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SUMMARY

Despite recent improvements, New Zealand still has one of the highest per-capita incidence rates

of campylobacteriosis in the world. To reduce the incidence, a thorough understanding of the

epidemiology of infection is needed. This retrospective analysis of 36 000 notified human cases

during a high-risk period between 2001 and 2007 explored the spatial and temporal determinants

of Campylobacter notifications at a fine spatial scale in order to improve understanding of the

complex epidemiology. Social deprivation was associated with a decreased risk of notification,

whereas urban residence was associated with an increased risk. However, for young children rural

residence was a risk factor. High dairy cattle density was associated with an increased risk of

notification in two of the three regions investigated. Campylobacter notification patterns exhibit

large temporal variations ; however, few factors were associated with periods of increased risk,

in particular temperature did not appear to drive the seasonality in campylobacteriosis.

Key words : Campylobacter, infectious disease epidemiology, notifiable infectious diseases, spatial

modelling, zoonotic foodborne diseases.

INTRODUCTION

Campylobacteriosis is New Zealand’s most commonly

reported notifiable infectious disease [1], a situation

that is repeated in many other countries [2]. The many

possible transmission routes from Campylobacter

reservoirs to humans have made precise quantitative

investigations into its complex epidemiology difficult

[3–8]. This situation may suggest that localized risk

factors strongly influenceCampylobacter transmission.

In addition, the number of cases varies significantly

throughout the year with much higher case rates

during the summer. The reasons for this seasonality

are not known [9], although a number of potential

drivers have been proposed including: increased

shedding in animal reservoirs and higher levels of

contamination in the food chain [10–13], changes in

human behaviour [14] and the abundance of invert-

ebrate vectors [15, 16]. A greater understanding of the

seasonal drivers for infection may help to shed more

light on the epidemiological pathways. This leads us

to study temporal as well as spatial patterns.

There are several risk factors that are known to

be associated with Campylobacter notifications, and
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many of these are temporally and spatially structured.

Social deprivation is a risk factor for many infectious

diseases, however a UK study has indicated that

campylobacteriosis notifications are higher among

those with higher socioeconomic status [17], suggest-

ing that social deprivation may be a protective factor.

Alternatively social deprivation may affect willingness

to access healthcare, and therefore the proportion of

cases that reach notification. Gender is also con-

sidered as a risk factor for campylobacteriosis, with

males in general having a higher notification rate

than females [18, 19]. Based on data from 2001–2004,

Baker et al. [19] also showed that significantly higher

rates of notification and hospitalization were seen in

urban populations compared to rural populations.

However, when children and adults were treated sep-

arately, children aged <15 years in rural areas were

reported at significantly higher rates than their urban

counterparts. A recent Scottish study also found

higher notification rates in rural children [20].

Campylobacteriosis case rates are highly seasonal,

although there is large variation between years in the

timing, duration and magnitude of peak incidence.

Baker et al. [19] examined notification and hospital-

ization rates from 2001 to 2003 and found that the

highest rates occurred during the summer months.

However, increased notifications during early winter

have also been observed in New Zealand [21], in

particular in winter 2006 where a national epidemic

occurred [22]. The majority of cases in New Zealand

are considered to be sporadic [23] ; however, there are

also brief localized outbreaks in which cases share a

common exposure [24]. Several studies have already

attempted to analyse the way in which weather affects

campylobacteriosis case rates in various locations,

particularly with reference to the underlying causes

of seasonality [9, 25, 26]. It is already clear from the

literature that spatial location affects the way in which

weather relates to notifications. This is to be expected

if different epidemiological pathways are more

prominent in different locations, and each pathway

will be affected by the weather differently. Ambient

temperature in particular is often suggested to affect

infection rates [9, 25, 27].

As campylobacteriosis is a notifiable disease in New

Zealand, a large amount of information is routinely

collected from reported cases by the public health

services, including the home address. This infor-

mation is entered into a centralized database called

EpiSurv which is managed by the Institute of En-

vironmental Science and Research (ESR). Summary

statistics from this large dataset are carefully moni-

tored, with spatial analysis routinely published at the

district health board (DHB) level. This study aims to

investigate the spatial and temporal epidemiology of

campylobacteriosis at a much greater spatial resol-

ution. Three regions of New Zealand with diverse

geography and climate are used to account for differ-

ent levels of rurality. These regions are Auckland

(urban), Canterbury (mixed) and Manawatu (rural).

We aimed for the spatial and temporal resolution of

the data to be as fine as possible in order to ensure

that any highly localized associations could be un-

covered.

