
The intersection of certain quadrics.

By L. M. BKOWN.

(Received 28th February, 1937. Read 5th March, 1937.)

(Received in revised form 20th July, 1937.)

We investigate in this paper a certain special family of quadric
varieties, that is of F|_1's in [R]. Now among the more important
properties of a quadric in [R] is that it possesses a system or systems
of " generators," i.e., the quadric may be taken as the locus of certain
families of subspaces, the behaviour of these depending on the parity
of R. If i? is even, a quadric Ffn-i in [2n] contains a single family of
[n—l]'s, so it seems likely that in discussing special families of quadrics
in [2n] an important type will be obtained by constraining the quadric
to pass through a number of [n — l]'s.

The freedom of quadrics in [2n] is n(2n-\-3), and since the
postulation of an [n — 1] for quadrics is \n(n + 1)> the freedom of a
quadric in [2n] which is to contain k assigned [n — l]'s in general
position is n (2n + 3) — \hn (n + 1). In order therefore that the
freedom should not be negative we must have k ^ 4 + 2/(n +1), and
it follows that (except for the trivial case where n = 1) the maximum
number of [n — l]'s which may be assigned to a quadric is four. We
therefore will discuss here the nature of the family of quadrics obtained,
subject only to the condition of possessing four assigned [n — l]'s in
general position.

By the reasoning given above, such a family has freedom n, and
the quadrics will thus have a common intersection consisting of a
yn_! of order 2n+1. It is found that this Fn_x (which we shall call
the base of the family) is highly degenerate, and we shall limit our-
selves to an investigation of the component parts of the base and of
their relations to one another.

The establishment of the base occupies § 1 to § 4. In § 1 we define
\n varieties, of known orders and method of generation, which must
belong to the base. We then show in § 2 that these varieties must lie
in eight certain [2n — 3]'s. We calculate the orders of the varieties
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in §3 and show in §4 that the base is composed entirely of the varieties.
Then § 5 to § 7 is concerned with the relative positions of the parts of
the base. In § 5 we discuss how the eight [2» — 3]'s in which the base
lies cut the different parts of the base and are thus able to discover in
§ 6 the relative positions of those components of the base lying in the
same [2n — 3], and in § 7 those of components in different [2n — 3]'s.

In what follows the geometrical detail is somewhat obscured by
the necessity of making n general. It will perhaps make what
happens clearer if we describe without proof the configuration of the
varieties which is obtained for some of the lower values of n. There
is a certain difference, largely superficial, between those cases where
n is even and those where n is odd.

The case in which n is 2 is almost trivial. In a [4] 8 we have
given four lines a, b, c, d. Then there is a unique line a' crossing b,
c, d; a line b' crossing a, c, d, and analogously defined lines c' and d'.
Then the quadrics through a, b, c, d cut in a V\ which degenerates into the
eight lines a, b, c, d, a', b', c', d'.

The nature of the configuration is better displayed in a less
elementary case; let us describe the figures obtained for n = 3 and
n = 4. If n is 3, we are given in a [6] S four generally placed planes
a, b, c, d. Now there is just one plane a' which meets a in a line
L (a, a') and b, c, d in points P (b, a'), P (c, a'), P (d, a'), and there are
analogous planes b', c', d'. The three lines P (c, b') P (d, &'), P (d, c')
P (b, c'), P (b, d') P (c, d') all lie in the [3] A', the intersection of the
three primes be, cd, bd (where be is the [5] containing 6 and c.) The
quadric surface in A' through these three lines is the locus of all the
lines meeting 6, c, d. Let us call it Vl(A'), and let us define
similar quadric surfaces Vx (£')> ^ i (C")» ^ i (•£>')• Ifc w i l 1 be
noticed that both a and a' lie in the [3] A, the intersection of the
primes ab, ac, ad; call them V0(A) and V2(A) respectively and give
analogous names to b, c, d, V, c', d'. Then the base of the quadrics in
S which are constrained to pass through a, b, c, d is a F|6 which degen-
erates into the eight planes Vo (A), Vo (B), Vo (C), Vo (D), V2 (A), V2 (B),
V2{C), V2(D) and the four quadric surfaces V1(A'), V^B'), V1{C),
Vx (D1). These varieties lie in the eight [3]'s A, B, C, D, A', B', C, D';
the intersections of the planes with one another and with the quadrics
is clear from this description; any two of the quadrics cut in two
points, V1(A') and V1(B'), e.g., cutting in the points P(c,d') and
P(d,c').
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If n is 4 we are given in an [8] 8 four generally placed [3]'s,
a, b, c, d which we can call also V0(A), V0(B), V0{C), V0(D). We
first define four further [3]'s a', b', c', a" which we call also V3 (A

1),
V3{B'), V3(C), V3(D')\ a' is the unique [3] meeting a in a point
P (a, a') and b, c, d in lines L (6, a'), L (c, a'), L (d, a'), with analogous
definitions for b', c', d'. Then the three planes A'b = P (6, b') L (ba;),
A'c = P(c,c') L(c,a'), A'd = P(d,d') L{d,a') all lie in the [5] A', the
intersection of the three primes be, bd, cd. Let us define Vl (A') as
the locus of lines in A' meeting these three planes; it is a F|. Define
similarly V1 (B'), Vx (C), Vx (!>'). [I^ (A') does not meet a, but meets
b in the plane A'b and meets c and d analogously; it meets a' in the
quadric surface of lines crossing L (b, a'), L (c, a'), L (d, a'), meets b' in
the line through P (b, b'), crossing L (c, 6'), L (d, b') and meets c' and d'
analogously, and it meets 1)] (Br) in two lines, viz., the line through
P(c,c') crossing L{c,a') and L(c,b') and the line through P{d,d')
crossing L (d, a') and L (d, b'), and meets Vx (C), Vl (D1) analogously.]

Now define the line Ab as that through P(b,b') meeting L(b,c')
and L(b,d') and define similar lines Ac, Ad; then these three lines all
lie with a in the [5] A, the intersection of the three primes ab, ac, ad.
Define V2(A) as the locus of planes in A meeting a in a line, Ab, Ac,
Ad in points; it is a V\. Define similarly VZ(B), V2(C), VZ(D).
[V2 (A) meets a in the quadric surface of lines crossing L (a, 6'), L (a. c'),
L (a, d'), meets b in the line Ab and meets c and d analogously; it does
not meet a', but meets b' in the plane L(a,b') P (b,b') and meets c'
and d' analogously; it meets V.2 (B) in two lines, viz., the line through
P (c, c') crossing L (a, c'), L (b, c') and the line through P (d, d') crossing
L{a,d'), L(b,d'), and meets V2(C) and V2(D) analogously. Finally,
V1 (A') does not meet V2 (A), but Vx (A

1) and V2 (B) meet in a quadric
surface q and a line I defined as follows:—take the line Bc through
P (c, c') crossing L (c, a') and L (c, d'), and the line Bd through P (d, d')
crossing L(a,d') and L(c,d'); their joining [3] cuts the plane A'b in a
line A, and the quadric q is the locus of lines meeting Bc, Bd, A: the
join of P (a, a') and the plane A'b is a [3] meeting Bc, Bd in two points
J, K respectively, and the plane JKP (a, a') cuts b in the line I.]

Then the quadrics through a, b, c, d cut in a F|2 which degenerates into
the eight [3]'«, V0(A), V0(B), V0(C), V0(D), V3(A'), VZ(B'), V3(C),
V3(D') and the eight Vfs V^A'), VX{B'), V^C), VX{D'), V2{A),
V2(B),V2(C),V2(D).

We should perhaps note here that the cases given above are in
many respects untypical. For larger values of n the varieties of the
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base increase both in. number and dimension, the low value of n in
the above cases makes many of the intersections of the varieties
evanescent.

§1.
Let us now consider generally four [n — l]'s a, b, c, d generally

placed in a [2n] S, and the system of quadrics Q which contain
a, b, c, d. We use two main tools in discovering the base of the
system, (i) We find associated with a, b, c, d certain families of flat
spaces every one of which must lie in every quadric Q. (ii) We find
certain special quadrics Q in whose special intersection the base
must lie.

The Varieties V2r{A), V2r(B), V2r(C), V2r(D). We shall begin
by using the first of these methods. Firstly consider a [2r] p
which cuts a in an [r] and b, c, d in [r — l]s where 0 ̂  2r £S n — 1.
A quadric Q will thus cut p in an [r] and three [r — 1] s, all
generally placed, and since the postulation of these elements
for quadrics is | ( r + l ) ( r + 2 ) + 3 . | r ( r + 1) or 2r2 + 3r + 1, while
the freedom of quadrics in [2r] is 2r2 + 3r, it follows that any
quadric Q contains the [2r] p. For example, if a quadric contains a
line and three general points of a plane, then it contains that plane,
or if it contains a plane and three general lines of a [4] it contains
that [4].

Now in general j> is not a fixed [2r]. The freedom of p is in
fact n — 2r — 1 so that the locus' of p is a Fn_1. Let us call it
V2r (A). Since every p lies in every quadric Q it follows that the
whole of V2r(A) lies in every Q. But the base of the family Q is a
Fn_! and consequently V2r (A) is part of this base. By taking different
values of r we obtain a number of such parts; in fact, if n is odd we
have \{n + 1), and if n is even \n varieties such as V2r(A). A note-
worthy particular case occurs if r = 0, V0(A) being the locus of points
which lie in a, i.e., Vo (A) is the [n — 1] a.

