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In this paper, equations are established to solve problems of Rhumb Line Sailing (RLS) on an
oblate spheroid. Solutions are provided for both the inverse problem and the direct problem,
thereby providing a complete solution to RLS. Development of these solutions was achieved
in part by means of computer based symbolic algebra. The inverse solution described attains
a high degree of accuracy for distance and azimuth. The direct solution has been obtained
from a solution for latitude in terms of distance derived with the introduction of an inverse
series expansion of meridian arc-length via the rectifying latitude. Also, a series to determine
latitude at any longitude has been derived via the conformal latitude. This was achieved
through application of Hermite’s Interpolation Scheme or the Lagrange Inversion Theorem.
Numerical examples show that the algorithms are very accurate and that the differences
between original data and recovered data after applying the inverse or direct solution of
RLS to recover the data calculated by the direct or inverse solution are very small. It reveals
that the algorithms provided here are suitable for programming implementation and can be
applied in the areas of maritime routing and cartographical computation in Graphical
Information System (GIS) and Electronic Chart Display and Information System (ECDIS)
environments.
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1. INTRODUCTION. In marine and air navigation, ships and aircraft sailing
or flying on fixed compass headings may travel along Rhumb Lines (RL), hence
knowledge of RL calculation is important. Mercator’s projection (a normal aspect
cylindrical conformal projection) has the unique property that RLs on the Earth’s
surface are projected as straight lines on the map.
Methods of calculating the course and the distance between two points from

knowledge of their latitudes and longitudes, or calculating the latitude and the
longitude of the arrival point from the course and the distance from a known
departure point, are called ‘sailings’. A RL appears as a straight line on a Mercator
chart and as a spiral curve (Loxodrome) on a surface of an oblate spheroid. Both
of these cut all the meridians at the same angle (Thomas, 1952; Williams, 1998).
The distance for a RL on the navigation sphere is within 0·5% of the distance on the
RL on the WGS84 spheroid (Earle, 2006) Figure 1.
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In geodesy or navigation, the ‘direct’ problem (computing position given azimuth
and distance from a known location) and the ‘inverse’ problem (computing azimuth
and distance between known positions) are fundamental operations and can be
likened to the equivalent operations of plane surveying. ‘Radiations’ (computing
coordinates of points given bearings and distances radiating from a point of known
coordinates) and ‘joins’; (computing bearings and distances between points having
known coordinates) are terms frequently used.
Solutions to the direct and inverse problem together constitute what is called the

‘complete’ solution. The terms ‘direct’ and ‘inverse’ in geodesy are usually associated
with the geodesic, which is the unique curve defining the shortest path on the ellipsoid,
but they can also be associated with other curves.
The direct solution for Rhumb Line Sailing (RLS) on the oblate spheroid is often

treated by schemes that require iterative methods (Snyder, 1987; Tseng, 2006). Though
adequate results have been achieved, the need for iterative methods has persisted
without necessarily realizing higher accuracies (Bennett, 1996). Furthermore,
interpolation for latitude in terms of longitude between end points of a RL on the
spheroid has not yet been found in the literature. As a consequence of these
observations, the complete solution to RLS presented here will include a method to
determine latitude for any longitude along the RL. The accuracies attained can satisfy
the requirement of ECDIS and GIS environments.

2. THE DIFFERENTIAL EQUATION OF THE RHUMB LINE. In
rectangular coordinates, points such as P on the oblate spheroid (Figure 2) have
coordinates:

�P = (x, y, z) = (acos βcosλ, acos β sinλ, bsinβ) (1)
where:

β is reduced or parametric latitude.
a is the semi-major axis.
b is the semi-minor axis.

Figure 1. Rhumb Line (Loxodrome) on the Earth’s surface.
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There are various ways of specifying the dimensions of the spheroid other than by
its major and minor radii. The flattening, f, is defined by f=1-b/a, and the eccentricity
e by e2=1-b2/a2. For the World Geodetic System 1984 (WGS 84), a=6378137 m and
f=298·257223563.
A displacement of dβ in reduced latitude along the meridian is illustrated in

Figure 3. The displacements of three axes can be obtained by partial differentiating P
with respect to reduced latitude:

d�p
dβ

= (−asin βcosλ,−a sin β sin λ, bcosβ) (2)

The displacement parallel to the z-axis is bcosβ and the displacement towards the
z-axis is –asinβ. The geodetic and reduced latitude are related by:

tanφ = (1− e2)1/2 tanβ = (a/b) tanβ (3)
The radius of altitude parallel (Figure 3) is given by:

OD = acosβ = acosφ/(1− e2 sin2φ)1/2 (4)
The result of a displacement of dβ in reduced latitude and of dλ in longitude is

illustrated in Figure 3.These displacements together cause a displacement acosβdλ
eastward and a displacement a(1−e2 cos2 β)1/2dβ northward, respectively.
By Pythagoras’s theorem the displacement ds is given by:

ds =
����������������������������������������������
(a2 sin2 β + b2 cos2 β)dβ2 + a2 cos2 βdλ2

√
(5)

Substituting Equation (3) into Equation (5) yields the following:

ds = a

�����������������������������������
cos2 φ · dλ2
1− e2 sin2 φ

+ (1− e2)2dφ2
(1− e2 sin2 φ)3

√
(6)

RLs are paths of constant true course. They thus satisfy the following:

tanα = cosβ���������������
1− ε2 cos2 β

√ dλ
dβ

= cos φ(1− e2 sin2 φ)
1− e2

dλ
dφ

(7)

φ

βa

b

O D

P
OD= a cosβ
DP= b sinβ

'P

Figure 2. Meridian on a spheroid.
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This is most easily treated in geodetic latitude. Integrating Equation (7) yields:

λ = tanα ·MP(φ′) (8)
where MP(φ′), as used here, is the distance in meridional parts.
‘Meridional parts’ are defined as the length of the arc of a meridian between the

Equator and a given parallel (geodetic latitude φ′) on a Mercator chart, expressed in
units of 1 minute of longitude at the Equator. Thus:

MP(φ′) = ln tan(|φ′|/2+ π/4) 1− esin|φ′|
1− esin|φ′|

( )e/2
[ ]

(9)

Combining Equation (6) and (7) with constant true course gives an integral for arc
length along the RL.

S(φ) = secα · a(1− e2)
∫φ
0

(1− e2 sin2θ)−3/2dθ (10)

where Rm=a(1− ε2)(1− ε2 sin2 θ)−3/2 is the radius of curvature of meridian.

3. SOLUTIONS FOR RHUMB LINE SAILING. The arc-length of a
meridian is the primary element for direct and inverse solutions to RLS. The above
integral, Equation (6), can be approximated by a truncated series in the square of the
eccentricity upon expanding the integrand in a binomial series:

S(φ) = secα · a(1− e2)
∫φ
0

∑1
i=0

(−1)i − 3
2
i

( )
(e2sin2 θ)i

[ ]
dθ (11)

ββ=

ββ

β
β

ε
⋅

−

λ
β

α

Figure 3. Triangles resulting from infinitesimal latitude and longitude changes.
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In Equation (11) and Equation (12) below, each term of the binomial series for half
integer multiples is defined by:

− 3
2
i

( )
=

−3
2

· −5
2

. . .
−3
2

− i + 1
( )

i · (i − 1) . . . .1 (11A)

Using trigonometric identities, the powers of the sine term may be reduced to
combinations of cosine terms of the form cos(2·i·φ). Collecting terms with the same
cosine arguments and integrating gives the following series:

S(φ) = secα · a(1− e2) M0φ+
∑n
i=1

M2isin(2 · i · φ)
[ ]

(12)

where:

M0 =
∑1
k=0

(−1)k
22k

− 3
2

k

( )
2k
k

( )
ε2k and M2i =

∑1
k=i

(−1)i+k

22ki
− 3
2
k

( )
2k

k − i

( )
ε2k (12A)

Expansion of coefficients for Equation (12) was facilitated using computer symbolic
processing. These coefficients are shown below truncated at order e10 and M10. Those
up to M8, first given by (Delambre, 1799) were used for confirmation of the results:

M =

M0

M2

M4

M6

M8

M10







=

1
3
4

45
64

175
256

11025
16384

43659
65536

0 − 3
8

− 15
32

− 525
1024

− 2205
4096

− 72765
131072

0 0
15
256

105
1024

2205
16384

10395
65536

0 0 0 − 35
3072

− 105
4096

− 10395
262144

0 0 0 0
315

131072
3465
524288

0 0 0 0 0 − 693
1310720







1
e2

e4

e6

e8

e10







(13)

3.1. RLS Direct Solution. The direct problem computes the arrival position
given azimuth and distance to be travelled from a known location. The distance S(φ1)
to departure point P1 from the Equator is first established and added to ∆S, the
distance to be travelled. Thus the overall distance from the Equator is:

S(φ) = ΔS + S(φ1) (14)
Application of the Lagrange Inversion Theorem (Adams, 1921) or Hermite