In its 2005 Campylobacter strategy, the New

Zealand Food Safety Authority (NZFSA) set up the

Manawatu region as a ‘sentinel surveillance site ’ for

campylobacteriosis [5, 6]. The purpose of this was

to combine molecular epidemiology and intensive

surveillance to uncover the reservoirs behind the

majority of notified cases, and to measure the effec-

tiveness of control measures in the poultry industry

implemented between 2005 and 2008. As a con-

sequence of this study there are extremely high

completion rates for the epidemiological information

in the Manawatu region. This has enhanced the

analysis of additional covariate information about

the cases, e.g. their gender and age group in this

region.

The Methods, Results and Discussion sections of

this paper share a common structure: first the spatial

and temporal distributions are considered. In par-

ticular, we investigated the association between the

spatial variation in risk and social deprivation. For

rural areas we sought to uncover spatial associations

between farm animal density and risk of notification.

For the Manawatu region, we had some additional

demographic information about the cases and there-

fore were able to examine differences in notification

rates between age groups and genders. Finally we

compared the large seasonal variations in notification

rates with local weather data.

METHODS

This work examines notification data from three

regions of New Zealand, each with slightly different

geography and climate : Auckland, Canterbury and

Manawatu. The spatial location of a notification is

given at the meshblock level : the smallest regions

defined for the New Zealand census, each containing

between zero and about 200 individuals in their
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usually resident population. Meshblocks therefore

vary in size with those in urban areas giving a more

precise spatial location than those in rural areas.

The urban/rural status of the meshblocks is classified

according to the seven grades of rurality given by

Statistics New Zealand [28]. For this study the four

most rural grades (up to ‘Rural with high urban in-

fluence’) were classed as rural and the remaining three

grades (from ‘Independent urban areas’) were classed

as urban.

The Auckland, Canterbury and Manawatu regions

are made up of 9709, 4313 and 1834 meshblocks,

respectively, and have usually resident populations

(obtained from the 2006 New Zealand census)

of 1 310 529, 466 344 and 158 808, respectively, rep-

resenting 48% of the country’s population. The noti-

fication data came from the 6-year period 2001–2006

for Auckland and Canterbury and the 7-year period

2001–2007 for Manawatu. This period was studied

because nationally there was a steady increase in no-

tifications which peaked in 2006 [1]. Some cases had

to be omitted from the study as the residential address

in the database did not give rise to an accurate spatial

location (see Table 1). For cases in the Manawatu

region we obtained additional epidemiological data

from the EpiSurv database, including gender, age

group, occupation and information concerning ex-

posure to some specific risk factors.

In New Zealand all primary-care consultations are

partially funded by DHBs with most patients paying

an additional co-payment, especially for ‘out-of-

hours ’ attendances. Microbiological investigations

in primary care are fully funded. In 2005–2007, for

each notified case of acute gastrointestinal illness in

New Zealand there were an estimated 222 cases in the

community, of which about 49 visited a general

practitioner (GP) [29].

The covariate data for potential risk factors in-

cluded the Social Deprivation Index (SDI), weather

information, proximity to large poultry farms and

livestock densities. The SDI was calculated at the

meshblock level from the 2006 census, and proved to

be a key risk factor in urban areas. In rural areas

proximity to high livestock densities such as dairy

cattle was also a risk factor. Data on farm locations

and sizes was taken from the AgriBaseTM database

(a product of AsureQuality, New Zealand) from

January 2006. Weather data from weather stations

throughout each region were taken from the National

Institute of Water and Atmospheric Research

(NIWA), such as hours of sunshine, maximum

and minimum temperature, rainfall and storm water

run-off. There were 16 weather stations used for

Manawatu, 46 for Auckland and 33 for Canterbury,

although not all of these have readings available for

all variables considered. All spatial and temporal data

were interpolated or aggregated to the meshblock

and week level to facilitate comparison with the noti-

fication data.

Spatial and temporal distributions

Campylobacteriosis notification data displays both

large spatial variation, and complex temporal pat-

terns. In summer there is an increase in notifications;

however, the size, duration and timing of this peak

vary from year to year. There can also be winter epi-

demics, like the one observed in 2006 [22], and sharp

localized spikes in notifications with a shared ex-

posure. In the present study a Bayesian hierarchical

model is used in an attempt to capture these spatial

and temporal variations in infection risk and over-

come some of the difficulties inherent in modelling

such complex datasets [5, 30].

