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Abstract

We use a perturbation technique to compute the rotational corrections to the non-radial oscilla-
tion spectrum of a realistic neutron-star model. We compute, to first order in the rotation rate, the
corrections to the normal mode eigenfrequencies and eigenfunctions. We find that ! = I, oscillations
are coupled to | = lp £ 1 oscillations by the Coriolis force. For the toroidal modes, this coupling
introduces a non-zero radial component to the velocity field. We have used this result to compute the
neutrino damping rates for several corrected toroidal modes. This damping mechanism is inoperative
for toroidal modes in a non-rotating star because these modes produce no density nor temperature
perturbations. The neutrino damping time can approach the gravitational radiation damping time
in rotating neutron stars if the central temperature is high enough, (T. > 10® K). The rotationally
induced coupling of spheroidal oscillations to toroidal modes can also produce significant displace-
ments at the stellar surface. This may have interesting implications for channeling energy, e.g., that
associated with a glitch, to the surface of the star. Perhaps this might produce observable effects in
the pulsar emission process or a y-ray burst event.

Motivation

The detection of millisecond variability in PSR 2016+28 prompted Boriakoff (1976) and Van Horn (1980)
to specuiate that quasi-periodic variability in pulsars is a manifestation of oscillations of the underlying
neutron star. Boriakoff suggested that pulsation driven shaking of magnetic field lines “frozen” into the
surface layers of the neutron star might modulate the pulsar emission process.

To investigate the neutron star oscillation hypothesis requires coupling a realistic pulsar magneto-
sphere to an oscillating, magnetic neutron star. Since many magnetosphere models are constructed in
the rotating reference frame of the neutron star (Fawley, Arons, and Scharlemann 1977), it is essential
that we consider this effect in treating the oscillations. As Carroll et al. (1986) have already conducted
a preliminary investigation of the effects of a magnetic field on the oscillations, we devote this paper to
a study of the effects of rotation on the oscillation modes of a neutron star.

Oscillation Equations

The Newtonian hydrodynamic equations valid in a reference frame rotating with uniform angular velocity
2 = 22 have the form

V2% = 47Gp, ()
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S+ V- pu=0, @)
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Here p is the density, ® is the gravitational potential, v = io€ is the velocity field and & is the stress
tensor (including non-zero shear terms in the crust).

To investigate small oscillations of the neutron star, we linearize these equations by introducing a set
of Eulerian perturbation variables f'(r)e’”’. Since most pulsars are “slowly rotating,” in the sense that
the centripetal force due to the stellar rotation is small compared to the gravitational force, we expand
the perturbation variables in powers of the rotation frequency §2; that is, we define

o=09+€0; +... (4)
E=¢"+¢t, +... (5)
where
e = Q/o,. (6)
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Here ¢ is the oscillation frequency, and £ is the displacement field. Inserting these definitions into
equations (1) - (3) and equating powers of € gives a hierarchical system of equations. The system of order
€%, by construction. is equivalent to that which describes a non-rotating neutron star (cf. McDermott et
al. 1988).

To compute the rotational corrections, we expand the displacement §' in terms of the non-rotating
basis functions €°. That is.

£ =) (Ti€j +5;€)) . (7)
]
Here
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are the spheroidal modes, and

¢ Wi(r)oY™(6,4) _1n 3Y:’"(9,¢))
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are the toroidal modes. The index j = (I,m,n) represents the set of “quantum numbers” that defines
a given spheroidal or toroidal mode. From the resulting first-order equations we can determine the
corrections o, S;, and T;.

For the present illustrative calculation we use a spherical unperturbed neutron star model (model
NSO05T7 from McDermott et al. 1988). In order to satisfy the slow rotation criterion, we require

/2

—_—
P> 545 msec(‘M/MO)l/z ,

(10)

where P is the rotation period of the neutron star. The first order corrections to the eigenfrequencies
are, for toroidal modes,
t moyg

NEF ) (11)

and for spheroidal modes,

o _ moo J)" RUP)VR(r) + (7)) po(r)rdr
LT RIUR ()R 10+ D)V ()] po(r)ridr

(12)

These results are in agreement with those of Pekeris et al. (1961), Backus and Gilbert (1961) and Unno
et al. (1979). Note that the degeneracy of the non-rotating eigenfrequencies has been removed, as the
corrections are proportional to the azimuthal order m. Table 1 contains the rotational corrections to the
eigenfrequencies for several quadrupole modes of model NSO5T7.