Interpolation Scheme produces the inverse solution of meridian arc-length so as to
determine latitude from meridional distance. It is very difficult or even impossible, to
derive the necessary high order derivatives by hand. Fortunately, modern computer
aided symbolic algebra found in mathematical software packages mitigates the effort
required (e.g., Mathematica™, Maple™ or MATLAB™).
Figure 4 shows the construction of the problem to be solved. Two known

components of the RL having an azimuth α are shown in blue and red. The objective is
to determine geodetic co-ordinates φ, λ of the end point.
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Geodetic latitude as a function of distance from the Equator has been determined as
just described through manipulation of Equation (10) to determine its inverse
relationship. This inverse function gives geodetic latitude as in terms of the rectifying
latitude μ:

φ = μ+
∑n
i=1

C2i sin(2 · i · μ) (15)

where distance S(φ) is transformed into the rectifying latitude by:

μ = S(φ) · cosα
a(1− e2) ·M0

(16)

and for which the coefficients of sin(2·i·φ) are:

C =
C2

C4

C6

C8





 =

3/8 3/16 213/2048 255/4096
0 21/256 21/256 533/8192
0 0 151/6144 151/4096
0 0 0 1097/131072





 ·

e2

e4

e6

e8





 (17)

Once the geodetic end point or arrival latitude has been determined, the arrival
longitude can be established from:

λ = λ1 + tanα · MP(φ) −MP(φ1)
[ ] (18)

The tangent of true course (tan α) becomes infinity when true course is East or West.
In which case, RL distance is along a parallel at the latitude of departure. Latitude and
longitude of end point are then set by:

φ = φ1

λ = λ1 + ΔS(1− e2 sin2φ1)1/2
acosφ1


 (19)

3.2. RLS Inverse Solution. The inverse problem, as indicated in Figure 5,
determines the true azimuth and the distance between two points given the departure

λ

=
=

λ
ϕ

( )λϕ

αα⋅∆ βϕ ⋅

αϕ ⋅ϕ

∆

∆+= ϕϕ

Figure 4. Direct problem of RLS.
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and destination coordinates. Since the end points are known, azimuth is determined
from application of Equation (8) to the end point latitudes to obtain the true course of
the RL.

α = atan2 Δλ, MP(φ) −MP(φ1)
[ ] (20)

Equation (21) maps an angle λ−λ1 (in radians) to the interval [−π π] and gives Δλ
correctly as:

Δλ = π · |λ− λ1|
π

− 2 · ceil |λ− λ1|
π

− 1
( )

/2
[ ]{ }

· sign(λ− λ1) (21)

where ceil (x) rounds the elements of x to the smallest integer greater than or equal
to x.
The RL distance between two latitudes is next calculated with Equation (12). So

then:

ΔS = S(φ) − S(φ1) (22)

Since the tangent of true course (tan α) becomes infinity for East or West courses,
Equation (12) cannot be applied to calculate the distance. In which case, the RL
distance is the arc-length of part of the parallel at the latitude of departure given by:

S(λ) = a(λ− λ1) cosφ1
(1− e2 sinφ1)1/2

(23)

3.3. Interpolation of the Rhumb Line at Other Longitudes. Once a RL has been
determined between two end points, it may be required to determine the latitude at
one or more other longitudes between end points. Equation (8) provides the longitude
in terms of latitude. The geodetic latitude of any point along the RL can be
determined once the longitude and true course have been specified. Figure 6 shows a
RL for which latitude φ is to be found for an arbitrary longitude λ.

λ

( )λϕ

( )λϕ

=αϕϕ − ϕ

ϕ

λλ −

=∆
=ϕ

=ϕ

Figure 5. Inverse problem of RLS.
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First, application of Equation (8) gives the meridional parts at a given longitude
along RL:

MP(φ) = (λ− λ1)
tanα

+MP(φ1) (24)

Secondly, the conformal latitude δ associated withMP(φ1) can be obtained from the
following:

ln tan(δ/2+ π/4)[ ] = MP(φ) (25)

λ

( )λϕ =

( )λϕ

α

ϕ

λλ −

=ϕ

ϕ
α
λλϕ +

−
=α

λλ −

Figure 6. Latitude in terms of longitude.

Figure 7. A ship steers from F (40°43′N, 74°00′W) to T (55°45′S, 37°37′E).
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which is equivalent to:

δ = 2atan(exp(MP(φ))) − π/2 (26)
or:

δ = asin(tanh(MP(φ)) (27)
The inversion of Equation (27) has once again been accomplished via the Lagrange

Inversion Theorem (Adams, 1927) or the Hermite Interpolation Scheme. Computer
symbolic algebra was again used to determine coefficients of a series for conformal

Table 1. Positions differing in distance and recovered distances and courses. Applied Equations: (15),
(18), (20) and (22).