Table 1. Number of campylobacteriosis notifications, stratified by region

and address matching accuracy from 2001 to 2006 (includes 2007

for Manawatu)

Address matching accuracy Manawatu Canterbury Auckland

‘Exact’ 2118 8090 21 372
‘Nearest ’ 166 873 2936

‘Street ’ 95 309 276
Other (accuracy insufficient
for inclusion)

317 501 1544

Total cases included in study 2379 9272 24 584

Total cases 2696 9773 26 128
Proportion of cases used (%) 88.2 94.9 94.1
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The number of notified cases of campylobacteriosis

Yi,t in meshblock i and week t is assumed to have a

Poisson distribution with mean Nili,t, where Ni is the

usually resident population of meshblock i and li,t
represents the expected risk at this point in time and

space. A Poisson distribution was used rather than a

negative binomial due to the fine spatial scale – there

were not enough observations with multiple cases to

accurately estimate an overdispersion parameter.

Next, we separated the risk into its spatial and tem-

poral components through the relation log(li,t)=
Rt+Ui, where Rt and Ui are the purely temporal and

purely spatial components of the risk respectively, so

that the expected number of cases in meshblock i and

week t is given by Ni exp(Rt+Ui). For the spatial

component a Gaussian Markov Random field prior

is assumed [31] (also called a Gaussian intrinsic

autoregression) in which the risk in each meshblock

is assumed to be similar to the mean risk of the

neighbouringmeshblocks.More formally,we assumed

the following full conditional distribution

Ui � N
X
j2n(i)

Uj

jn(i)j,
kU
jn(i)j

 !
,

where n(i) is the set of indices of meshblocks neigh-

bouring meshblock i.

For the temporal component we assumed a

Gaussian second-order random walk prior [32]. This

assumes that the change in risk from week t to week

t+1 will be similar to the change in risk from week

tx1 to week t, i.e. given R1, …, Rt,

Rt+1xRt � N RtxRtx1,
1

kR

� �
:

We assumed flat priors for R1 and R2 so that the

temporal component can absorb the baseline level of

risk. For the hyperparameters kR and kU we assumed

conjugate gamma-distributed priors. For more infor-

mation about the prior specifications and the im-

plementation of an MCMC algorithm to estimate the

posterior distribution, see the Appendix.

Social deprivation

In order to assess any associations between social

deprivation and campylobacteriosis notifications we

first compared maps of the estimated spatial com-

ponent with maps of social deprivation, given by the

SDI. The SDI is an area-based measure of deprivation

derived from variables in the five-yearly New Zealand

Census of Population and Dwellings [33]. It is calcu-

lated at the meshblock level and the scores are

grouped into deciles taking integer values between 1

(least deprived) and 10 (most deprived).

The observed associations between SDI and notifi-

cations can then be quantified by modifying the model

described in the ‘Spatial and temporal distributions’

section. Because the spatial component and the SDI

are so highly correlated, models which include both

appear not to be identifiable. We therefore removed

the spatial component from the model and replaced

it with a fixed effect for each of the 10 levels of

deprivation. The linear predictor becomes log(li,t)=
Rt+VD(i), where D(i) is the social deprivation index

decile score of meshblock i. For the fixed effects

V1, …, V10, we assumed aGaussian first-order random

walk prior as we believed the risk for one level of SDI

will be similar to the risk for adjacent values of SDI.

More precisely given V1, …, Vj,

Vj+1 � N Vj,
1

kV

� �
,

with a gamma-distributed hyperprior kVyGamma

(1, 10x4). This model allows nonlinear trends in the

association between SDI and notification risk to be

visible in the posterior distribution.

Livestock density

In rural areas the epidemiology of campylobacteriosis

is different to urban areas and one reason for this

might be that environmental exposures, e.g. direct

contact with animals and their faeces, are more

prominent routes of transmission [19]. We in-

vestigated the association between animal density,

SDI and campylobacteriosis notifications in rural

meshblocks for the following stock types : poultry,

dairy cattle, beef cattle and sheep. From the AgriBase

database we extracted the number of each stock type

for each farm and a map of the land each farm occu-

pies. By overlaying the meshblock boundaries on this

map and assuming that the animals were evenly

spaced throughout each farm, we estimated the num-

ber of animals in each meshblock. We then divided

the number of animals in each meshblock by the

meshblock area to produce an estimate of the density

of each stock type, in animals per hectare. In addition,

we crudely estimated the proximity of a meshblock to

a large poultry farm (>1000 birds), by the con-

nectedness of each meshblock to a meshblock con-

taining a poultry farm. For example, meshblocks
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containing large poultry farms were given distance

zero, and their neighbours distance 1, and so on. This

measure of distance was preferred to Euclidean dis-

tance to the meshblock centroid because in rural areas

some of the meshblocks are very large, and so part of

the meshblock could be very close to a farm; however,

the distance to the centroid would still be large. All of

these variables are spatially varying and assumed to

be approximately constant for the duration of the

study.

