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Abstract

In 1991, Andrews and Hickerson established a new Bailey pair and combined it with the constant term
method to prove some results related to sixth-order mock theta functions. In this paper, we study how this
pair gives rise to new mock theta functions in terms of Appell–Lerch sums. Furthermore, we establish
some relations between these new mock theta functions and some second-order mock theta functions.
Meanwhile, we obtain an identity between a second-order and a sixth-order mock theta functions. In
addition, we provide the mock theta conjectures for these new mock theta functions. Finally, we discuss
the dual nature between the new mock theta functions and partial theta functions.
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1. Introduction

Throughout this paper, let q denote a complex number with |q| < 1. Here and in what
follows, we adopt the standard q-series notation [12]. For any positive integer n,

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1 − aqk), (a; q)∞ :=
∞∏

k=0

(1 − aqk),

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

For convenience, we use (a)n to denote (a; q)n.
Jacobi’s triple product identity is stated as

j(x; q) := (x)∞(q/x)∞(q)∞ =

∞∑
n=−∞

(−1)nq(n
2)xn.
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Let m and n be integers with m positive. Define

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), Jm :=
∏
i≥1

(1 − qmi),

j(b1, b2, . . . , bm; q) := j(b1; q) j(b2; q) · · · j(bm; q).

Recall that mock theta functions are q-series which were introduced by Ramanujan
in his last letter to G. H. Hardy on January 12, 1920. In that letter, Ramanujan listed
seventeen mock theta functions and divided them into four classes: one class of
third-order, two of fifth-order and one of seventh-order. However, Ramanujan neither
rigorously defined a mock theta function nor the order of a mock theta function. Over
the years, mock theta functions have received a great deal of attention [1, 11, 15,
16, 30, 31]. Until 2002, it was not known how these functions fit into the theory of
modular forms. A new chapter in the study of mock theta functions was opened due to
the work of Zwegers [33] and Bringmann and Ono [8, 9]. We now know that each of
Ramanujan’s mock theta functions is the holomorphic part of a weight 1/2 harmonic
weak Maass form f (τ), where q := e2πiτ and τ = x + iy ∈ H. Following Zagier [32],
the holomorphic part of any weight k harmonic weak Maass form f is called a mock
theta modular form of weight k. If k = 1/2 and the image of f under the operator
ξk := 2iyk(∂/∂τ) is a unary theta function, then the holomorphic part of f is called a
mock theta function. Hickerson and Mortenson [17] defined Appell–Lerch sums as
follows.

Definition 1.1. Let x, z ∈ C∗ := C\{0} with neither z nor zq an integer power of q. Then

m(x, q, z) :=
−z

j(z; q)

∞∑
r=−∞

(−1)rq(r+1
2 )zr

1 − qr xz
.

Specializations of the Appell–Lerch sums are perhaps the most important class of
mock theta functions. In other words, for any function f (z), if we could express f (z)
as Appell–Lerch sums up to the addition of a weakly holomorphic modular form, then
the function f (z) is a mock theta function. Hickerson and Mortenson [17] studied the
properties of Appell–Lerch sums and established the representations of mock theta
functions in terms of Appell–Lerch sums. For more on mock theta functions, their
remarkable history and modern developments, see [13, 27, 32].

Recently, many new mock theta functions have been found [7, 14, 18–21].
McIntosh [22] defined three second-order mock theta functions which were given by

A(q) =

∞∑
n=0

qn+1(−q2; q2)n

(q; q2)n+1
=

∞∑
n=0

q(n+1)2
(−q; q2)n

(q; q2)2
n+1

,

B(q) =

∞∑
n=0

qn(−q; q2)n

(q; q2)n+1
=

∞∑
n=0

qn2+n(−q2; q2)n

(q; q2)2
n+1

,

µ(q) =

∞∑
n=0

(−1)nqn2
(q; q2)n

(−q2; q2)2
n

. (1.1)
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Notice that B(q) and µ(q) appeared in Ramanujan’s ‘Lost’ notebook [28]. In this paper,
we define the following new mock theta functions which can be represented as the form
of Appell–Lerch sums.