True course: 134·9794964. Total Distance: 8165·8343419 nm. *: Recovered Data − /W,+/E

Distance Course Latitude Longitude Distance* Error Course* Error

1000 134·9795 28·91651 −59·63111 999·999999983 1·742E-08 134·9795 0·000E+00
2000 134·9795 17·09592 −46·82160 1999·999999995 5·150E-09 134·9795 0·000E+00
3000 134·9795 5·26174 −34·80436 3000·000000000 1·000E-11 134·9795 0·000E+00
4000 134·9795 −6·57686 −23·01453 4000·000000001 −5·498E-10 134·9795 0·000E+00
5000 134·9795 −18·40995 −10·93931 5000·000000007 −6·620E-09 134·9795 0·000E+00
6000 134·9795 −30·22855 1·99987 6000·000000019 −1·929E-08 134·9795 0·000E+00
7000 134·9795 −42·02616 16·60643 7000·000000031 −3·148E-08 134·9795 0·000E+00
8000 134·9795 −53·79982 34·23991 8000·000000041 −4·085E-08 134·9795 0·000E+00
8165·83 134·9795 −55·75000 37·61667 8165·834341902 −4·229E-08 134·9795 0·000E+00

Figure 8. Sampling by Given Longitude.
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latitude. The resulting expression for geodetic latitude in terms of conformal latitude
(Adams, 1927; Thomas, 1952; Snyder, 1987) is then:

φ = δ+
∑n
i=1

K2i sin(2 · i · δ) (28)

Expanding to O(e8), terms for K are approximately given by.

K =
K2

K4

K6

K8





 =

1
2

5
24

1
12

13
360

0
7
48

29
240

811
11520

0 0
7

120
81
1120

0 0 0
4279

161280







e2

e4

e6

e8





 (29)

4. NUMERICAL TEST. A ship steers from a departure point at F (40°43′N,
74°00′W) to a destination at T (55°45′S, 37°37′E) along the RL on the WGS84 Earth
(Figure 7). Course and distance are initially determined from the given end points
using Equations (20) and (22). Latitudes and longitudes of waypoints beyond
departure point at F at distances of 1000, 2000, . . . nautical miles are then found after
using Equations (15) and (18). Results are shown in Table 1.
For each value of latitude and longitude calculated at each waypoint, Equations

(20) and (22) are applied to recover their corresponding values of course and distance
as shown in Table 1 in the columns for Course* and Distance*. It can be seen that the
resulting differences are negligible as shown in Table 1, Column 6 (Distance Error)
and Column 8 (Course Error).
In another test for recovered longitude, the latitudes of waypoints beyond the

departure point F located at 70° W, 60° W, 50°W, . . . , 30° E (Figure 8) are first
found after using Equations (24), (27), and (28) and are shown in Table 2, column 2
(Latitude).
On applying Equation (18) using the calculated latitude shown in Table 2, column 2

(Latitude), the recovered longitude was then calculated as shown in Table 2, column

Table 2. Latitude in terms of Longitude and Recovered Longitude. Applied equations: (18), (24), (27),
and (28).

Longitude Latitude Recovered Longitude Error

−70 37·60573351 −70·0000000000372 3·720E-11
−60 29·24033053 −59·9999999999941 −5·898E-12
−50 20·12376295 −49·9999999999124 −8·760E-11
−40 10·43718086 −39·9999999998931 −1·069E-10
−30 0·43596702 −29·9999999999942 −5·802E-12
−20 −9·57868828 −20·0000000001025 1·025E-10
−10 −19·30355896 −10·0000000000935 9·350E-11

0 −28·47787520 −0·0000000000124 1·238E-11
10 −36·91346593 10·0000000000359 −3·590E-11
20 −44·50384451 20·0000000000292 −2·920E-11
30 −51·21555600 30·0000000000034 −3·400E-12
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3. The resulting differences when compared with the given values of Table 2, column 1
are also negligible as shown in Table 2, column 4 (Error).

5. CONCLUSIONS. Accurate solutions to the direct and inverse problems of
Rhumb Line Sailing (RLS) have been described and demonstrated. These two
solutions provide useful alternatives to previous approaches in that they require no
recourse to integrals or iteration methods. The solution for latitude in terms of
longitude has also been described and demonstrated. This was achieved by application
of an inverse expansion of conformal latitude that gives very accurate latitude in terms
of longitude without iteration.
These three series along with the formula for meridional parts are seen to be simple,

direct and computationally efficient. They provide positioning accuracies involving
distance, position, and true course that are in the sub-metre range and which are also
commensurate with the current levels of accuracy achieved by Global Navigation
Satellite Systems (GNSS), while at the same time, they provide a complete solution to
RLS. The algorithms provided here are easily incorporated into computer software
and are well suited to vessel route planning and cartographical computation in
Graphical Information System (GIS) and Electronic Chart Display and Information
System (ECDIS) environments.
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