We wished to uncover which of these variables in-

fluenced the spatial variations in notification risk.

Therefore rather than fitting a spatial model like the

one described in the ‘Spatial and temporal distri-

butions ’ section, a multiple Poisson regression model

with log link function was fitted using the generalized

linear model function (fitglm) in R version 2.5.1 (R

Development Core Team, Austria). The number of

cases in each rural meshblock was taken as the re-

sponse variable, the population in the meshblock was

used as an offset and the variables SDI, poultry farm

distance and the animal density variables were used as

predictors. A backward stepwise regression procedure

was then followed to eliminate variables with aP value

>0.15. Since only rural areas were used in this

analysis, the number of meshblocks is reduced to 519

for Manawatu, 785 for Canterbury and 567 for

Auckland.

Age and gender

For the Manawatu region we extracted some ad-

ditional information about the notifications from the

EpiSurv database, including the gender and age group

of each case. Denominator information for these

variables was obtained from the 2006 census [34]. The

spatial distributions of each age group and gender

were explored using the Bayesian hierarchical model

described in the ‘Spatial and temporal distributions’

section. Some age groups experienced very few cases

and the sparseness of the data caused problems with

the convergence of the MCMC. In order to overcome

this, some of the age categories were pooled; a more

informative prior for the hyperparameter was used

[kUyGamma(1.5, 0.15)] and the Markov chains were

run for longer.

Weather

To investigate the drivers of the seasonal variation in

notifications, we took a less sophisticated and more

direct approach than elsewhere in the literature by

jointly plotting the time-series of reported cases and

the weather data. This enabled us to visually compare

any periodic patterns in both of the time-series. This

method has the advantage that none of the infor-

mation in a complex trend is lost through the use of

summary statistics, e.g. the time of peak notifications.

The weather data consisted of daily maximum

temperature, minimum temperature, rainfall, water

run-off and hours of sunshine. These data were taken

from as many weather stations as possible spread

throughout (and just outside) each of the regions be-

ing investigated. The spatial dimension was removed

by taking the mean over all of the weather stations

that recorded observations for a day. These daily

means were then averaged to provide a weekly mean.

In order to make the weather datasets easier to com-

pare to the weekly case-series, we first centred both

series by subtracting the mean and normalized them

by dividing by the standard deviation. Finally we ap-

plied some simple smoothing by replacing the obser-

vation at time t with the mean of any observations

between tx3 and t+3.

RESULTS

Spatial and temporal distributions

Figure 1 shows the relative risks generated by the

spatial component of the model for each of the three

regions. In the Manawatu region most rural areas had

a lower risk of notification with the exception of the

town of Foxton (population 4446) and the area sur-

rounding the town of Sanson (population 492). There

was a large variation in risk in the largest settlement in

the region, the city of Palmerston North (population

67000). The Canterbury and Auckland regions also

showed surprisingly sharp changes in risk over small

distances in their main centres. The white circle en-

closing a part of Christchurch central business district

(Fig. 1), had an extremely high rate of notifications.

Of the three regions, Canterbury showed the greatest

spatial variation in risk with several high-risk areas

outside Christchurch. South Auckland contained a

very low-risk area containing a large number of

meshblocks. In the Auckland region many of the high

risk meshblocks were located on the coast.

Figure 2 shows the expected number of campylo-

bacteriosis notifications per 1000 people per week for

each of the regions. There were large changes in the

number of cases predicted at different times of the
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year; however, there was no consistent form to this

seasonal pattern. Again, Canterbury region had the

largest variations in risk and the Manawatu region

clearly had a lower risk of notification per capita. The

winter epidemic in 2006 can be identified, particularly

in the Canterbury and Auckland regions.