By taking in the same manner those [2r]'s which meet b in an [r]
and a, c, d in [r — l]'s we obtain varieties which we may call V2r {B),
and we may define similar varieties V2r(C), V2r{D). All these
varieties form part of the base of the family of quadrics Q.

The Varieties V2r+1(A'), V2r+1(B'), V2r+1(C), V2r+1(D'). We
now find a second series of varieties with similar properties. Consider
a [2r -f 1] p' which cuts a in an [r — 1] and b, c, d in [r]'s, where
0 5 S 2 r + l : g n . — 1. A quadric Q cuts p' in an [r —1] and three [r]'s;
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the postulation of these elements for quadrics is | r ( r+ l)+3.$(r-f- I)(r-f2)
or 2r2 + 5r + 3, while the freedom of quadrics in a [2r 4- 1] is
2r2 + 5r + 2, so every quadric Q must contain the [2r-\-l]p'. For
example, if a quadric contains three generally placed lines and a point
of a [3], then it contains that [3].

As before, the spaces p' • have as their locus a certain variety.
The freedom of p' is n — 2r — 2, so the locus of p' is a Vn_lt which we
shall call V2r+i {A'). For the same reasons as before, V2r+i (A') is part
of the base of the family of quadrics Q, and by taking different values
of r we have a number of different varieties; in fact if n is odd we
have \(n — 1) and if n is even \n varieties such as V w l ( i ' | , We
define V2r+i (B') as the locus of [2r + l]'s meeting b in an [r — 1] and
a, c, d in [r]'s and we define similarly t>2r+i (C) and V2T+I (D1), all
belonging to the base. The total number of varieties we have hitherto
defined is in, whether n be odd or even.

We should notice that if n is odd, Vn_1 (A) is the unique [n — 1]
meeting o i n a [ | ( » - l ) ] and b, c, d in [J (n — 3)]'s and that if n is even,
!)„_! (A') is the unique [n — 1] meeting a in a [%(n — 4) ], b, c, d in
[\ (n — 2) ]'s. So in either case among the varieties of the base
there are contained not only the four original [n — l]'s a, b, c, d but
also four other [n — l]'s, which cross a, b, c, d in a manner depending
on the parity of n. For instance in [4] we have the four original lines
a, b, c, d and also the four lines each meeting three of a, b, c, d; while
in [6] we have the four planes a, b, c, d and four further planes each
meeting one of a, b, c, d in a line and the other three in points.

§2.

The [2n — 3]'s A, B, G, D, A', B', C, D', and their relation to
V2r (A), 1)2r+i {A') etc. Let us now use our second method of approach
to the problem and consider some special members of the family of
quadrics Q. Prominent among these are three which consist of prime-
pairs. In fact, if we denote the prime joining a to 6 by (ab) with
similar symbols for other joins, we have the quadric consisting of (ab)
and (cd), that consisting of (ac) and (bd) and that consisting of (ad)
and (6c). These three quadrics cut in a V%n-% which obviously
degenerates into the eight [2n — 3]'s

A = (ab) (ac) (ad) A' = (be) (bd) (cd)
B = (ab) (be) (bd) B' = (ac) (ad) (cd)
C = {ac) (be) (cd) C = (ab) (ad) (bd)
D = (ad) (bd) (cd) D' = (ab) (ac) (be)
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where, for example, (ab) (ac) (ad) means the [2n — 3] common to the
three primes (ab), (ac), (ad). It follows therefore that the base of the
family of quadrics Q, that is, the total intersection of all the quadrics
Q, including the three prime-pairs, must lie in these eight \2n — 3]'s.
There are n + 1 linearly independent quadrics; if three of these are
taken as the prime-pairs, the remaining n — 2 will cut out the base
on the eight [2n - 3]'s A, B, C, D, A', B', C, D'. They cut A, for
example in n — 2 linearly independent quadrics V\n_i of A, whose
intersection is a Fn_x of order 2n~2, and similarly for the other
[2n — 3]'s making the total base of order 2n+1.

Now we have already discovered 4n varieties which must belong
to the base; let us consider how they lie with respect to the [2n—3]'s.

V2T(A) is the locus of [2r]'s p which cut a in an [r] and b, c, d in
[r — l]'s. Consequently p lies in the prime (ab), similarly it lies in
(ac) and (ad) and hence in A. It follows that the variety V2r(A) lies
in A and similarly V2r(B), V2r(C), V2r(D) lie respectively in B, C, D.
And in the same way V2r+1 (A.') is the locus of [2r + l]'s p' which cut
a in an [r — 1] and b, c, d in [r]'s. And so p' lies in the primes (6c),
(bd), (cd) and hence in A'. Thus the variety V2r+1 (A') lies in A' and
similarly V2r+1 (B'), V2r+1 (C), VZr+1 (D1) lie respectively in B', 0', D'.

Since V2r(A), for example, lies entirely in A, it should be possible
to define it in terms of elements which lie exclusively in A. But in
order to do this we must first investigate the traces in A of the
fundamental spaces a, b, c, d and of the figure obtained from them by
join and section.

The six primes (ab) (ac) (ad) (be) (bd) (cd) cut in a [2n —6] X.
The primes (ab) (ac) (ad) all pass through a, so X cuts a in the \n — 4]
common to a (be) (bd) (cd); call it a. Similarly X cuts b, c, d in
[n — 4]'s b, c, b. It is clear that all eight of A, B, C, D, A', B', C, D'
pass through X.

A contains a and cuts b in the [n — 3] b (ac) (ad) = A b and cuts
c and d in similar [n — 3]'s Ac, Ad, while B, G, D behave analogously.
A' cuts a in the [n — 4] a, cuts b in the [n — 2] b (cd) = A'b and cuts c
and d in similar [n — 2]'s A'c, A'd, while B', C, D' behave analogously.
So a, for example, is cut by B', C, D' in [n - 2]'s B'a, G'a, D'a, by B,
C, D in [n — 3]'s Ba, Ca, Da, and by A' in the [n — 4] a. It is obvious
from their mode of formation that B'a, G'a cut in Da; C'a, D'a cut in
Ba; D'a, B'a cut in Ca; and that all six pass through a. In fact, in a,
B'a, C'a, D'a are three primes, Ba, Ca, Da their intersections by pairs,
and a their total intersection.
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Let us also work out the intersection of any two of A, B, C, D,
A', B', C, D'. I t will be sufficient to 6nd the section of A with any
other \2n — 3] and also of A' with any other \2n — 3] of the set.

From their definitions it is clear that A and A' cut in the
[2ra — 6] X. A and B cut in the [2n — 5] AB, the intersection of
(ab) [ac) (ad) (be) (bd), while A and C, A and D cut in similar [2n — 5]'s
AC and AD. A and B' cut in the [2n — 4] AB', the intersection of
(ab) (ac) (ad) (cd), while A and C, A and D' cut in similar [2n — 4]'s
AC and AD'. AC and AD' cut in AB, AD' and AB' cut in AC,
AB' and AC cut in AD, while all six go through X. AB', AC, AD'
are three primes in A; AB, AC, AD are their intersections by pairs
and X is their complete intersection.

In A, X and Ab both belong also to B, and since they cut in b
their join is a [2n — 5] which we can thus identify with AB.
Similarly AC and AD are the joins of X to Ac and Ad respectively.
And since AB' is the join of AC and AD, AB' is the join of X to AK

and Ad, and similar results are true for AC and AD'.

Let us now find similarly the intersections of A' with the other
[2n - 3]'s. A' cuts 4 in the [2n — 6] X, A' and 5 ' in the [2n - 5]
^4' 5 ' , the intersection of (ac) (ad) (be) (bd) (cd), while A' cuts C and Z>'
similarly in [2w — 5]'s .4' C", ^4' X)'. We notice that A' B' is the same
[2n — 5] as CD, A' C the same as BD and so on. A' and B cut in
the [2TC — 4] ^4' B, the intersection of (aZ>) (6c) (bd) (cd), and ^4' cuts C
and D in similar [2n — 4]'s ^t' C, A' D. A' B and A' C cut in A' D',
A' C and A'D cut in .4' B', A' D and ^4' B cut in A' C and all six go
through X. In fact, A' B, A' C, A' D are three primes in A', A' B',
A' C, A' D' are their intersections by pairs, and X their complete
intersection.

In A', X and A'b both belong to B, and since they cut in b their
join is a [2rc — 4] which we thus identify with A' B. Similarly A' C,
A'D are the joins of X to A'c and A'd respectively. A'B' may be
defined in A' as the intersection of A' C, A' D, and similarly for A' C
and A' D'.

Returning to the consideration of the varieties V2r(A), V2r+1(A')
etc., it is now clear that in A, V2r(A) may be defined as the locus of
[2r]'s which cut a in an [r] and Ab, Ac, Ad in [r — l]'s, and that in A',
V2r+i(A') may be defined as the locus of [2r + l]'s which cut a in an
[r — 1] and A'b, A'c, A'd in an [r], and that similar definitions may be
made for the remaining varieties.
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§3.
This information now permits us to calculate the orders of the

varieties V2r (A), V2r+1 (A'). It will be convenient to prove the results
in a slightly more general form than is immediately required, so we
present the calculation in the form of two Lemmas.

In a [2n — 3] S take one [n — 1] a and three [n — B]'s, /?, y, 8, and
consider the set T of [2r]'s which meet a in an [r] and £, y, 8 in [r — l]'s;
their freedom is n — 2r — 1, so they build a Vn_x.