R1(q) : =

∞∑
n=0

qn(1 + q)(−1; q2)n

(q; q2)n+1
=

∞∑
n=0

qn2
(−q; q2)n+1

(q; q2)2
n+1

, (1.2)

R2(q) : =

∞∑
n=0

(−1)nq2n(1 + q)(−q; q2)n

(−q2; q2)n
=

∞∑
n=0

(−1)nqn2+2n(1 + q)(q; q2)n

(−q2; q2)n(−q2; q2)n+1
. (1.3)

Notice that

R1(q) =

∞∑
n=0

qn2
(1 + q2n+1)(−q; q2)n

(q; q2)2
n+1

= R′1(q) + A(q),

where

R′1(q) :=
∞∑

n=0

qn2
(−q; q2)n

(q; q2)2
n+1

.

Based on the following theorems, R′1(q) is also a mock theta function.

Theorem 1.2. We have

R1(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
j=−∞

(−1) jq2 j2+ j(1 + q2 j+1)
1 − q2 j+1 = −4m(q, q4, q) + 1, (1.4)

R2(q) =
2(q; q2)∞
(q2; q2)∞

∞∑
j=−∞

q2 j2+3 j

1 + q2 j = −4m(−q, q4,−q) −
J5

1

J4
2

+ 2. (1.5)

Additionally, we establish some identities involving these mock theta functions and
some second-order mock theta functions. Meanwhile, we find a new identity between
µ(q) and a sixth-order mock theta function ψ(q) that appeared in [28, page 13] as
follows.

ψ(q) =

∞∑
n=0

(−1)nqn2+2n+1(q; q2)n

(−q; q)2n+1
.

Theorem 1.3. We have

R1(q) − 4A(q) = 1, (1.6)
R2(q) + µ(q) = 2, (1.7)

µ(q3) − 2ψ(q) =
J2

1 J4J5
6

J3
2 J3J3

12

. (1.8)

In [15], Hickerson introduced the universal mock theta function

g3(z; q) := z−1
(
−1 +

∞∑
n=0

qn2

(z)n+1(qz−1)n

)
=

∞∑
n=0

qn(n+1)

(z)n+1(qz−1)n+1
.
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Then Gordon and McIntosh [13] defined a universal mock theta function as

g2(z; q) :=
∞∑

n=0

(−q)nq(n+1
2 )

(z)n+1(qz−1)n+1
.

Another universal mock theta function K(z; q) given by McIntosh [23] was

K(z; q) :=
∞∑

n=0

(−1)nqn2
(q; q2)n

(q2z; q2)n(q2z−1; q2)n
. (1.9)

The two universal mock theta functions g2(z; q) and K(z; q) are related by modular
transformation [23]. Notice that all the fifth-order mock theta functions can be
expressed by g3(z; q) in [15]. In addition, Hickerson [16] showed that Ramanujan’s
seventh-order mock theta functions can be expressed as specializations of g3(z; q).
Later, Gordon and McIntosh [13] gave the expressions in terms of g3(z; q) for the third-
order mock theta functions. For the expressions of the other mock theta functions in
terms of universal mock theta functions, see [13, 24].

Finally, we present the mock theta conjectures for R1(q) and R2(q).

Theorem 1.4. We have

R1(−q) = −K(−1; q) +
J5

1

J4
2

+ 1, (1.10)

R2(q) = −K(−1; q) + 2. (1.11)

This paper is organized as follows. In Section 2, by applying a Bailey pair given
by Andrews and Hickerson [6], we prove Theorem 1.2. In Section 3, by means
of some properties of Appell–Lerch sums, we prove Theorems 1.3 and 1.4. In the
final section, based on the dual nature between Appell–Lerch sums and partial theta
functions introduced by Mortenson [25], we study the dual nature of R1(q) and R2(q).

2. The proof of Theorem 1.2

In this section, combining the Bailey pair given by Andrews and Hickerson [6] and
the properties of Appell–Lerch sums collected by Hickerson and Mortenson [17], we
give the representations for R1(q) and R2(q) in terms of Appell–Lerch sums.

Definition 2.1. The sequences (αn, βn) are called a Bailey pair relative to (a, q) if
(αn, βn) satisfy

βn =

n∑
r=0

αr

(q)n−r(aq)n+r
.