Manawatu region

FeildingSanson

Palmerston North
Foxton

Levin

Otaki

Relative risk

Canterbury region

Hanmer Springs

Sefton

Methven

Akaroa

Kaikoura

Auckland CBD

Auckland

Manawatu

Canterbury

0 50 km

Ashburton

Christchurch

0·00 – 0·75
0·76 – 0·85
0·86 – 0·95
0·96 – 1·05
1·06 – 1·15
1·16 – 1·25
1·26 – 8·10

Auckland region

Fig. 1. The estimated relative risk surface for campylobacteriosis notification in the Manawatu, Canterbury and Auckland
regions. The white circle in the inset of the Canterbury region indicates a region of extremely high risk of notification.
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Fig. 2. The expected number of campylobacteriosis notifications per week per 1000 people for the Manawatu, Canterbury
and Auckland regions. The grey band highlights the winter epidemic in 2006.
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Social deprivation

Previous evidence [19] and preliminary analysis

suggest that urban and rural areas have different

epidemiology and transmissionpathways for campylo-

bacteriosis and therefore different notification pat-

terns. For example in the Canterbury and Auckland

regions, a x2 test showed significantly higher notifi-

cation rates for urban meshblocks compared to rural

meshblocks (P=0.006 for Canterbury, P<0.0001 for

Auckland).

Figure 1 suggests that in urban areas the risk of

notification was strongly related to the SDI. In rural

areas this pattern was not repeated – the associations

with rural Campylobacter infections are explored

in the next section. This, along with other evidence

[5, 19, 20], suggests that there are large differences

in the epidemiology of urban and rural campylo-

bacteriosis notifications. In order to quantify the

relationship between SDI and campylobacteriosis

notifications in urban areas, we replaced the spatial

component in the model with a fixed effect for each of

the ten decile values of the SDI.

Figure 3 shows the posterior mean relative risks for

each decile value of SDI for all three regions, with

the shaded bands indicating 95% credible intervals.

There was decreased risk in deprived areas, particu-

larly for indices 8, 9 and 10. The Auckland region

showed the strongest trend, possibly because this re-

gion contains the most urban meshblocks that are

completely free of any rural influences.

Livestock density in rural areas

Table 2 shows the relative risks and P values for each

variable that was not eliminated from the regression

model in each of the three regions of New Zealand.

The variables beef cattle density and poultry density

were eliminated from all models. Only the SDI

was informative for the Auckland rural meshblocks.

This suggests that rural meshblocks in the Auckland

region have a different epidemiology to those in the

Manawatu and Canterbury regions.

Age and gender

In the Manawatu region we obtained additional data

for each case, including gender and age group. Table 3

shows the annual case rates per 1000 people in the

Manawatu region for each gender.

For both males and females, the rate for the

0–4 years age group is twice as high as almost all other

age groups. Observing the estimated spatial distri-

bution of cases for this age group (Fig. 4), it can be

seen that these cases are much more likely to reside

in rural areas. However, in the next age group

(5–14 years), this trend is reversed with most of the

cases occurring in urban Palmerston North. In all of

the spatial distributions for older age groups (data not

shown) the risk surfaces are much smoother (less

varied) with greater risk of notification in urban areas.

Significantly more notifications are reported for

males than females (P<0.0001 for x2 test). The spatial

1·5
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R
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Fig. 3. Posterior relative campylobacteriosis notification risk for urban meshblocks against Social Deprivation Index (SDI).
The shaded bands show 95% credible intervals.
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distributions are similar, but the male notification risk

is slightly more rural with a cluster around the town

of Foxton.

Weather

Figure 5 shows the centred, normalized and smoothed

time-series of campylobacteriosis notifications, mean

maximum temperature and mean hours of sunshine.

The figures suggest that the peak in notifications

occurs before the peak in temperature, with the peak

in hours of sunshine usually located in between

the notification peak and the temperature peak. In

particular the six annual minimums and five annual

maximums in the cases’ curve appear on average 6.5,

4.1 and 11.6 weeks before their counterparts in the

temperature curve, and 2.8, 1.8 and 8.5 weeks before

their counterparts in the hours of sunshine curve;

for the Manawatu, Canterbury and Auckland re-

gions, respectively.

DISCUSSION

Spatial and temporal distributions

The estimated spatial components for all three regions

show large variations in notification rates. There are

some interesting anomalies that may have epidemio-

logical explanations, e.g. occupational exposures as-

sociated with a poultry processing plant may be

responsible for at least some of the increase in risk

in the southwest of the Manawatu region in Figure 1.

Moreover, the reduced risk of notification in very rural

areas may be caused by reduced access to healthcare

facilities, rather than a reduced number of cases.