Lemma L. The locus of T is a Fn_x of order n~1C2r.
In a [2n — 3] S' take one [n — 4] a' and three [n — 2]'s, j3\ y', 8',

and consider the set V of [2r + l]'s which meet a' in an [r — 1] and
/J', y', 8' in [r]'s; their freedom is n — 2r — 2, so they build a Fn_!.

Lemma L'. The locus of V is a F n _ 1 of order n~1C2r+1.
The proof of these lemmas is by a simultaneous induction; let us

make the temporary hypothesis that both lemmas are true for all
values of r if n is replaced by n — 1. We assume in all this work
that the sympol pCg with q > p means zero.

Lemma L. In 2 take the section of F by a general prime
[2n — 4] xs through y, 8; vs cuts a in an [n — 2] a], fi in an [n — 4] fix.
Now [2r]'s of F either (i) lie entirely in cr, or (ii) cut it in [2r — l]'s.

(i) [2r]'s of F in CT cut ax in an [r], j8l5 y, 8 in [r — l]'s. Conse-
quently they all lie in the [2n — 5] ax j8x = a; a contains the [n — 2] ax

and the [n — 4] & and cuts y and 8 in [n — 4]'s y1 and S^ Then the
[2r]'s we are discussing meet ax in an [r], j31; y1( Sx in [r — l]'s, and
therefore afford a case of Lemma L with a, au j81} ylt 8X in place of
S, a, j3, y, 8, and with n reduced to n — 1. So they form a Vn_2 of
order n~2C2r. All the [2r]'s of this variety are [2r]'s of T.

(ii) If a [2r] of F cuts trr in a [2r — 1], this [2r — 1] cuts at in an
[r — 1], )8i in an [r — 2], y and 8 in [r— l]'s and therefore lies in the
[2n — 5] y8 = s; s cuts a in an [n — 3] a2, fi in an [n — 5] /J2- So the
[2r — l]'s in s cut a2, y, 8 in [r — l]'s and j32 in an [r — 2] and thus
afford a case of Lemma L' with s, jS2, a2, y, 8 in place of 2' , a', /3', y', 8',
and with n reduced to n — 1, r reduced to r — 1. So they form a
F n _ 2 of order n~2C2r_1. But we must now show that the whole of
this F n _ 2 lies in the F n _ ! the locus of F. In fact if x i s a n y t 2 r — x]
of this Fn_2, x a n <i )3 cut in an [r — 2] and thus have as their join an
[r + n — 2] xP- Then xfi a n ( i a w^^ c u^ *n a n M P- P anc* X c u * iQ

the [r — 1] common to a and x> so their join is a [2r] ^p. XP a n ( i ]8
both lie in xP> a n ( i therefore XP c u * s /3 in an [r — 1] and so ^P *s a

[2r] of F.
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So it follows that the Fn_x locus of F cuts GT in two Fn_2's
of orders n~2C2r and "~2Cf

2f_i, and therefore the order of Fn_x is
n-2G2r + n-zCZr-i, that is, is n~1C2r.

Lemma L'. In 2' take the section of F" by a general prime
[2n — 4] zs' through a, 0'; trr' cuts y' and 8' in [n — 3]'s y\, 8\. Now
[2r + l]'s of I" either (i) lie entirely in w' or (ii) cut it in [2r]'s.

(i) [2r + l]'s of V in ©' cut a' in an [r - 1], jS', y'j, 8^ in [r]'s.
Consequently they all lie in the [2n — 5] y'l S'i s o ' ; a' cuts a' in an
[n — 5] a'i, cuts jS' in an [«, — 3] fi\ and contains the [n — 3J's y'i, 8'x.
Then the [2r + l]'s we are discussing meet a\ in an [r — 1], jS'j, y'it 8'i
in [r]'s and therefore afford a case of Lemma L' with a', a\, j3'x, y\, S\
in place of 2', a', jS', y', 8' and with n reduced to n — 1. So these
[2r + l]'s form a Fn_2 of order "-2C2r+1. All the [2r + l]'s of thi&
variety are [2r + l]'s of V.

(ii) If a [2r + 1] of V cuts CT' in a [2r], this [2r] cuts a' in an
[r — 1], jS' in an [r], y'x and 8'! in [r — l]'s and therefore lies in the
[2n - 5] a' j3' = s'; s' cuts y'x and 8'i in [« - 4]'s y'2, 8'2. So the [2r]'s
in s' cut a', y'2» S'2 in [r — l]'s and /3' in an [r], and thus afford a case
of Lemma £ with s', /?', a', y'2, 8'2 in place of S, a, j8, y, 8, and with n
reduced to n — 1. So they form a Fn_2 of order "~2C2r. We must
now show that the whole of this Fn_2 lies in the Fn_] locus of I". In
fact, if x' is a n y [2r] °f t Q i s FM_2, x' and 8' cut in an [r — 1] and thus
have as their join an [r + n — 1] x §'• Then x 8' and y' will cut in an
[r] p. p and X' cut in the [r — 1] common to y' and x'. so their join
is a [2r + 1] p x • p X a n ( i S' both lie in x' 8' and therefore x' P c u t s

8' in an [r], and so x'P is a [2r + ]] of V.
So the Fn_i locus of V cuts cr' in two FB_2's of orders n~2C2r+t

and n~zC2r, and therefore the order of Fn_i is n~2C2r+1 +
 n~2C2r, that

its , n~1C2r+1.
If therefore we can prove the two lemmas for any particular

value of n, it will follow that they are true for all higher values.
But in the particular case when n is 3, the lemmas are easily verified.
As regards Lemma L, a is a plane and j8, y, 8 three points in the [3] S.
There are two possible values of r, viz., r = 0, r = 1. In the first case
P is the set of points lying in a; their locus is thus the V\ a of order
2C0; and in the second case, Y is the set of planes meeting a in a line
and passing through /3, y, 8; their locus is the V\ jSyS of order 2<72.
And for Lemma L', ft', y', 8' are three lines in the [3] 2'. The only
value of r is 0, when V consists of the set of lines meeting /?', y', 8' in
points; so the locus of V is a F | whose order is 2CX-
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The two Lemmas are thus proved generally.
We have proved these Lemmas in order to find the orders of

V2r(A) and V2r+1 (A'). Now V2r(A) is a case of the locus in Lemma
L, where A, a, Ab, Ac, Ad take the place of S, a, /?, y, 8. So V2r (A)
is a Fn_x of order n~1C2r. Similarly VZr+1 (A') is a case of the locus
in Lemma L', where A', a, A\, A'c, A'd take the place of S', a, fi', y', S'.
JSo V2r+i (A') is a Fn_! of order n~1C2r+1. There are of course similar
Jesuits for V2r(B), etc.

Now let us recall that (i) the base of the system of quadrics lies
•entirely in A, B, C, D, A', B', C", D', (ii) the total order of the base
in any of these [2n — 3]'s is 2n~2, (iii) the varieties V2r(A), V2r+1(A'),
etc., belong to the base.

But by what we have just proved, the sum of the orders of all
the varieties V2r(A) (i.e. of Vo (A), V2(A), Vi(A), etc.) is l.r

n-1C2r,
0 5S 2r ̂  n — 1. But by elementary algebra this sum equals 2n~2,
~which is just the order we require for the total order of the base in A.

And similarly, the sum of the orders of all the varieties V2r+1 (A')
{i.e., of Vx (A

1), V3 (A'), V5 (A
1), etc.) is Sr—

1C&+1, 0 < 2r + 1 ^ n - 1.
But this is of course again equal to 2n~2 which is the number required
for the total order of the base in A'.

Before concluding that the base consists of these varieties there
is a doubt which must be resolved. We have hitherto tacitly
assumed that the n — 2 linearly independent quadrics in A, say, cut
in a FB_x. If this is so, then the varieties V2r(A) will make up the
•entire base in A, since their total order is 2"~2. But might not these
•quadrics cut in a Fn, or some variety of higher dimension, in the
.same way as three quadrics in [3] may cut in a twisted cubic curve ?
We shall show that they cannot, by considering certain sections of
the figure which we shall develop in the next paragraph.

§4-
The spaces X, Y, Z. We have already defined the [2n — 6]

-X = (ab) (ac) (ad) (be) (bd) (cd). It contains the [n — 4]'s a, b, c, b.
Beginning with these we can build up in X a configuration similar to
that in the original space S, with a, b, c, 6 taking the place of
a, b, c, d. For example, the three [2n — 7]'s (a, b) (ac) (ab) cut
in the [2n — 9] 21, the three [2ra — 7]'s (be) (bb) (cb) cut in the
[2n — 9] W, while all six [2n - 7]'s cut in the [2n — 12] X. In
31, the locus of [2r]'s meeting a in an [r] and b, c, b in [r — l]'s is a
• Fn_4 of order n~iC2r which we may call D2r(2J), and in 2t', the locus of
I2r + l]'s meeting a in an [r — 1] and b, c, b in [r]'s is a Fn_4 of order
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"~4Cf
2r+i which we may call V,Zr+1 (2T). In fact, the properties of the

configuration in X are exactly analogous to those of the general con-
figuration in S with n reduced to n — 3. Furthermore 3E cuts a, b, c, t>
in [n — 7]'s a*, &*, c*, b* and from these can be obtained a similar con-
figuration in X with n reduced to TO — 6; in X we have a [2n — 18] 3E*
in which is another similar configuration, and the process may be
continued until the dimensions of the spaces concerned become
zero, giving a " nes t" of configurations each lying inside all tha t
precede it.