Bailey’s lemma says that if (αn, βn) is a Bailey pair relative to a, then∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)nβn =
(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

∑
n≥0

(ρ1)n(ρ2)n(aq/ρ1ρ2)n

(aq/ρ1)n(aq/ρ2)n
αn, (2.1)

provided both sums converge absolutely.
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Lemma 2.2 [6, Theorem 2.3]. Let a, b, c and q be complex numbers with a , 1, b , 0,
c , 0, q , 0 and with none of a/b, a/c, qb and qc of the form q−k with k ≥ 0. For n ≥ 0,
define

A′n(a, b, c, q) =
qn2

(bc)n(1 − aq2n)(a/b)n(a/c)n

(1 − a)(qb)n(qc)n

n∑
j=0

(−1) j(1 − aq2 j−1)(a) j−1(b) j(c) j

q j( j−1)/2(bc) j(q) j(a/b) j(a/c) j

and

B′n(a, b, c, q) =
1

(qb)n(qc)n
.

Then the sequences {A′n(a, b, c, q)} and {B′n(a, b, c, q)} form a Bailey pair relative to a.

Next, we review some properties for Appell–Lerch sums. Following [17], the term
‘generic’ means that the parameters do not cause poles in the Appell–Lerch sums or in
the quotients of theta functions.

Proposition 2.3 [17]. For generic x, z, z0, z1 ∈ C
∗,

m(x, q, z) = m(x, q, qz), (2.2)

m(x, q, z) = x−1m(x−1, q, z−1), (2.3)
m(qx, q, z) = 1 − xm(x, q, z), (2.4)

m(x, q, z) = m(x, q, x−1z−1). (2.5)

Notice that the equality of the two series in the definition of R1(q) can be obtained
by replacing q, a, b, d, e by q2, q2, −q3, q3, q3 and then letting c tend to ∞ in the
Sears–Thomae transformation formula [12, Equation (III.9)].

∞∑
n=0

(a)n(b)n(c)n

(d)n(e)n(q)n

( de
abc

)n
=

(e/a)∞(de/bc)∞
(e)∞(de/abc)∞

∞∑
n=0

(a)n(d/b)n(d/c)n

(d)n(de/bc)n(q)n

( e
a

)n
.

Similarly, the equality of the two series in the definition of R2(q) can also be obtained
by replacing q, a, b, d, e by q2, q2, q, −q2, −q4 and then letting c tend to∞ in the above
identity.

Proof of Theorem 1.2. Based on Lemma 2.2, we obtain

A′n(q2, q, q, q2) =
q2n2+2n(1 − q)(1 + q2n+1)

(1 + q)(1 − q2n+1)

n∑
j=−n

(−1) jq− j2− j, (2.6)

B′n(q2, q, q, q2) =
1

(q3; q2)2
n
. (2.7)

Replacing q, a, ρ1 by q2, q2, −q3 and setting ρ2 →∞ in (2.1), and then applying (2.6)
and (2.7), we conclude that

∞∑
n=0

qn2
(−q3; q2)nB′n(q2, q, q, q2) =

(−q; q2)∞
(q4; q2)∞

∞∑
n=0

qn2
(1 + q2n+1)

1 + q
A′n(q2, q, q, q2).
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That is,
∞∑

n=0

qn2
(−q; q2)n+1

(q; q2)2
n+1

=
(−q; q2)∞
(q2; q2)∞

∞∑
n=0

n∑
j=−n

(−1) jq3n2+2n− j2− j(1 + q2n+1)2

1 − q2n+1 .

Combining (1.2) and the above identity yields

R1(q) =
(−q; q2)∞
(q2; q2)∞

( ∞∑
n=0

n∑
j=0

+

∞∑
n=1

−1∑
j=−n

)
(−1) jq3n2+2n− j2− j(1 + q2n+1)2

1 − q2n+1

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=0

∞∑
n= j

+

−1∑
j=−∞

∞∑
n=− j

)
(−1) jq3n2+2n− j2− j(1 + q2n+1)2

1 − q2n+1

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=0

∞∑
n= j

(−1) jq3n2+2n− j2− j(1 + q2n+1)2

1 − q2n+1

−

∞∑
j=0

∞∑
n= j+1

(−1) jq3n2+2n− j2− j(1 + q2n+1)2

1 − q2n+1

)

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=0

(−1) jq2 j2+ j(1 + q2 j+1)2

1 − q2 j+1

)

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=0

(−1) jq2 j2+ j(1 + 2q2 j+1 + q4 j+2)
1 − q2 j+1

)