Features like these confirm that the epidemiology of

campylobacteriosis is highly localized and reinforce

the need for a fine-scale spatial analysis. Boundary

effects and other spatial variations in reporting prac-

tices are a known drawback of such analyses [20], and

there are several boundaries in the regions. The

Auckland region is made up of three DHBs; however,

there is one public health service for all three DHBs

and notifications are managed centrally. This may

explain why there are no noticeable changes in risk

across the boundaries. Although the Manawatu re-

gion consists of a single DHB, the very south of the

map is investigated by a different public health service,

which may explain the difference in notification risk

Table 2. Relative risks for a unit increase in variable, with P values in

parentheses, for each of the predictor variables from the final multiple

Poisson regression model after the stepwise elimination of non-informative

variables by study region

Variable* Manawatu Canterbury Auckland

Social Deprivation Index 0.969 (0.082) 0.955 (0.004)

Poultry farm distance 0.952 (0.024) 1.024 (0.020)
Sheep density 1.039 (0.006)
Dairy cattle density 1.163 (0.051) 1.067 (0.020)

* Variables eliminated from all models : beef cattle density, poultry density. Animal

densities are measured in number of animals per hectare. Social Deprivation Index
ranges from 1 (least deprived) to 10 (most deprived). Poultry farm distance is
given by the connectedness to a meshblock containing a large poultry farm (>1000

birds), so meshblocks containing poultry farms have distance 0, neighbouring
meshblocks distance 1, etc.

Table 3. Campylobacteriosis notification rates per

1000 people subdivided by age group and gender for

the Manawatu region for 2001–2007

Age group
(years)

Notification
rate per
1000 males

Notification
rate per
1000 females

0–4 5.19 4.18
5–9 1.63 1.60
10–14 1.92 1.22
15–19 2.75 1.11

20–29 3.02 2.55
30–39 2.59 2.19
40–49 2.34 1.75

50–59 2.60 1.86
o60 2.85 2.41
Total 2.73 2.00

1670 S. E. F. Spencer and others

https://doi.org/10.1017/S0950268811002159 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811002159


near the town of Otaki. Practices for referral of pa-

tients for laboratory testing and the methods used for

testing faecal specimens differ between geographical

areas in New Zealand [35]. Referral and reporting

practices are also likely to differ between other noti-

fiers, e.g. GPs and hospital clinicians.

Rind & Pierce [36] discuss the large-scale spatial

and temporal trends in campylobacteriosis notifi-

cations in New Zealand over a similar period to the

present study (see also [37]). Although many of their

findings support known hypotheses and the fine-scale

spatial analysis presented here (e.g. lower risk as-

sociated with social deprivation) their attempts to

discuss the changes in the spatial distribution of

notifications over time ignore any changes in the

size and distribution of the underlying population.

Specifically, New Zealand’s total population in-

creased by 7.8% in the 5 years between the 2001

and 2006 censuses. Our study also assumes that the

underlying population remains relatively constant

during the study period, and for this reason we have

avoided any discussion of the determinants of overall

temporal and spatio-temporal trends in case notifi-

cation rates.

The graph of the posterior mean of the temporal

component in Figure 2 reveals some interesting pat-

terns. The summer peaks can be seen to be irregular in

height, duration and timing. Canterbury has the most

seasonal variation with severe but short epidemics in

the summer. Auckland is the most northerly region,

and therefore has longer summer seasons and shorter

winters, with notifications appearing to come in short

bursts during the summer. The Manawatu region has

a much lower notification rate than the other two re-

gions. Figure 2 also shows an increase in the number

of winter cases over time in all regions, culminating in

the winter epidemic of 2006 [22] and eclipsing the

peak observed in 2003 [36]. A winter peak was not

observed in a UK study [38] where a spectral analysis

revealed that the second most significant oscillation

(after the annual cycle) had a 4-month period.

The larger variation between summer and winter

notification rates observed in Canterbury may be due

to its climate, e.g. it experienced larger temperature

variations than the other regions during the time

period under investigation. This finding agrees with

the study of Kovats et al. [9], which found different

seasonal patterns in New Zealand’s North and South

Islands.

Social deprivation

Only a small minority of Campylobacter infections

present for medical attention and become notified.