We introduce also two rather similar, but asymetrically placed,
spaces Y and Z in which exist configurations analogous t o tha t in S
but with n reduced t o n — 2 and n — 1 respectively.

Define Y as the \2n — 4] (ac) (ad) (be) (bd). Then i t cuts a in
a (6c) (bd), i.e., in Ba, and similarly cuts b in Ab, c in Dc and d in Cd.
Call these [n — 3]'s at, bit cu dt. From them we may build up in F a
configuration similar to that in S with n reduced to n — 2. I t is
important to be able to recognise the positions which certain
elements in this configuration hold in the original configuration in 8*
Let us identify Ait B, C'it D't.

The [2n — 5] (ait bt) is the join of Ba and Ab; it is consequently
the [2n — 5] AB, and so A{ lies in AB. Now AB cuts a in Ba, b in Ab,
c in c, d in 6. The [2n — 6]c/5o joining c to Ba lies in o ^ for Ba

is a( and c lies in Dc which is c{; so the [2w — 6] cBa is t he \2n — 6]
(aibi)(aici). For similar reasons the [2n — 6] i>Ba is the [2n—6}
(aibi)(aidi). Consequently the \2n — TlAi^ (aibi)(aici)(aidi) is the
intersection of the \2n — 6]'s cBa and bBa in the [2ra — 5] AB, and
similarly Bt is the intersection of cAb and bAb. The [2n — 6] 6i?a lies
in (ajcZj) and the [2n — 6] i>Ab lies in (6jdj), so these [2rc — 6]'s are
(ĉ &j) (â cZj) and (^6^) (fcjrfj), and their intersection is (a;6j) ( a ^ ) (fc^),
i.e., is C'i, and similarly Z)'j is the intersection of cBa and cAb.

The locus of [2r]'s meeting at in an [r] and 6t-, ĉ , rfi in |> — l]'s is-
a Vn_3 of order "-3C2r, called V2T(Ai), and the locus of [2r + l] 's
meeting Oj in an [r — 1] and bt, ci( ^ in [r]'s is a F n _ 3 of order
n-3C2r+1, called ^ ^ ( 4 ' i ) .

I t is of course possible to define Yt as the [2n — 8] (at ct) (af d^
(biCj) (bt di); it cuts ai( bit c{, di in the [n — 5]'s aii; 6^, ciit du and a,
configuration may be obtained from these in Yt similar to the con-
figuration in S, but with n replaced by n — 4; and the process may
be continued until the dimensions of the spaces concerned vanish,,
giving a nest of configurations each lying in all that precede.
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In the same kind of way let us define Z as the [2n — 2] (06) (cd).
Then Z cuts a in a (cd), i.e. in B'a, and similarly cuts b, c, d in A'b,
D'c, C'd. Call these [re — 2]'s ax, blt cx, dx. The configuration obtained
in Z from these is similar to that in S with n replaced by n — 1. The
locus of [2r]'s meeting ax in an [r] and bx, cx, dx in [r — l]'s is a Fn_2

of order n~2CZr, called V2r(Ax), and we can define in a similar way
VZr+1(A\).

Let us identify in 8 Ax and B\. We shall show that Ax is the
join of B'a and b. Since B'a is ax, B'a lies in (ê fex), (axcx), (axdx) and
thus in Ax. b is 6 (ac) (a«Z) (cd), and &! is b (cd) so that b lies in bx and
thus in (axbx). Now ( a ^ ) is (ac) (ab) (cd) for each of (ac), (ab), (cd)
contains both ax and cx, and (axcx) and (ac) (a6)(crf) are both [2n—3]'s.
Hence b lies in (a^j) and for similar reasons b lies in (axdx). Con-
sequently b lies in Ax. Now the join of B'a and 6 is a [2w — 5] and
consequently coincides with Ax.

We shall show similarly that B\ is the join of Ac and Ad. B\ is
{ax c{) (raj dx) (cx dx), and cx is D'c and therefore contains Ac, so that
4̂C lies in (axcx) and in (c!^). Now (a1d1) is (ad) (a6) (cd), so ^ lies

in (axdi). Therefore B\ contains Ac and similarly contains Ad, and
since the join of Ac and Ad is a [2n — 5] it coincides with B\.

We can define ^ as (ai&i) (cxd^). Zx cuts au bly cx, dx in [n — 3]'s
«2» &2> C2> 2̂ a n d a configuration may be obtained from these in Zx

similar to that in S with n replaced by n — 2. And this process may
he continued until the dimensions of the spaces concerned vanish.

Let us now recall the position we had reached with the base of
the family of quadrics Q. We wish to ascertain that the n — 2
linearly independent quadrics in A do not cut in more than a Fn_x.
To do this cut the configuration in A by the prime \2n — 4] AB'.
There is no member of the family in A containing this prime, so the
family Q cuts AB' in n — 2 linearly independent quadrics. AB' cuts
a, in the [n — 2]B'a, cuts Ab in the [n — 4] b, and contains the [n — 3]'s
Ac and Ad, and the n — 2 quadrics pass through these. Now if the
tase in A were a Vn, say, these n — 2 quadrics in AB' would have to
cut in a Fn_3. But one of these independent quadrics in AB' may
be taken as the prime-pair consisting of the join of bB'a and the join
of AcAd, i.e. as Ax and B\, and thus the Vn_x must break up and lie in
Ax and B\. The configurations in Ax and B\ are like those in A and
B' with n reduced by one, so we now see that if the base in A consists
of more than a Fn_1; then the base in either Ax or B\ or both consists
of more than a Fn_2. By a sufficient continuation we can show
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similarly that there is a [3] An_3 or B'n-3 where the base consists of
more than a F2. But this is obviously not the case. A similar proof
applies to B', cutting it by the prime AB'.

We arrive therefore at the theorem:—
The base of the family of quadrics through a, b, c, d consists of the

An varieties V2r(A), V2r(B), V^iC), V2r(D), V2r+1(A'), V2r+1(B'),
V2r+1(C), V2r+l(D').

Thus to take a specific case, the base of the family of quadrics
passing through four [5]'s a, b, c, d in a [12] S breaks up into twenty-
four Vb'B, three lying in each of eight [9]'s A, B, C, D, A', B', C, D'.
A contains the [S]a and three [3]'s Ab, Ac, Ad; A' contains the [2] a
and three [4]'s A'b, A'c, A'd. Then the varieties are

in A in A'.
VQIA), a V\, locus of points Vi(A'), a Ff, locus of lines

in a, (i.e. it is a), meeting A'b, A'c, A'd in
points,

V2(A), & V\°, locus of planes V3 (A
1), a V\°, locus of [3]'s

meeting a in a line, Ab, Ac, meeting o in a point, A'b,
Ad in points, A'c, A'd in lines,

Vi(A), a Ff, locus of [4]'s V5(A'), & FJ, the [5] meeting
meeting a in a plane, Ab, a in a line, A'b, A'e, A'din
Ae, Ad in lines, planes.

There are similar configurations in the remaining [9]'s, B, C, D, B',
€', D'.

§5.
Our task is now to establish the manner in which these varieties

are mutually related. But since they lie in the eight [2n — 3]'s
A, B, C, D, A', B', C", D' we had better find first how these varieties
cut the [2n — 3]'s. There are six kinds of intersection possible;
let us take a typical specimen of each type:—the intersection of
*02T(A) with A', with B, with B'\ the intersection of V2r+1 (A') with
A, with B', with B.

The intersection of V2r (A) with A'. V2r (A) lies in A, and A' cuts
A in X, so the intersection is the intersection in A of V2r (A) with X.
If cr is a [2r] of V2r(A), CT meets Ah, Ac, Ad in [r — l]'s, and thus
meets b, c, b in [r — 2]'s. So nr meets X in at least a [2r — 3] A, but
it might meet it in a [2r — 2] fi, or a [2r — 1] v, or might lie completely
in X.

(i) / / TZ meets X in a [2r — 3] A, then A meets b, c, 6 in [r — 2]'s.
ST meets a in an [r] a and A and a lie in xs and so cut in an [r — 3].
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So A cuts a in an [r — 3] and b, c, b in [r — 2]'s and is thus a [2r — 3}
of V2r_3 (21').

We should now show that all of V2r_3 (21') lies in V2r (A). Take a
general [2r — 3] I of I^r-s (21')! it cuts a in an [r — 3], so their join al
is an [«. + r — 1]. So a£ outs ^46 in an [r — 1] meeting Z in an [r — 2],
and it cuts similarly Ac, Ad. These [r — l]'s and I have as their join
a [2r]p, meeting Ab, Ac, Ad in [r — l]'s, and since p and a lie in ai, ^
cuts a in an [r], and is therefore a [2r] of V2r(A). Consequently
through a general [2r — 3] of V2r_z0\') goes a [2r] of i^rM).

(ii) / / zrr CM<S X in a [2r — 2] JU,, ̂  must meet b, c, 6 in at least
[r — 2]'s; fj, and CT lie in GT and so cut in an [r — 2], so ft cuts a in an
[r — 2]. And, moreover, /x must meet one of b, c, 6 in an [r — 1], for
otherwise the \2n — 4] Xvs would cut the [n — 3] Ab in the [n — 4] b
and in additional points and would thus contain it; it would alsa
contain similarly Ac, Ad and so Ab, Ac, Ad would all lie in X& which
is impossible. So ^ is a [2r — 2] of V2r-2(8), 2̂1—2 (<£) or VZr-2(V)-

Now if m is taken as a genera] [2r — 2] of V2r_2 (3) say, it meets
a in an [r — 2]. So m and a meet in an [r — 2] and their join is an
[n -f- r — 1] am. Then am cuts the [n — 3] .4,. in an [r — 1] through
the [r — 2] common to c and m, and similarly cuts Ad in an [r — 1]
through the [r — 2] common to i> and TO. By joining these two
[r — l]'s to TO, we determine a [2r]p, meeting .46, ^c, .4^ in [r — l]'s.
And since p and a lie in am, p cuts a in an [r], and is thus a [2r}
of t^r (A). Consequently through a general [2r — 2] of V2r_2 (3)
there goes a [2r] of D2r(-̂ )> an<i similarly for general [2r — 2]'s of
V2r_2(£), V2r.2(V).