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=−∞

(−1) jq2 j2+ j

1 − q2 j+1 +

∞∑
j=−∞

(−1) jq2 j2+3 j+1

1 − q2 j+1

)
, (2.8)

which implies the first equation in (1.4). Furthermore, based on the definition of
Appell–Lerch sums and (2.8),

R1(q) =
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=−∞

(−1) jq2 j2+ j(1 + q2 j+1)
1 − q4 j+2 +

∞∑
j=−∞

(−1) jq2 j2+3 j+1(1 + q2 j+1)
1 − q4 j+2

)

=
(−q; q2)∞
(q2; q2)∞

( ∞∑
j=−∞

(−1) jq2 j2+ j

1 − q4 j+2 + 3
∞∑

j=−∞

(−1) jq2 j2+3 j+1

1 − q4 j+2

)
= m(q3, q4, q−1) − 3m(q, q4, q)

= 1 − 4m(q, q4, q) (by (2.3) and (2.4)),

which gives the last equation in (1.4).
Next, according to Lemma 2.2, we have the following Bailey pair.

A′n(q2,−1,−q2, q2) =
2q2n2+2n(1 + q2)(1 − q4n+2)
(1 − q2)(1 + q2n)(1 + q2n+2)

n∑
j=−n

(−1) jq− j2− j,
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B′n(q2,−1,−q2, q2) =
1

(−q2; q2)n(−q4; q2)n
.

By inserting the above Bailey pair into (2.1), replacing q, a, ρ1 by q2, q2, q and letting
ρ2 →∞,

∞∑
n=0

(−1)nqn2+2n(q; q2)nB′n(q2,−1,−q2, q2)

=
(q; q2)∞
(q4; q2)∞

∞∑
n=0

(−1)nqn2+2n

1 − q2n+1 A′n(q2,−1,−q2, q2).

It follows from (1.3) that

R2(q) =
2(q; q2)∞
(q2; q2)∞

∞∑
n=0

n∑
j=−n

(−1)n+ jq3n2+4n− j2− j(1 + q)(1 + q2n+1)
(1 + q2n)(1 + q2n+2)

=
2(q; q2)∞
(q2; q2)∞

( ∞∑
j=0

∞∑
n= j

+

−1∑
j=−∞

∞∑
n=− j

)
(−1)n+ jq3n2+4n− j2− j(1 + q)(1 + q2n+1)

(1 + q2n)(1 + q2n+2)

=
2(q; q2)∞
(q2; q2)∞

( ∞∑
j=0

∞∑
n= j

(−1)n+ jq3n2+4n− j2− j(1 + q)(1 + q2n+1)
(1 + q2n)(1 + q2n+2)

−

∞∑
j=0

∞∑
n= j+1

(−1)n+ jq3n2+4n− j2− j(1 + q)(1 + q2n+1)
(1 + q2n)(1 + q2n+2)

)

=
2(q; q2)∞
(q2; q2)∞

∞∑
j=0

q2 j2+3 j(1 + q)(1 + q2 j+1)
(1 + q2 j)(1 + q2 j+2)

=
(q; q2)∞
(q2; q2)∞

∞∑
j=−∞

q2 j2+3 j(1 + q)(1 + q2 j+1)
(1 + q2 j)(1 + q2 j+2)

.

Observing that

(1 + q)(1 + q2 j+1)
(1 + q2 j)(1 + q2 j+2)

=
1

1 + q2 j +
q

1 + q2 j+2 ,

we deduce that

R2(q) =
(q; q2)∞
(q2; q2)∞

( ∞∑
j=−∞

q2 j2+3 j

1 + q2 j +

∞∑
j=−∞

q2 j2+3 j+1

1 + q2 j+2

)

=
2(q; q2)∞
(q2; q2)∞

∞∑
j=−∞

q2 j2+3 j

1 + q2 j ,

which is the first equation in (1.5). Finally, we need the following result from
[4, Equation (12.2.7)].