In the UK, for example, a large population-based

study found there were 7.6 cases of laboratory-

confirmed Campylobacter infection in the community

for every case recorded by the disease surveillance

system [39]. Consequently, cultural, behavioural and

healthcare access factors can have great impact on

the observed pattern of disease incidence and dis-

tribution. The much lower rate of notification in

Relative risk
0·73 – 0·75
0·76 – 0·85
0·86 – 0·95
0·96 – 1·05
1·06 – 1·15
1·16 – 1·25
1·26 – 2·78

Relative risk
0·61 – 0·75
0·76 – 0·85
0·86 – 0·95
0·96 – 1·05
1·06 – 1·15
1·16 – 1·25
1·26 – 2·21

(a) (b)

Fig. 4. Relative risk of campylobacteriosis notification in the Manawatu region for (a) 0- to 4-year-olds and (b) 5- to 14-year-

olds.
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Fig. 5. Centred, normalized and smoothed time-series of campylobacteriosis notifications, mean maximum temperature and
mean hours of sunshine for (a) Manawatu, (b) Canterbury and (c) Auckland.
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deprived urban areas is most likely to be caused by

such surveillance factors. In New Zealand, in some

circumstances, children aged <6 years will not be

charged a fee for visiting a GP (the main route of

notification) but in most other situations a fee is

charged for adults and older children and this could

deter people on lower incomes from visiting a GP.

Bessel et al. [20] found tenfold differences in reporting

rates between health boards in Scotland, which sug-

gests notification rates can be strongly influenced by

reporting practices.

However, there may also be differences in food

consumption patterns between high- and low-income

groups, e.g. low-income groups may consume less

fresh and more frozen poultry, which has been as-

sociated with lower risk of infection [40]. In addition,

those on higher incomes may consume prepared food

from a larger variety of sources. Rind & Pearce [36]

found weak evidence that a high density of fresh food

outlets was a risk factor for campylobacteriosis in

New Zealand even after social deprivation had been

accounted for.

There is one exception to this strong SDI relation-

ship in central Christchurch. In the area indicated by

a white circle in the inset of Figure 1, a very large

number of cases occur in an apparently small popu-

lation. Further investigation has revealed that this is

associated with the accuracy of address match-

ing – the way in which the residential address of the

case is used to provide a spatial location. When there

are very long streets that cross meshblock boundaries

and the house number is not recorded correctly, it

is possible that the case will appear in a nearby

meshblock. However the ‘smoothing effect ’ of the

Markov random field prior for the spatial component

should help to even out this artificial increase in risk.

A summary of address-matching accuracy is given in

Table 1.

Livestock density

The epidemiology of campylobacteriosis differs be-

tween urban and rural areas. While in urban areas the

main transmission route is thought to be via con-

sumption of contaminated food products [5, 6, 22], in

rural areas environmental exposure is thought to play

a larger role in transmission [41]. Such environmental

exposures include direct contact with farm animals or

their faeces [42, 43], swimming in lakes and rivers or

drinking untreated water [14, 27, 44, 45]. Young chil-

dren may be at increased risk from such exposures

due to poorer hygiene [20], which might explain the

much higher rates of infection in this age group.

The multiple regression model for rural notifi-

cations supports the hypothesis that environmental

transmission routes contribute to the burden of dis-

ease in Canterbury, where both sheep density and

dairy cattle density are significant predictors that in-

crease the risk of notification. In the Manawatu re-

gion, dairy cow density was a significant risk factor.

Beef cattle density was not significant in any of the

regions, possibly due to differences in the way beef

and dairy cattle are managed and the degree of direct

human contact with faecal material from these

animals [43]. In both the Manawatu and Canterbury

regions the poultry farm distance variable was sig-

nificant ; however, the coefficient had a different sign

in each region. This contradictory effect may arise

because the number of meshblocks containing large

poultry farms in each region is relatively small (36 for

Manawatu, 53 for Christchurch) and there was a

spatial association in case rates that is not explained

by the predictors. Neighbouring meshblocks would

have similar poultry farm distances and also similar

risks, resulting in a spurious association.

Age and gender

It is thought that the cases occurring in young rural

children are caused by direct contact with animals and

the environments in which animals live [5, 12, 41, 46].

Due to the wider variety of strains that they are ex-

posed to, these children may then develop increased

resistance to re-infection and symptomatic illness in

future years compared to children raised in urban

environments [46]. This hypothesis may explain why

the spatial distribution of notifications in rural chil-

dren aged<5 years shows a higher risk in rural areas,

but this trend is reversed for 5- to 14-year-olds (see

Fig. 4). In the older age groups there was a much

smaller difference between the urban risk and the

rural risk, but the risk was still higher overall in

urban areas (data not shown). Possibly resistance to

campylobacteriosis is maintained in rural populations

through constant low-level exposure which is not

present in urban areas, or any resistance in urban

populations is overcome by the introduction of strain

types not previously experienced or brief periods of

high exposure [46].

It is also important to note that the majority of

New Zealand cases occurring over the period of this

study were likely to have been infected by a single
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dominant source, contaminated poultry meat [5–8,

19]. Consequently, even small demographic and geo-

graphical variations in exposure to this source could

have an important impact on the observed patterns of

disease distribution.