(iii) / / x3 cuts X in a [2r — 1] v, then v meets b, c, 6 in at least
[r — 2]'s; v and a lie in GT, and thus cut in an [r — 1], so that v meets a
in an [r — 1]. Then v must meet two of b, c, 6 in [r — l]'s, for if say
it meet neither c nor 6 in [r — l]'s then w meets Ac, Ad outside of c, i>y

and so the [2n — 5] Xvs contains both Ac and Ad, which is impossible.
So v is a [2r - 1] of V2T_X (&'), V^^C) or V2T_X (V).

And now if n is a general [2r — 1] of say V2r_1 (3'), then n cuts a
in an [r — 1], so na is an [71 + r — 1] and cuts the [n — 3] Ab in an
[r — 1] through the [r — 2] common to n and b. This [r — 1] joined
to n gives a [2r]p. And p and a lie in na and thus cut in an [r].
Consequently through a general [2r — 1] of V2r-i (8') goes a [2r] of
V2T(A), and similarly for general [2r — l]'s of <U2r_1(C"), I^r-i (!>')•

(iv) Lastly, i/ a [2r] 0/ 1)2,. (.4) Kes wholly in X it is a [2r] of
•U2r(2t), and any [2r] of 1)2,(21) is a [2r] of 1)
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Gonae.que.nily X cuts V2r(A) in the eight varieties.

(i) U*- . (» ' ) .
(») <U2r_2 (S), V2r_2 (<£), V2r_2(V),

(iv) V2r(U).

The order of the section of V2r(A) by X is "-4<72r_3 + 3."-4C2f_2

+ S . " " 4 ^ - ! + ""4C2r) which equals n~xC2t, the order of V2r (A).
This follows immediately from the fact that the order of Vb (21) or of
Vk(U')i8»-*Ck.

We must recollect that the values of the suffixes in this table
must lie between 0 and n — 4, both inclusive. Thus for example, if
« = 10, Vi(A) and D6 (̂ 4) will each cut X in eight varieties, as given
in the table, but V2(A) cuts X in the seven varieties Vo(8), Vo(&),
V0(V), VJ.CB'), t>i(<£'), Vj (£>'), V2(H), as no variety V^W) exists,
while Va (A) cuts X in the four varieties Vb (21'), V6 (3), Va (£), D6 (t)),
as the varieties 1)7(3'), <U7(C), D ? ^ ' ) , V8(U) do not exist in this case.

The Intersection of I ^ r + i ^ ' ) with A. In the same way as
in the last case, this is the intersection in A' of V2r+1 (A') with X.
By an argument of somewhat similar type to that given above
^though it is not exactly analogous) we find the following result

The Intersection of X with V2r+i (A') consists of the eight varieties
W ^2,-2(21),

(ii) V2r_x (3'), VZr_x (£') , V2r.x (V),
(Hi) V2r(&),V2r(£),V2r(V),
(iv) V2r+1(W).

The order of the section is "-4C2r_2+3.n-4C2r_1+3."-4C2r+"-4C2r+i)

•which is equal to n~1C2r+i, the order of V2r+l (A').

The suffixes in this table run from 0 to n — 4, both inclusive.
These two tables may be interpreted slightly differently. They imply

that V2r(U) lies in V2r(A), V2r+1(B% V2r+1(C), V2r+1(D'), V2r+2(B),
V2r+2(C), V2r+2(D), V2r+3(A'), and that V2r+1(W) lies in V2r+1(A'),
V2r+2(B), V2r+2(C), V2r+2(D), V2r+3(B'), V2r+z(C), V2r+3(D'),
<y2r+4(^)- We must of course omit from this table any varieties
which do not exist for the particular value of r under discussion.

The Intersection of V2r(A) with B. Since V2r(A) lies in A, the
intersection of V2r(A) with B is the intersection in A of V2r(A) with
AB. Let us recall that A contains a, and cuts b, c, d in Ab, Ac, Ad,
and that AB cuts a in Ba, contains Ab and cuts Ac, Ad in c, b respec-
tively. Then a [2r] nr of V2r (A) meets Ba in an [r — 2], Ab in an
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[r — 1], and c, b in [r — 2]'s, so it cuts AB in at least a [2r — 2] A,
but might cut it in a [2r — 1] ft, or might lie entirely in it.

(i) If TS cuts AB in a [2r — 2] A, then A cuts Ab in an [r — I] and
c in an [r — 2] and thus lies in the [2re — 6] cAb; similarly it lies in the
[2n — 6] bAb. Consequently it lies in their intersection, a [2n — 7]
which we have agreed to call Bt. Now Bt cuts Ba in Bai (the analogue
in Bi of Ba in B), contains bt and cuts c and b in Bci and Bdi, so the
locus of A is U2r-2 (Bi). Since these [2r — 2]'s are those [2r — 2]'s of
"̂21—2 (-B) which lie in .4 we can denote their locus also by the longer
but more symmetrical notation V2r-z(B, A). Each [2r — 2] of the
locus cuts X in a [2r — 3] which meets a in an [r — 3], b, c, o in
[r — 2]'s, i.e. in a [2r — 3] of t^r-s (2t')» o r i* lies entirely in X; in
fact, V2r_2(B, A) cuts X in V2r_3{W) + V2r_2(8).

Now let I be any [2r — 2] of I^ .g (-B, A) cutting X in a [2r—3] <r
of ^ - 3 (21'). Then 2 cuts a in an [r — 2] so they lie in an [n + r— 1] al,
al and A,, lie in A and thus cut in an [r — 1] Q. Similarly al and ^
cut in an [r — 1] R, while we know that I cuts Ab in an [r — 1] P.
Each of P, Q, R cuts a in an [r — 2] and so they determine with a a
[2r]p. Since p and a lie in al they cut in an [r], and consequently p
is a [2r] of t^r (.4), and so through every [2r — 2] of V2r (B, A) goes a
[2r] of V2r(A); (since we have already shown that there is one if p
lies entirely in X).

(ii) Suppose that a [2r] rrr of V2r (A) cuts AB in a [2r — 1] /* and
in no more. Then ft cuts Ba in an [r — 1], ^46 in an [r — 1], c and b
in [r — 2]'s at least. Now TS meets A,, in an [r — 1], but if any
of this [r — 1] lies outside of c, then zs lies wholly in the [2ra — 4]
XAb Ac, i.e. in AD', for it cuts XAb in fi already. So if ts meets both
Ae and Ad in [r — l]'s outside of c and b, then rs lies in both AD' and
in AC and thus in ^4i? which is contrary to our present hypothesis.
Consequently rs meets either c or 6 in an [r — 1]; we will at present
discuss the first possibility. It implies that /u. meets Ba, Ab, c in
[r — l]'s and 6 in an [r — 2]. So n lies in the two [2n — 6]'s cAb, cBa,
and therefore in their intersection, a [2ra — 7] which we have called
D'i. Now D'i cuts Ba in D'ai, Ab in D'H, c in D'H and 6 in bit so fi is
a [2r — 1] of <U2r_1 (D^). Since such [2r — l]'s are those [2r — l]'s
of V2r_i (D') which lie in C, we can give the locus the name of
^2r-i (D', C). A [2r — 1] of the locus cuts X in a [2r — 2] meeting
a, b, 6 in [r — 2]'s, c in an [r — 1], or it lies in X; in fact V2r_i (D', C)
cuts X in V2r_2 (<£) + U ^ j (V).

Now let w be any [2r — 1] of V2r-1(D', C) cutting X in a
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[2r — 2]CT of V2r-2 (<£)• Then since m cuts a in an [r — 1] their join
is an [n + r — 1] am. But am and Ad lie in A, and so cut in an
j> — 1] Q, while we know that Ab and wi cut in an [r — 1] P ; P and 0
meet a in [r — 2]'s. So the join of a, P and Q is a [2r] j> meeting
Ab, Ae, Ad in [r — l]'s, and p and a cut in an [r] for they both lie in
am. So ^ is a [2r] of V2r (A), and through any [2r — 1] of I^r-] (-£>'. C")
goes a [2r] of V2r(A).

We have similarly a second Fn_3, t ^ r - I (C'» -D')-
(iii) / / a [2r]w o/ V2r(A) lies entirely in AB, it cuts a, c, 6 in

[r — l]'s and b in an [r — 2], and so cuts X in a [2r — 1] of t ^ r - i (3').
Since GT cuts Bo in an [r] and c in an [r — 1] it lies in cBa; it lies
similarly in bBa and thus in their intersection, Ai} and cr is in fact a
[2r] of <U2r(^i)- This locus, consisting as it does of those [2r]'s of
V2r(A) which lie in B, can be called V2r(A, B). I t cuts X in
VZr-i (33') + V2r (21). I t is clear that any [2r]_p of ^ (A, B) is a [2r]
of V2r(A).