(q; q2)∞
(q2; q2)∞

∞∑
n=0

q(n+1)(2n+1)(1 + q2n+1)
(1 + aq2n+1)(1 + q2n+1/a)

=

∞∑
n=0

(−1)nq(n+1)2
(q; q2)n

(−aq; q2)n+1(−q/a; q2)n+1
. (2.9)
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Additionally, Andrews and Berndt [4, Equation (12.3.3)] provided that

(q; q2)∞
(q2; q2)∞

( ∞∑
n=−∞

q2n2+n

1 + aq2n −

(
1 +

1
a

) ∞∑
n=0

q(n+1)(2n+1)(1 + q2n+1)
(1 + aq2n+1)(1 + q2n+1/a)

)
=

(q; q2)∞(q; q)2
∞

(−a; q)∞(−q/a; q)∞(q2; q2)∞
. (2.10)

Then using (2.9) and (2.10) and setting a = q,

R2(q) =
2(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q2n2+n

1 + q2n+1 −
2(q; q2)∞(q; q)∞
(−1; q)∞(−q; q)2

∞

=
2(q; q2)∞
(q2; q2)∞

∞∑
n=−∞

q2n2+n(1 − q2n+1)
1 − q4n+2 − (q; q)∞(q; q2)4

∞

=
2(q; q2)∞
(q2; q2)∞

( ∞∑
n=−∞

q2n2+n

1 − q4n+2 −

∞∑
n=−∞

q2n2+3n+1

1 − q4n+2

)
− (q; q)∞(q; q2)4

∞

= 2m(−q3, q4,−q−1) − 2m(−q, q4,−q) − (q; q)∞(q; q2)4
∞

= −2q−3m(−q−3, q4,−q) − 2m(−q, q4,−q) − (q; q)∞(q; q2)4
∞ (by (2.3))

= 2(1 − m(−q, q4,−q)) − 2m(−q, q4,−q) − (q; q)∞(q; q2)4
∞ (by (2.4))

= 2 − 4m(−q, q4,−q) − (q; q)∞(q; q2)4
∞.

Hence, we finish the proof of (1.5). �

Notice that one can prove identity (1.5) of Theorem 1.2 using identity (2.15) of [25,
Proposition 2.6] (see [25, Section 4.3]).

3. Proofs of Theorems 1.3 and 1.4

In this section, with the aid of the results in Section 2 and the properties of Appell–
Lerch sums, we establish some identities related to R1(q), R2(q), A(q), µ(q) and ψ(q).
Meanwhile, we provide the mock theta conjectures for R1(q) and R2(q).

First, we review the definition of Hecke-type double sums.

Definition 3.1. Let x, y ∈ C∗ and define sg(r) := 1 for n ≥ 0 and sg(r) := −1 for n < 0.
Then

fa,b,c(x, y, q) :=
∑

sg(r)=sg(s)

sg(r)(−1)r+sxrysqa(r
2)+brs+c(s

2).

Proof of Theorem 1.3. First, it can be seen from (2.2) and (2.5) that

m(q, q4, q) = m(q, q4, q2). (3.1)

Then by combining (1.4), (3.1) and the relation [17, Equation (5.1)]

A(q) = −m(q, q4, q2), (3.2)

we derive (1.6).
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In addition, Andrews [3, Equation (3.28)] gave that

4A(−q) + µ(q) =
J5

1

J4
2

. (3.3)

Then by combining (1.5), (3.1) and (3.2),

R2(q) = 4A(−q) −
J5

1

J4
2

+ 2.

Hence, examining (3.3) and the above identity yields (1.7).
Furthermore, based on the identity [6, Equation (3.2)]

2J1,4ψ(q) =
∑

sg(r)=sg(s)

(−1)r sg(r)qrs+(r+s+2
2 ),

we have

2ψ(q) =
q(q; q2)∞
(q2; q2)∞

∑
sg(r)=sg(s)

r≡s (mod 2)

(−1)r sg(r)q((r2+s2)/2)+2rs+((3r+3s)/2)

=
q(q; q2)∞
(q2; q2)∞

( f1,2,1(−q5,−q5, q4) − q6 f1,2,1(−q11,−q11, q4))

=
2q(q; q2)∞
(q2; q2)∞

f1,2,1(−q5,−q5, q4),

where, in the last line, we use the identity [17, Proposition 6.2]

fa,b,c(x, y, q) = −
qa+b+c

xy
fa,b,c(q2a+b/x, q2c+b/y, q).

On the other hand, Hickerson and Mortenson [17, Equation (1.7)] gave that

f1,2,1(x, y, q) = j(y; q)m(q2x/y2, q3,−1) + j(x; q)m(q2y/x2, q3,−1)

−
yJ3

3 j(−x/y; q) j(q2xy; q3)

J0,3 j(−qy2/x,−qx2/y; q3)
.

