAt at
t = 0, when acting in the space C[0, a].

The situation changes entirely when one applies the semigroup to a function lying in the
domain of its generator. Table 13 compares the errors δN(t) and δ̃110(t) in the computations
of the function m(t) = ‖eAtf ‖∞, where f (x) = sin(πx/a), using the pseudospectral
and discretization methods respectively. Once again, we recorded all the relevant data to
nine decimal places. In this case, the advantages of the pseudospectral method over the
discretization method are clear.

The potential advantage of the pseudospectral method is that it uses a test function space
that is adapted to the operator, and which may therefore be of relatively low dimension.
We have indicated briefly how the sequence of pseudo-eigenvectors might be generated
in more general situations, but further investigations are needed to validate that method.

17https://doi.org/10.1112/S1461157000001017 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001017


Decay of a sub-Markov semigroup

A semi-classical procedure for generating pseudo-eigenvectors is described in [5], and is
currently being developed further.

Table 13: Comparison between pseudospectral and discretization methods.

t N δN(t) δ̃110(t)

1 51 7 × 10−9 3.3 × 10−7

2 41 < 10−9 6.6 × 10−7

4 41 < 10−9 1.3 × 10−6

6 41 5.1 × 10−7 1.2 × 10−2

8 81 1.1 × 10−4 1.5 × 10−2

10 81 8.4 × 10−4 9 × 10−3
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Appendix A. List of programs used

The following programs are available to subscribers to the journal at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a.

Appendix A.1.

The program for computing n(t) using the spectral method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/mixing3.mws

(see Table 1).

Appendix A.2.

The program for computing r(t) = log(n(t))− log(n(t − 1)) is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/mixing4.mws

(see Table 2).

Appendix A.3.

The program for computing m(t) using the spectral method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/mixing5.mws

(see Table 3).

Appendix A.4.

The program for computing values of ñN (t) using the discretization method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/expm7.m.mws

(see Table 4).
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Appendix A.5.

The program for computing values of m̃N(t) using the discretization method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/expm8.m.mws

(see Table 5).

Appendix A.6.

The program for computing ρ(t) = ‖eMt1 − 1‖∞ is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/expm9.m

(see Table 6).

Appendix A.7.

The program for computing σN(t) = ‖eMNt1 − PNeM2N t1‖∞ is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/expm10.m

(see Table 7).

Appendix A.8.

The program for computing n†
N(t) using the trigonometric method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/expm4.m

(see Table 8).

Appendix A.9.

The program for computing nN(t) using the pseudospectral method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/pseudo9.m

(see Table 9).

Appendix A.10.

The program for computing mN(t) using the pseudospectral method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/pseudo12.m

(see Tables 10 and 12).

Appendix A.11.

The program for computing approximation errors for the overcomplete Fourier expansion
method is available at

http://www.lms.ac.uk/jcm/7/lms2003-028/appendix-a/overcomplete1.m

(see Table 11).
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