So we find that AB cuts V2r (A) in the four varieties
(•) V2r_2(B,A)>i.e.V2r_2(Bi),

(ii) V2r_! (C, D'), V2r_, (D\ C), i.e. V2r.x (C't), V2r_x {D\),
(iii) V2r(A,B),i.e.V2r(Ai).

The total order of the section of V2r(A) by AB is n~3C2r_^
+ 2.»-3C2r_1 +

 n~3C2r, which equals n~1G2r, the order of V2r(A).
The intersection of V2r+1 (C) with D'. I t will be found con-

venient to study this intersection, rather than, say, the intersection
of V2r+1 (A') with B'. I t is the intersection in C of V2r+1 (C) with
C" D'. By applying the same general principles as in the previous
section, though with some differences in method, we may arrive a t
the following conclusion.

The intersection of t^r+i iP') with C D' consists of the four varieties*
(•) ^ar-i (D', C), i.e. V2T_X (D\),

(ii) V2T (B, A), V2r (A, B), i.e. V2r (Bt), V2r (At),
(iii) V2r+1 (C, D'), i.e. V2T+1 (d).

The total order of the section is "-3C2r-i + 2.n~3C2r + n-3C2r+lr

which equals n~1C2r+1, the order of V2r+1 (C).
In both these cases the suffixes lie between 0 and n — 3 inclusive.
These two tables imply that V2r(A;B) lies in V2r(A), V2r+1(C),

D'). V2r+i(B), and that V2r+1(A',B') lies in V2r+1(A')t

) , V2r+2(D), V2r+3(B'), these varieties being supposed to
exist.
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The intersection of V2r(A) with B'. This is the intersection in A
of V2r (A) with AB'', which cuts a in*B'a, cuts Ab in b, and contains
Ac and Ad. A [2r] cr of V2r(A) cuts o in an [r], 4 6 ) ̂ c , .4d in [r — l]'s
and so cuts AB' in at least a [2r — 1] A, but might lie wholly in AB'.

(i) In the former case A cuts Ac and Ad in [r — l]'s, and therefore
lies in their join, which is the [2n — 5] we have called B\. So A is a
[2r — 1] of V2r_1(B'1). Since the [2r — l]'s of this locus are those
[2r — l]'s of V2r_l{B') which lie in A, the locus may be denoted by
V2r_x{B',A).

Now let I be any [2r — 1] of V2r_1 (B', A). Since it meets a in
an [r — 1], al is an [n + r — 1] which cuts Ab in an [r — 1] P going
through the [r — 2] common to I and b. So ?P is a [2r] of <U2r(^)-

(ii) / / the [2r] trr lies wholly in AB' it cuts B'a in an [r] and b
in an [r — 1] and consequently lies in their join, the [2ra — 5] we have
called Ax. In fact, w is a [2r] of D2r(^i)- The [2r]'s of this locus
being those [2r]'s of "V2r{A) which lie in B', the locus may also be
called V2r(A, B'). Any [%r]p of this locus is clearly a [2r] of V2r(A).

So V2r (A) cuts AB' in the two varieties,

(i) V2r_x(B',A),i.e.V2r_1(B'1),

(ii) V2r(A,B'),i.e.V2r(Ax).

The orders of these varieties are B~2O2r-i and n~2C2r, while the order
of ^2r (A) is their sum, n~xG2r.

Since AD' contains AB it would be well to see how the parts
•of the base in AD' contain those in AB. AD' cuts V2r(A) in
V2r_x (Z>\ A) + V2r (A, D'). Now a [2r - 1] of V2r_1(D', A) either
lies in AB or cuts i t in a [2r — 2]. AB is the intersection of AD' and
AC, so if the [2r — 1] lies in AB it is a [2r — 1] of I^r- i (D'> C').
Otherwise the [2r — 1] cuts d in an [r — 2], a, b, c in [r — l]'s, so its
section by AC cuts b in an [r — 1], a, c, d in [r — 2]'s and conse-
quently the [2r — 2] is a [2r — 2] of V2r_2 (B, A). Similarly a [2r] of
1)2/(^. -D) either lies in AB or cuts it in a [2r — 1]. If it lies in
AB it belongs to V2r(A, B). Otherwise it cuts a in an [r], b, c, d in
[r — l]'s, so its section in AC cuts a, b, d in [r — l]'s, c in an [r — 2],
so the [2r — 1] is a [2r - 1] of V2,-x (C\ -D')- But we know that ^ B
cuts V2r(A) mV2r_2(B,A) + V2r_1{C',D') + V2r_1(D',C)+V2r(A,B),
so the entire section is accounted for.

The intersection of V2r+1 {B') with A. We shall find it more con-
-venient again to work out this intersection than the corresponding
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intersection say of V2r+1 (A') with B. I t is the intersection in B' of
1)2r+1 (B') with AB'. By an application of the same type of argument
as that used above we may reach the following conclusion.

The intersection of F2 r +i {B') with AB' consists of the two
varieties.

(i) V2T(A,B'),i.e.V2r(Ai),
(»») V2r+1(B',A), i.e. V2r+1(B\).

The sum of the orders of these varieties is n~2C2r +
 n~2C2r+1, which

is n~1C2r+1, the order of V2r+1 (B').
We already have worked out the intersections of these varieties

with say B' C, remembering that B' C is the same space as AD.
These two tables may be interpreted as saying that "V2r (A, B') lies in

V2r(A) and in V2r+1(B'), and that V2r+1(A', B) lies in V2r+1(A') and
inV2r+2(B).

The suffixes in these tables lie between 0 and n — 2, both
inclusive.

§6.
The intersections of the varieties of the base in the same [2n — 3] A

or A'. We shall now discuss how two of the base varieties in A, such
for instance as V2p(A) and V^ (A), cut one another.

(i) Consider a [2s] A of V2s(A) which lies entirely in a [2r] /x of
V2r(A). We shall show that there is a [2s + 2] v of V2s+2 (A) through A
lying entirely in p. In /z project from A into a skew [2r — 2s — 1];
then the sections by [L of a, Ab, Ac, Ad project into four [r — s — l]'s,
since a meets A in an [s] and Ab, Ac, Ad meet A in [s — l]'s. Now in
a [2r — 2s— 1] there is a finite number of lines meeting four [r—s —l]'s;
in fact, it is easy to show that there are r — s of them. Any one
joined to A gives a [2s + 2] v, which cuts a in an [s + 1], and Ab, Ac,
Ad in [s] s, so v is a [2s + 2] of 1)29+2 (^)-

As an obvious corollary, there is a [2q] v of V^ (A) which contains
A and lies in p, where q has any value from s to r.

(ii) We now show that if two generating elements of two base varieties
in A intersect, then their section is an element in a third base variety in
A. More precisely, consider V2p (A) and V2q{A) with p > q; let a be
any [2p] of V2p(A) and p any [2q] of V2g(A), and let a and /J cut in
an [s] y. Then let the intersection of y with a be a [k] ay, where if y
is skew to a, k = — 1. We shall show that y is a [2k] of V2k (A).

The join R of a and j3 is a [2p + 2q — s] which cuts a in a
[p + q — k] Ra. Now y must cut a and Ab in skew spaces (since they
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themselves skew) so the intersection yAb of y and Ab must be an
{s—k—1 — x], where x ^ 0. Then R cuts Ab in a [p+g—s+fc— 1+*]
RAb; so, since i?a and RAb must be skew in R,

that is, x ^ 0. Consequently a; = 0, and so y.46 is an [s — A — 1], RAb

is a [p + <? — s + k — 1], and similarly yAc, -^Ad are [s — k — l]'s and
iL4c, iL4d are [p + q — s + k — l]'s.

Now RAb and RAC must be skew in R; i.e. 2p-\-2q—2s+2k—2 + 1
^ 2p + 2g — s, i.e. — s + 2k — 1 ̂  0, and y46 and y.4,. must be skew
in y, i.e. 2s — 2k — 2 + 1 ̂  s, i.e. « — 2& — 1 <: 0. These results
imply that s = 2k — 1 + y, where y =• 0, 1, 2. We now show that
y = \.

Substituting the value of s, y is a [2k — 1 + y], ya is a [&], y.46,
•y.4c, y^d are [A; — 2 + y]'a, while i? is a [2p + 2^ — 2i + 1 —y], Ra is
a [p + g — k], RAb, RAC, RAd are \j> + q — k — t/]'s. Consequently
the freedom / of y in A is

= (n-k) (2 -y) - % -y2 + 2y-2,

while the freedom F of R in .4 is

F = (2n — 2p—2q—2k—4 + y)(2p + 2q— 2k+2—y)~ (n—p-q + k—B + y)
(p + q-k+1)- 3(n-p-q + k-l)(p + q-k-y+l)

= (n — p - q + k) y + (p + q - k) (y - 2) - y2 + 2y - 2.

And so, if y = 2, / = — 2 (& + 1), and consequently there are no
spaces such as y existing in A, while if y= 0, .F= — 2(^ + gr — A + 1),
and since it is clear that p + q ̂  k, there are no spaces such as R
existing in A. Therefore y = 1.

It follows that y is a [2&] meeting a in a [k], Ab, Ac, Ad in
%k — l]'s, that is, y is a [2k] of V2k(A).

Now from (i) through y goes a [2q~] of V2g (A) which lies entirely
in a. Therefore the intersection of V2q (A) and V2p (A) consists of those
l_2q\'s of V^ (A) which lie entirely in [2p]'s of V2p (A).