Thus,

ψ(q) = 2m(−q3, q12,−1) −
J3

12J0,4J6,12

J1,4J0,12J2
3,12

. (3.4)

On the other hand, Hickerson and Mortenson [17, Equation (5.3)] established that

µ(q) = 4m(−q, q4,−1) −
J4

2,4

J3
1

.
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Applying (3.4) and the above identity, we deduce that

2ψ(q) − µ(q3) =
J4

6,12

J3
3

−
2J3

12J0,4J6,12

J1,4J0,12J2
3,12

.

Simplifying the above identity gives

2ψ(q) − µ(q3) =
J8

6

J3
3 J4

12

−
2J1J4

6 J2
8 J12

J2
2 J2

3 J4J2
24

. (3.5)

In addition, applying the standard computational techniques for modular forms, we
can prove the identity

2η(z)η(3z)η4(6z)η2(8z)η(12z)
η2(2z)η(4z)η2(24z)

−
η8(6z)
η4(12z)

=
η2(z)η2(3z)η(4z)η5(6z)

η3(2z)η3(12z)
, (3.6)

where η(z) := q1/24(q; q)∞ and q := e2πiz. Since (3.6) is an equality between
holomorphic modular forms of weight two on Γ0(24) with a certain character, its truth
is established by verifying that the q-expansions of both sides agree up to q5. (Those
unfamiliar with this method might consult [26].) Then by (3.5) and (3.6), we arrive at
(1.8). Therefore, we complete the proof. �

In the following, we show the mock theta conjectures for R1(q) and R2(q).

Proof of Theorem 1.4. According to (1.1) and (1.9),

µ(q) = K(−1; q). (3.7)

Then applying (1.6) and (3.3) yields

R1(−q) = −µ(q) +
J5

1

J4
2

+ 1.

Hence, combining (3.7) and the above identity, we derive (1.10).
Finally, applying (1.7) and (3.7), we prove (1.11). �

4. Concluding remarks

Partial theta functions are sums of the form
∞∑

n=0

qAn2+Bnxn.

In 2014, Mortenson [25] introduced the dual nature between Appell–Lerch sums and
partial theta functions. In this sense, Appell–Lerch sums and partial theta functions
appear to be dual to each other. Recently, Chen [10] provided some further results.
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In the same manner, replacing q by q−1 in the second series in (1.2) and (1.3),
respectively, we obtain

S 1(q) : =

∞∑
n=0

q2n+1(−q; q2)n+1

(q; q2)2
n+1

,

S 2(q) : =

∞∑
n=0

q2n+1(1 + q)(q; q2)n

(−q2; q2)n(−q2; q2)n+1
.

(4.1)

Then we derive some identities related to partial theta functions.

Theorem 4.1. We have

S 1(q) = −2
∞∑

n=0

(−1)nq2n2+3n+1(1 − q2n+2)

− 2
J4

2

J3
1 J4

∞∑
n=0

q3n2+5n+2(1 − q2n+2) +
J4

2

J3
1 J4
− 1, (4.2)

S 2(q) = 2
∞∑

n=0

(−1)nq(n2+3n+2)/2 −
J1J2

J2
4

∞∑
n=0

q3n2+4n+1(1 − q4n+4). (4.3)

Proof. First, Andrews [2, Theorem 1] gave that
∞∑

n=0

qn(B)n(−Abq)n

(−aq)n(−bq)n
= −

(B)∞(−Abq)∞
a(−aq)∞(−bq)∞

∞∑
n=0

(1/A)n

(−B/a)n+1

(Abq
a

)n

+ (1 + b)
∞∑

n=0

(−1/a)n+1(−ABq/a)n

(−B/a)n+1(Abq/a)n+1
(−b)n.

Replacing q, A, B, a and b by q2, −1, 0, −q and −q, respectively, in the above identity,
we derive
∞∑

n=0

q2n(−q3; q2)n

(q3; q2)2
n

=
(−q3; q2)∞
q(q3; q2)2

∞

∞∑
n=0

(−1)nq2n(−1; q2)n + (1 − q)
∞∑

n=0

qn(q−1; q2)n+1

(−q2; q2)n+1
.