Weather

Figure 5 suggests that the peak in campylobacteriosis

notifications occurs before the peak in temperature

and hours of sunshine. Moreover, each phase of

the cycle in the notifications appears to occur at the

same time as, or prior to, the corresponding phase

in the temperature and hours of sunshine. Such

a relationship generates a high correlation between

weather and notifications, but does not indicate a

causal relationship. This finding may suggest that

weather, and temperature in particular, is not the

primary driver for seasonality in campylobacteriosis.

Ultimately any seasonality in notifications is likely to

be most strongly influenced by human behaviour,

which could potentially be influenced purely by our

expectations of the weather rather than the weather

itself. Alternatively, it may be possible that the risk of

exposure to infection is raised throughout the summer

period but the risk of symptomatic illness reduces as

the season progresses, due to an increase in immunity

in the population. For example, the increased ex-

posure may be attributable to seasonal changes

in food preparation and cooking practices (such as

barbequing) [47–51], and other outdoor activities that

increase exposure to animal faeces [44, 49].

There are many other possible explanations for the

seasonality in campylobacteriosis. Despite the known

importance of poultry as a reservoir for Campylo-

bacter spp., the peak in the prevalence of Campylo-

bacter in broiler flocks has not been established

to generate the peak in human notifications [9, 52].

Summer peaks have sometimes been observed in the

prevalence of Campylobacter spp. in poultry [52–54]

and spring or early summer peaks are observed in

notifications from a range of countries [9], with milder

winters being associated with earlier peaks. It is likely

that temperature does not directly cause either the

peak in human notifications or poultry prevalence.

Instead, each peak may be caused by a range of as yet

unidentified factors which are related to climate. For

example, some authors have suggested that the sum-

mer peak in poultry is caused by increases in fly

populations and changes in management practices

during the summer months [55, 56]. The increases in

notifications observed in the winter and spring,

particularly in rural areas, may be associated with

increased contact with cattle during calving, which is

highly seasonal in New Zealand and generally starts

in late July (see [57, p. 44]).

It is challenging to attempt to infer short time-scale

risk factors for infection from notification data.

Typically notification occurs several days after the

onset of symptoms, which are thought to begin be-

tween 2 and 5 days after exposure [58]. The median

time lapse between the onset of symptoms and re-

porting was found to be 8 days [59]. Variations in these

delay lengths then obscure any causal relationships

between the exposure and the notification. Clearly it

would be preferable to work with the date of onset

rather than the date of notification; however, for the

data used in this study onset dates were rarely re-

corded. In addition the weather in New Zealand is

highly variable and so weather information averaged

over a week and averaged between the weather

stations in the region is likely to lose any detailed

information about how specific weather patterns

influence human behaviour. Consequently we have

not included any detailed regression analysis using

weather variables as predictors in this study.

Concluding remarks

Campylobacteriosis case rates are highly variable in

both space and time, and the drivers for the observed

seasonal trends in particular are poorly understood.

Source attribution studies and other published evi-

dence have implicated exposure to contaminated

poultry as the dominant risk factor for infection in

NZ over the study period [5–8, 60]. Nonetheless, by

examining notification data this study has provided

additional evidence about other potential sources of

infection. In particular, this spatial analysis has high-

lighted the widely differing notification rates over

short distances and confirmed that notification pat-

terns are different in urban and rural areas. Social

deprivation is strongly negatively associated with no-

tification risk; however, it is unclear if this indicates a

difference in infection rates, or if infections are much

less likely to become notifications in deprived areas.

Increasingly sophisticated tools are being devel-

oped to identify the relationship between genotype

and animal host and to assign human infections to

individual sources [4, 8, 61]. When considered along-

side spatial and temporal epidemiological data these

provide considerable insight into the pathways for
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human infection and inform the development and

implementation of targeted control strategies.

APPENDIX

Implementation

Samples from the posterior distribution were ob-

tained usingMCMCmethods. The spatial component

Ui was updated using a mixture of Metropolis-

Hastings proposals and single site conditional prior

proposals [62]. The temporal component Rt was

updated using a mixture of Metropolis-Hastings pro-

posals and conditional prior proposals in blocks of

lengths 4, 5, 9 and 11. The hyperparameters kU and kR
were updated with Gibbs’ steps. Multiple chains

were run from randomly generated starting values for

40 000 iterations with a thinning of 20 after a burn-in

period of 2000 iterations.
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