The freedom of a [2q] of V^A) in a given [2^] of V2p(A) is
p — q, while the freedom of [2p]'s of V2p(A) is n — 2p — 1. So the
freedom of the [2g]'s of the intersection of V2g{A) and V2p(A) is
n — 1 — p — q, and consequently the intersection is a variety of dimension
n — 1 — (p — q). Let us denote the variety by ^2 ,̂2? (-4)- We shall
•at present denote its order by the symbol {n; 2p, 2q}\ we shall later
find an explicit expression for this order.
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(iii) Consider the three varieties V2p>2t(A), <^>2r,2q(A), ^2j>, 2g(A),
with p > r > q. Then the intersection of V2p>2r(A) and tU2r,2q{A) **
V2p<2q(A). For if H is any point of the intersection there goes
through H a [2q]fi of V2<1 (A) lying in a [2r] 8 of V2r(A), and also a
[2r]S' of t ^ r ^ ) lying in a [2p] a of V2p(A). So since )8 cuts 8' it
follows by (ii) that there is in 8' a [2q]fi' of V2g(A) through H, and
thus /}' lies in a and H lies in V2p2q (A). And conversely, if /? is any
[2g] of VZPi2g(A), lying therefore in a [2p] a of t ^ ^ i ) , then through
J3 goes a [2r]8 of V2r(A) such that 8 lies in a, by (i); that is, jS lies in
V2p<2r(A) and in ^ 8 , ( 4 ) .

If we write out the varieties in A in the following way,

V0(A) V2(A) V

it follows simply that any variety includes all those which may be
reached by descending diagonally in any manner, and that the inter-
section of any two varieties is that lying diagonally below both, e.g.
V2(A) cuts Vit6{A) in V2fi{A), while V2(A) contains Vofi(A).

(iv) Let us now carry out similar work for the varieties in B'
(rather that A'). We recall that B' is a [2n — 3] containing the
In - 4] b, and the [n — 2]'s B'a, B'o, B'd and that the [2r + l]'s of
^ W i (#') cut f> in an [r - 1], B'a, B'e, B'd in [r]'s. In the same
general manner as in (i) we show that if a [2s + ]] A of V2s+1 (B') lies
entirely in a [2r + 1] /J. of V2r+t (B'), then there is through A a \2q + 1]
•of ̂ j + i (B1) lying in /x, where s < q <r.

(v) Consider now t ^ + i (B') and V2q+1 (B'). Suppose p > q and
let a be a [2p + 1] of V2p+1 (B') and fi a [2q + 1] of V2q+1 (B1), such
that a and fi cut in an [s] y, and let y cut b in a [k — 1] by. Then we
•shall show that y is a [2k + 1] of V2k+1 (-B').

The work is similar to that given in (ii). We consider B, the
join of a and /3. Since y cuts b and B'a in skew spaces yB'a is an
[s — k — x] where x ^ 0. Writing as before the condition that B cuts
b and B'a in skew spaces, we have x^2; hence x ~ 0, 1 or 2.
Similarly y.6',, yJB'd are [s - k - «'], [s-&-a;"], a;', a;"=0, 1, 2. Then
if we make RB'a and -R£'c skew in R we have —s + 2i + a; + x' — 1^0j

and if we make yB'a and yB'c skew in y we have s — 2k — x — x'+ 1^0;
•therefore x + x' = s+2k+l, and similarly x' + x" = s + 2k + 1,
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x" + x = s + 2k + 1, whence x = x' = x" = J (s — 2k + 1). Elimina-
ting s by this relation, y is a [2k — 1 + 2x\, yb is a [A — 1], yB'at

yB'c, yB'd are [k — 1 + x]'s, while R is a [2p + 2q — 2k + 3 — 2a;],
i?b is a O + g — k — 1], E 5 ' a , JSB'C, RB'd are [> + ? — & + 1 — x]'s,
where x = 0, 1, 2. Now in the same way as in (ii) we show that
x = 1, so that y is a [2k -+- 1] of l^j+i (Br). Therefore the intersection
of cO2g+i(B') and V2p+1(B') consists of those [2q + l]'s of V2g+1(B')
which lie entirely in [2p + l]'s of V2p+i(B').

The calculation of dimension proceeds as before. The intersection
is a variety of dimension n — 1 — (p — q). Denote it by t^p+i,29+1 (B')y

and denote its order by {n; 2p + 1, 2q + 1}.

(vi) By an exactly similar argument to tha t in (iii) we may show
that if p>r>q, the intersection of V2p+li2r+i (B') and c^2r+i,2g+i(B')
is cV2p+li2g+i(B'). We can set up a similar scheme showing inter-
sections as that given there.

(vii) The orders of V2p,2q(A), cV2p+12g+-L(B'). Let us now find
the values of {n; 2p, 2q}, {n; 2p -\- I, 2q + 1}. Let us agree that
{n; 2p, 2p) and {n; 2p + 1, 2p + 1} shall denote the orders of V2p (A)
and V2p+1(B'), and that {n; 2p, 2q) shall be considered zero if either
V2p {A) or V2q (A) does not exist (if, e.g. 2p were negative, or greater
than n — 1), with a similar proviso for {n; 2p -f 1, 2q + 1}.

Then {n; 2p, 2q} = n-*+«-1Cp_? x n-2P+2«-1C2q,
{n; 2p + 1, 2g + 1} = n-P+"~1Cp_g X »-^+2«-1C2?+].

I t is easy to verify that these results are t rue for all values of p and
q if n is 3; the only symbols with non-zero values are found by
immediate inspection to be {3; 2, 2} = 1, {3; 0, 0} = 1, {3; 2, 0} = 1,
{3; 1, 1} = 2, and these results are in agreement with the enuncia-
tion. We shall proceed to prove two difference formulae, and by
means of these shall prove the general results by induction.

Consider V2Pt2t{A). Let us find its order by finding the order of
its section by the prime AB'. As we saw in §4, AB' cuts 1)2p(A)-
in !U2j,_1(B'1) +

 <U2l,(^1) and cuts V2g (A) in V2Q_, (B\) + V2g (Ax),
and consequently AB' cuts ^2^,25 {A) in the intersection of
'O2P-i(B'1) + V2p(A1) with V2g^ (B\) + V2g (AJ. I t is clear that,
the intersection is degenerate, and consists of

1° the intersection of V2p(A1) and ^29(^1)
2° the intersection of V2p-1{B'1) and V^^ (B\)
3° the intersection of V2p {AJ and <U2«-i (B\)
4° the intersection of V2p_1(B'1) and V {A{).
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Now 1° is the Vn_2-(p-g) ^2P.2q{^i)> which is of order {n — 1; 2p, 2q}
and 2° is the Vn_2_{p_q) ^23,-1,29-1 (B\), which is of order {n — 1;
2p — l,2q—l}. As regards 3°, the intersections of V2p(Ai) and
^29-1 (B\) must lie in A1B\. But A1B'1 cuts ^ ( ^ . I ) in ^ (^2)
+ ^ p - i (-B'2), and cuts V^ (B\) in U ^ (B'2) + <U2?_2 (^2). So the
intersection 3° breaks up into four parts:—3-1° the intersection of

2̂j> (A2) and V2q-i (-B'2); these varieties lie respectively in V2p (Ax)
and V2q (Ax), so any intersection they have lies in V2p2q(A1) i.e. in
1° : 3-2°, V2p [A2) and V2q_2 (A2) lie in V2p{Ax) and V2q_2 (AJ respec-
tively, so their section lies in V2Pi2q^2(A1) which lies in V2pi2q{Ax): 3-3°,
the section of V^-^B'^ and V2q_1(B'2) lies in V2p_li2q_1{B'1), for
similar reasons: 3-4° the section of t^p-iC-B^) a Q d ^2^-2 (-̂ 2) lies in
^zp-i, 2<?-i (B'i). Considering 4° in the same way, it is the section of
^>2P--i(B'2)+ V2p^2{A2) with V2i(A2) + V2g_1(B'2), and thus breaks
into four parts:— 4-1° the section of V2p_1(B'2) and V2q (A2) lies in
c^2P,2q(A1): 4-2° the section of t>2j.-i(-B'2) and V^^ (B'2) is case 3-3°:
4-3°: the section of V2p_2(A2) and D^- i (B'2) lies in ^ - i ^ - i C - B ' i )
for the same reasons as before. So all these cases give no new
section. But the final case, 4-4°, the section of ^2^-2 (^2) and V2q (A2) is
^2P-2,2g(A2) a variety of dimension n — 2 — (p — q) and order
{n- 2; 2p — 2, 2q}.

The conclusion at which we arrive is therefore that the Vn_1_^_q)

^2p,2q(A) is cut by the prime AB' in the three Vn_2-iP-q)'s ^^^(Aj),
Vvp-i,2q-2(B\), V2p_2t2q(A2). Therefore
{n; 2p, 2q} = {n-l; 2p, 2q} + {»—1; 2p-l, 2g - - l }+{w-2 ; 2p-2, 2q}.

Once this relation is established, the induction from the known
•case TO = 3 to higher values is immediate, for assuming the enunciated
results for values of n less than n, the right hand side of this equation
becomes

which by elementary algebra equals n~p~q~xCp^r
 n-2P+2t>-1C2q, the

•enunciated value for {n; 2p, 2q}.