That is,

S 1(q) =
(−q; q2)∞
(q; q2)2

∞

∞∑
n=0

(−1)nq2n(−1; q2)n − (1 + q)
∞∑

n=0

qn(q; q2)n

(−q2; q2)n+1

=
(−q; q2)∞
(q; q2)2

∞

(
1 +

∞∑
n=1

(−1)nq2n(−1; q2)n

)
− (1 + q)

∞∑
n=0

qn(q; q2)n

(−q2; q2)n+1

=
(−q; q2)∞
(q; q2)2

∞

(
1 − 2

∞∑
n=0

(−1)nq2n+2(−q2; q2)n

)
− (1 + q)

∞∑
n=0

qn(q; q2)n

(−q2; q2)n+1

= −
2(−q; q2)∞

(q; q2)2
∞

∞∑
n=0

(−1)nq2n+2(−q2; q2)n +
(−q; q2)∞
(q; q2)2

∞
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− (1 + q)
∞∑

n=0

(q; q2)nqn

(−q2; q2)n+1
. (4.4)

Additionally, the Rogers–Fine identity [29, page 334, Equation (1)] is stated as

∞∑
n=0

(α)n

(β)n
τn =

∞∑
n=0

βnτnqn2−n(1 − ατq2n)(α)n(ατq/β)n

(β)n(τ)n+1
. (4.5)

Then replacing q, α, β and τ by q2, −q2, 0 and −q2, respectively, in (4.5), we arrive at

∞∑
n=0

(−1)nq2n+2(−q2; q2)n =

∞∑
n=0

q3n2+5n+2(1 − q2n+2). (4.6)

Furthermore, by replacing q, α, β and τ by q2, q, −q4 and q, respectively, in (4.5),

∞∑
n=0

qn(q; q2)n

(−q4; q2)n
=

∞∑
n=0

(−1)nq2n2+3n(1 − q4n+2)(q; q2)n(−1; q2)n

(q; q2)n+1(−q4; q2)n

=

∞∑
n=0

(−1)nq2n2+3n(1 + q2n+1)(−1; q2)n

(−q4; q2)n

= 1 + q + 2(1 + q2)
∞∑

n=1

(−1)nq2n2+3n(1 + q2n+1)
(1 + q2n)(1 + q2n+2)

= 1 + q − 2(1 + q2)
∞∑

n=0

(−1)nq2n2+7n+5(1 + q2n+3)
(1 + q2n+2)(1 + q2n+4)

= 1 + q −
2(1 + q2)

1 + q

∞∑
n=0

(−1)nq2n2+7n+5
( 1
1 + q2n+2 +

q
1 + q2n+4

)
= 1 + q −

2(1 + q2)
1 + q

∞∑
n=0

( (−1)nq2n2+7n+5

1 + q2n+2 +
(−1)nq2n2+7n+6

1 + q2n+4

)
= 1 + q −

2(1 + q2)
1 + q

( ∞∑
n=0

(−1)nq2n2+7n+5

1 + q2n+2 −

∞∑
n=1

(−1)nq2n2+3n+1

1 + q2n+2

)
= 1 + q −

2(1 + q2)
1 + q

( q5

1 + q2 −

∞∑
n=1

(−1)nq2n2+3n+1(1 − q2n+2)
)

= 1 + q −
2q5

1 + q
+

2(1 + q2)
1 + q

∞∑
n=1

(−1)nq2n2+3n+1(1 − q2n+2)

=
1 + q2

1 + q
+

2(1 + q2)
1 + q

∞∑
n=0

(−1)nq2n2+3n+1(1 − q2n+2). (4.7)

Examining (4.4), (4.6) and (4.7), we deduce (4.2).
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Next, Andrews and Berndt [5, entry 6.3.6] proved that(
1 +

1
a

) ∞∑
n=0

q2n+1(q; q2)n

(−aq; q2)n+1(−q/a; q2)n+1

=

∞∑
n=0

(−1)nanqn(n+1)/2 −
(q; q)∞

j(−aq; q2)

∞∑
n=0

a3nq3n2+n(1 − a2q4n+2).

Then setting a = q in the above identity yields(
1 +

1
q

) ∞∑
n=0

q2n+1(q; q2)n

(−q2; q2)n+1(−1; q2)n+1

=

∞∑
n=0

(−1)nqn(n+3)/2 −
(q; q)∞
j(−1; q)

∞∑
n=0

q3n2+4n(1 − q4n+4),

which implies (4.3) by (4.1). Therefore, we finish the proof. �
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