The corrected toroidal eigenfunctions, to first order in Q, are given by

¢ Q -
l.tm,n = £:,m,n + ;; Z (S:n,}t'ﬁy—l,m,n' + Sf:,::’£?+l.m.n') ’ (13)

n'

and the corrected spheroidal modes are similarly given by

c . Q -
I,‘m,n = el,m.n + 0,_0 Z [an,n'€?.m,n’ + Tr‘11_11|'€:—1,m,n' + T:Iyl;'£:+l,m,n'] . (14)

n'

Here the superscript (c) indicates a corrected function. The coefficients Sf,:},,, Sf,ti,, St

T, % and
T,'nf,‘,, are given in the Appendix. The restriction of the sums to include only corrections from the I + 1,

I — 1, 1 and like-m functions is due to the angular integrals obtained from the first-order oscillation
equations.

’
n'
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Table 1 Rotational corrections to eigenfrequencies

Mode oo €0,/mQ
i 1432 0.1666
.4 17.06  0.1666

20t 27.04 0.1666
281 69.34  0.1666
282 918.7 0.1656
251 25889  0.1192
252 4650.8  0.1443
of 157869  0.4957
21 33798.7  0.0748
2p2 396415 0.0430
2to 33799  0.1666

First-order rotational corrections to the eigenfrequencies of several quadrupole oscillation modes of model
NSO05T7. All frequencies are in Hertz. Here ;g% denotes surface g-modes, ;; and ;i3 the interfacial modes,
13 the shear modes, [f the f-mode, and ;ps the p-modes.
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Figure 1a Correction sums for the 2t9 toroidal mode. Figure 1b Correction sums for the 3¢y toroidal mode.
The cumulative correction to the r-component of the dis- The cumulative correction to the r-component of the dis-
placement, due to the first eight | = 1 surface g-mode placement, due to the first nine | = 3 surface g-mode over-

overtenes, is plotted as a function of In(1 — r/R). The tones, is plotted as a function of In(1 — r/R).
r-component of the displacement is plotted at a constant

value of 8 = 30°. The pulsar period was 0.1 seconds for

this calculation. Note the alternating convergence of the

overtone series.

Results

All calculations reported here were done with model NS05T7 studied by McDermott et al. (1988). This
is a “soft”-equation-of-state model with a radius R. = 9.839km, a mass M, = 0.503 Mg, and a central
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temperature 1.03 x 107 K. It is comprised of a fluid core, a solid crust, and a thin surface fluid “ocean”.
We use a Newton-Raphson relaxation method to compute the normal modes of this model. To compute
the corrected eigenfunctions we must evaluate the sumsin eqs.(13) and (14). We do this by computing the
sum of the corrections due to each class of oscillation mode separately and then adding these contributions
to obtain the total correction. The individual mode series are truncated when each sum has reached some
specified level of convergence. Figure 1 shows the convergence properties of the correction sum, for the
2to mode, arising from surface g-modes. The number of overtones needed for convergence depends on the
type of mode under consideration. The p-modes displayed the “slowest” convergence properties, whereas
the surface g-modes converged at relatively low overtone numbers. The grid spacing of our equilibrium
model sets an upper limit of about 50 to the number of overtones that we can accurately compute.

Corrected Eigenfunction: tg

Corrected Eigenfunction: ,ty
Pulsar per =0 1 sec, m=1,8 =30 deg

Pulsar per = 0.1 sec, m = 1,0 =30 deg
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Figure 2a Plot of the cumulative correction to the r- Figure 2b Plot of the cumulative correction to the 6-

component of the 3¢9 toroidal mode eigenfunction due to
each classof | = 1 and | = 3 spheroidal modes. The r com-
ponent of the uncorrected 3to eigenfunction is also plotted
for comparison. The successive curves indicate the cumu-
lative contributions from surface g-modes (;g% ), intetfacial
modes (;i; and ;iz), shear modes (35 ), and the f and p-

component of the 2tp toroidal mode eigenfunction. Other
details are the same as in figure 2a. Notice the large trans-
verse displacement that is now present at the surface of the
star. This is due to the coupling with surface g-modes,
which have large transverse displacements in the surface
fluid “ocean™.

modes (; f and ;pn). The displacement is shown for 8§ = 30°.
The pulsar period was 0.1 seconds for this calculation.