(viii) In the same way the section of V2p+l! 2q+1 (Br) by the prime
AB' consists of V2p+X2q+1{B\), t ^ M i ) , <UJs1,_li2s+1(.B'2). Therefore
{n; 2p+ l , 2 g r + l }

= {n - 1; 2p + 1, 2q + \} + {n - 1; 2p, 2q) + {n - 2; 2p - 1, 2q + 1}

from this we verify the induction exactly as above.
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§7.
In this paragraph we shall -write [V2p(A), Vzg(B)] to stand for

the intersection of V2p (A) with V2q{B). We shall discard the
convention that in V2Pt^(A), e.g. p is greater than q, and write

The intersections which occur when a variety in one of the
[2n—3]'s A, B, C, D, A', B', C, D' cuts a variety in a different [2n — 3]
are of four types. We name a typical specimen of each kind;

[V2p (A), <U2ff+1 (B% [V2p (A), V2q (B) ],
[V2p+1 (C), V2g+1 (£>') ], [V2p (A), V2q+1 (A') ].

The intersection [V2p (A), VZt+1(B') ]. Since V2p(A) lies in A
and V2q+1 (B') lies in B', [V2p (A), V2q+1 (B1) ] lies in AB'. But AB'
cuts V2p (A) in V2p {Ax) + VZp.x {B\) and cuts V2q+1 (B') in
^ + 1 {B'i) + V2q (At). Consequently [V2p {A), V2q+1 (B') ] con-
sists of V2Pi 29 {Ax) + V2p_1>2q+1 (B\) + [V2p (AJ, V2q+1 (B\) ] +
[V2p_x(B\), V2q{Axn

Now [^^(Ax), ^24+1 (B'i) ] l i e s iQ AXB\ and therefore by an
argument similar to the above consists of ^2^,2? (^2)1 which lies
in V2Pi2q(A]), V2p_li2q+1 (B'2) which lies in V2p_1>2q+1 (B\),
\V2p_x (B'2), V2q(A2)] which lies in V2p_1>2g+1 {B\), and
[ ^ ( ^ 2 ) , V2q+1 (B'2)].

Similarly [V2p_1 (B\), V^ (AJ ] consists of four parts,
^23,-1,29-1 (-B'2) in ^ , 2 4 ( ^ 1 ) . V2],-2,2q(A2) lying in <U2p-i,24+i(-s'i)>

\V2p_x{B'2), V2q{A2)-\ in V2p_it2q+1{B\), and [ ^ . 2 ( ^ 2 ) , <U2a_1(£'2)].
Consequently, apart from V2v2q (AJ and V2p_12q+1 (B\) we have

only [V2p(A2), V2q+1(B'2)] and (v2p_2(A2), V^JiB^)]. But by a
repetition of the argument already used, the only parts of these not
in I V 24 (A) or ^ -1 ,24+1 (-B'I) are [ ^ ( ^ 4 ) , V^ (£'4) ] and
[V2p^i(Ai), ^24-3 (B\) ], and again the only " n e w " parts of these
are [V2p (A6), V2q+1 (B'6) ] and [<U2p_6 (^l6), V2q_& (B'6) ]. Continuing
in this way we arrive at the varieties [V2p (A2x), t^g+i (̂ '22;) ] a n d
[V2p_2x (A2x), ^24-2^+1 (B^) ]. But if 2x > n - 2p - 1, V2p {A2x) no
longer exists, so at a certain stage [ 1 ^ (A2x), ^24+1 (B'^) ] disappears,,
and a similar argument applies to the other intersection.

So V2p (A) and D2 g + 1 (B
1) cut in

1° V2Pi 2q (-4i)> » variety oj dimension n — 2 — \p — q | and of
order {n — 1 ; 2p, 1q),

2° ^23)-!, 24+1 (-S'I).
 a variety of dimension n — 2 — \p — q— 1|

and of order {n — 1 ; 2p — 1, 2q •+- 1}.
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T H E I N T E R S E C T I O N O F CERTAIN QTJADRICS 14{>

W e m a y observe t h a t these m a y be expressed more symmetr ica l ly
as V2pi2q(A,B') a n d V2p_1>2q+1{B', A). V2pt2q(A,B') m a y be
described as t h e locus of those [2q]'a of V^ (A) which (i) lie in B',
(ii) lie in a [2p] of V2p (A) which lies in B'.

For the sake of clarity let us see how this works out in a
particular case; consider for example the intersections when n = 10
of V2p (A) with V5(B').

p = 0
p = 1

p = 2

p = 3

2> = 4

^4.0 M

^4,2 M

Vi (A

^4,6 M

^4.8 M

l )

l H

l H

I ) H

i )H

L ^5,1 (B\)

-V5j(B\)

<rV5 (B\)

a
a

a

a

a

1715r 6

Fi°M

6 ">

- vy»
-Ff
- Ff.

The intersections [V2p (A), V2q(B)], [V2p+1(C), V2g+1(D')]. Con-
sider first [V2p(A), Vzq (B)]. It must lie in AB, and since AB cuts
V2p(A) in <U23,_2(JBi) + ^ - i ( C ' i ) + 'U2j,_1(i)'i) +

 <U2:PM.) and cuts
V2t{B) in V^.t(Ai) + I V i (C'i) + I V i (^'.) + ^24 (-Bi), the inter-
section breaks up into sixfeen parts. Four of these are 1° V2Pi 24_2Mi).
2° ^Vi^- i{C' i ) , 3° V^^^AD'i), 4° ^ .2 ,2 , (5 , ) . The twelve
remaining ones break up again, and we consider each part seperately.
For the sake of brevity we will omit the details; we may conclude
that all the parts lie in the varieties 1° to 4° above, with the possible
exception of [V2p(A^, V^B^ and [<U2})_4 (A«), * V 4 (£«)]. But
these again degenerate, into parts all lying in 1° to 4° with the possible
exception of [V2p (Aiv), V2q (Biv) ] and [V2p_s (Aiv), ? V 8 {Biv) ]. And
continuing the argument far enough, we reach varieties which
disappear.

The intersection of V2p(A) withV2q(B) consists of the four
varieties 1° <U2P,2«-2Mi)> °f dimension n — 3 — \p — q + 11, and order
{n-2; 2p,2q-2}

2°, 3° IV-i^s-iCC'i), V2p_h2q-i(D'i), of dimension

n — 3 — \p — q\, and order {n — 2; 2p — 1, 2q — 1}

4° <^2P-2,2q(Bi) of dimension n — 3 — \p — q — 11, and order

{n — 2; 2p — 2, 2q}. We may write these as

V2pt2q_2(A, B), V u - l l C n ^-1,2,-1(^,0'), ^-2,2,(5,^).

The investigation of [i^+i (Cr), V^^ (D')] follows similar lines.
The intersection of V2p+1(C) with 1)^+1 (D') consists of the four

varieties 1° V2p+12q_1(C'i), of dimension n — 3 — \p — q+l\, and
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order {n — 2; 2p + 1, 2q — 1}

2°, 3° V2Pt2q{Ai), Vzp^Bi), of dimension n - 3 - \ p - q \ y

and order {n — 2; 2p, 2q}
4 0 ^2j>-:i, 2«+x (-O'i). ° / dimension n — 3—\p—q — l\ and order

{n — 2; 2p — l, 2q+l}. We may write these also as V2p+h2q-i(C', D'),
V2p<2q(A, B), V2pi2q(B,A), V2p_li2q+1{D', C).

The intersection [V2p(A), V2g+1(A')]. This intersection must lie
in AA', i.e. in X, and consequently it consists of the intersections of
the sections by X. of cU2p(A.) and 'V2q+1 (-4')> i-e- it is the intersection

+ U2,_2(X>) + ^ -3 (21 ' ) , Vx+iW) + V2g (8) + Us, (<E) + ^ (O) +
U24-1 (35') + 'Uzi-i (€') + U j , . ! (t>') + <U2B_2 (2t)]. It therefore breaks
up into sixty four separate portions. Eight of these are, 1° V2p2q_2(U),
2° Ujfr-i ,*-!^ ') , 3° Ua, . , ,^!(<£') , ^ ^ . j . a , . ! ^ ' ) . 5° *V-2.*(»),
6°1'2j)_2;29(C), 7OtL)2j,_2j2?(r>), 80<U2j,_3i2g+1(y'). If we consider each
of the remainder in turn it is possible to show that all lie in 1° to 8a

or break into parts which lie in 1° to 8°, just as in the previous cases.
For example [V2p (U), <O2,_ (&')] is<U2j), 2 ,_2 f2t, S') + V2p_h 2q_x (8', 21),.
which lie in 1° and 2°, and [V2p(U), V q (3)] is V2Pt2q_2(U, 8) +
^ - 2 , 2 , (8, 2t) + 1^-1,2,-1 (<£', 0') + ^ - i , ^ - ! (t>\ (£'') which lie-
respectively in 1°, 5°, 3°, 4°.

The intersection of tV2p(A) and V2q+1(A') consists of the eight
varieties 1° V2Pt 2 g_2 (21), of dimension n — i — \p — q + 1\ and order
{n-3; 2p, 2q'-2}

2», 3°, 4°, Uap-LSfl-i^'), ^ - i , 2 9 - i («'). ^^- i , 29_i (»'), <>/

dimension n — 4 — \p — q | and order {n — 3 ; 2j> — 1, 2g- — 1}

5°, 6°, 7° V2p_% 2q (&), V2p_2i2q(£), V2p_2i2q(D), of dimension
n — 4 — \p — q — 11 arad o rde r {w. — 3 ; 2̂ 9 — 2, 2g-}

8° 2̂31-3, 2«+i(2t')' °/ dimension n—4 — \p — q— 2\ and order
{n-3; 2p-3, 2q+ 1}.
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