Figure 2 shows plots of the corrections to the 2ty toroidal mode eigenfunction due to each class of
spheroidal mode, as well as the fully corrected eigenfunctions. The uncorrected modes are also plotted for
comparison. The three parts to the figure (a), (b), and (c) show the r-component, #-component, and the
¢-component respectively of the displacement 5?,1,0‘ Notice the non-zero radial displacement produced
by the spheroidal coupling, and that the toroidal eigenfunctions are no longer confined to the crust of the
star. The coupling with the spheroidal modes (principally the surface g-modes) produces a significant
transverse displacement at the surface of the star. This may enable energy associated with a crust-quake
(glitch) to be channeled into surface motions, where it might produce potentially observable effects in
the pulsar emissi~n process or a y-ray burst event.

We have used these results to compute the neutrino damping rate, in the quasi-adiabatic approxi-
mation (Cox 1980), for the 2t and 2t; toroidal modes. The neutrino damping times thus calculated for
model NSO5T7 are significantly longer than the gravitational radiation damping times computed by Mc-
Dermott et al. (1988); however, the extreme temperature sensitivity of the neutrino emissivity indicates
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Figure 2¢c Plot of the cumulative correction to the ¢-component of the 3¢¢ toroidal mode eigenfunction. Other details
are the same as in figure 2a.

that toroidal oscillations of hotter models should be damped by neutrino emission on timescales com-
parable to the gravitational radiation decay time. A simple scaling argument based on the temperature
dependence of the dominant neutrino reactions, and the results of our calculations for model NS05T7
gives

7, = 1o(P/1sec)?(10" K/T.)", (15)

where 7o = 1.0 x 10!° years, for the 5¢9 mode, T, is the central temperature of the neutron star, and P
is the rotation period.

Conclusions

We have computed the first-order rotational corrections to the oscillation frequencies and eigenfunctions
of a realistic neutron-star model. The presence of the Coriolis force couples I = Iy oscillation modes to
l = lp £ 1 modes. This coupling has interesting consequences for the damping of toroidal oscillations,
via neutrino emission, in a rotating neutron star. The rotationally corrected toroidal eigenfunctions are
no longer confined to the crust, and can have appreciable displacements at the surface of the star. We
intend to use this work in further studies of the interaction between an oscillating neutron star and its
surroundings.

Appendix
The correction coefficients for the toroidal modes are

2id1mmo0(1 + 1)(I+m) [ W (UF) = (1= )VZ,) por®dr
- i ’ "l
@+ 1)(02 ) = 211 mmy) Jo [(U1)? +1(0 = 1)(VZ1)?] por2ar

(15)
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and
g 21041, m n)0ol(l = m + l)f(]’2 wp ( ’,'il +(14+2) l+1) poridr 16)
= . 16
n R ’ n’
" (20 +1)(o? Ttmny 3(l+l,m,n’})f0 [ M+ +1)(0+2) Vl+12] poridr
For the corrections to spheroidal modes we have
l 2Mmo.0,(i,mn) fon [V,"U{" + UMV + V,"V,"'] pordr
Spin = (17)
m,n R !
(Ua(l mmn) Z(I,m,n’)) fo [ Ul )2 +I I+ 1 V ] Po"zd"
-1 210,”"‘,,)(7 l+m IO WI 1 (U" (I+1)V,")p07'2d (18)
mn’ =
1(21+ 1)( a(lm.n) — t(l—l,m,n fO (Wl 1)2 ofzdr
and
2i l—m+1) [FWr, (VP - UP) por?d
41 _ 104(1,mn)0-(1 = m + fo (Vi ") por®d (19)
mn’ =

(1+1)(21+ 1)(df(l,m,n) t(l+1 m.n’) fo Wih)? p0r2dr

Here U and V" are the spheroidal mode eigenfunctions, and W} is the toroidal eigenfunction [cf. eqs.(8)
and (9))].
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