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Twisted Conjugacy Classes in Abelian
Extensions of Certain Linear Groups
T. Mubeena and P. Sankaran

Abstract. Given a group automorphism φ : Γ → Γ, one has an action of Γ on itself by φ-twisted
conjugacy, namely, g.x = gxφ(g−1). The orbits of this action are called φ-twisted conjugacy classes.
One says that Γ has the R∞-property if there are infinitely many φ-twisted conjugacy classes for every
automorphism φ of Γ. In this paper we show that SL(n, Z) and its congruence subgroups have the R∞-
property. Further we show that any (countable) abelian extension of Γ has the R∞-property where Γ is
a torsion free non-elementary hyperbolic group, or SL(n, Z), Sp(2n, Z) or a principal congruence sub-
group of SL(n, Z) or the fundamental group of a complete Riemannian manifold of constant negative
curvature.

1 Introduction

Let Γ be a finitely generated infinite group and let φ : Γ → Γ be an endomorphism.
One has an action of Γ on itself defined as g.x = gxφ(g−1). This is just the conju-
gation action when φ is identity. The orbits of this action are called the φ-twisted
conjugacy classes; the φ-twisted conjugacy class containing x ∈ Γ is denoted [x]φ or
simply [x] when φ is clear from the context. If x and y are in the same φ-twisted con-
jugacy class, we write x ∼φ y. The set of all φ-twisted conjugacy classes is denoted by
R(φ). The cardinality R(φ) of R(φ) is called the Reidemeister number of φ. One says
that Γ has the R∞-property for automorphisms (more briefly, R∞-property) if there
are infinitely many φ-twisted conjugacy classes for every automorphism φ of Γ. If Γ
has the R∞-property, we shall call Γ an R∞-group. All these notions make sense for
any group, not necessarily finitely generated.

The notion of twisted conjugacy originated in Nielson–Reidemeister fixed point
theory and also arises in other areas of mathematics such as representation theory,
number theory, and algebraic geometry. See [4] and the references therein. The
problem of determining which classes of groups have R∞-property is an area of active
research initiated by Fel’shtyn and Hill [6]. We now state the main result of this paper.

Theorem 1.1 Let Λ be an extension of a group Γ by an arbitrary countable abelian
group A. Then Λ has the R∞-property in case any one of the following holds:

(i) Γ is a torsion-free non-elementary hyperbolic group;
(ii) Γ = SL(n,Z),PSL(n,Z),GL(n,Z),PGL(n,Z), Sp(2n,Z), PSp(2n,Z), n ≥ 2;
(iii) Γ is a normal subgroup of SL(n,Z), n > 2, not contained in the centre;
(iv) Γ is the fundamental group of a complete Riemannian manifold of constant nega-

tive sectional curvature and finite volume.
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Our proofs involve straightforward arguments, using well-known results concern-
ing the group Γ in each case. More precisely, in each of the cases, we show that A or
a bigger subgroup N ⊂ Λ in which A has finite index is characteristic in Λ. Proof of
this requires some facts concerning normal subgroups of Γ. In the cases (ii), (iii), and
(iv) we invoke the normal subgroup theorem of Margulis [21, Chapter 8]; in case (i)
we use the quasi-convexity property of infinite cyclic subgroups of Γ. Using the fact
that Γ is hopfian, the R∞-property for Λ is then deduced from the R∞-property for
Γ. That Γ has the R∞-property when it is a torsion-free non-elementary hyperbolic
group is due to [9]. This result was extended to arbitrary non-elementary hyper-
bolic groups by [3]. The R∞-property for the groups Sp(2n,Z) was established by
Fel’shtyn and Gonçalves [5]. The R∞-property for SL(n,Z) and PGL(n,Z) is estab-
lished in Section 3. We show, in Section 3, the R∞-property for non-central normal
subgroups of SL(n,Z), n > 2, using the Mostow–Margulis strong rigidity theorem
and the congruence subgroup property of SL(n,Z). The proof of the main theorem
is given in Section 4.

2 Preliminaries

Let G be a group and H a subgroup of G. Recall that a subgroup H is said to be
characteristic in G if φ(H) = H for every automorphism φ of G. We will call G
hopfian (resp. co-hopfian) if every surjective (resp. injective) endomorphism of G is
an automorphism of G. One says that G is residually finite if, given any g ∈ G, there
exists a finite index subgroup H in G such that g /∈ H.

We shall recall here some facts concerning the R∞-property. Let

(2.1) 1 −→ N
j
↪→ Λ

η
−→ Γ −→ 1

be an exact sequence of groups.

Lemma 2.1 Suppose that N is characteristic in Λ and that Γ has the R∞-property,
then Λ also has the R∞-property.

Proof Let φ : Λ → Λ be any automorphism. Since N is characteristic, φ(N) = N
and so φ induces an automorphism φ̄ : Γ → Γ. Since R(φ̄) = ∞, it follows that
R(φ) =∞.

Lemma 2.2 Suppose that N is a characteristic subgroup of Λ.

(i) If N is finite and Λ has the R∞-property, then Γ also has the R∞ -property.
(ii) If Γ is finite and N has the R∞-property, then Λ has the R∞- property.

Proof (i) Any automorphism φ : Λ → Λ maps N isomorphically onto itself and
hence induces an automorphism φ̄ : Γ→ Γ (where Γ = Λ/N).

It is readily seen that x ∼φ y implies η(x) ∼φ̄ η(y) for any x, y ∈ Λ. Therefore η

induces a surjection η̃ : R(φ)→ R(φ̄) where η̃([x]φ) = [η(x)]φ̄. We need only show
that the fibres of η̃ are finite.

Suppose the contrary and let xk ∈ Λ, k ≥ 0, be such that [xk]φ 6= [xl]φ for k 6= l
and that [η(xk)]φ̄ = [η(x0)]φ̄. For each k ≥ 1, there exists gk ∈ Λ such that

η(x0) = η(gk)η(xk)φ̄
(
η(g−1

k )
)

= η
(

gkxkφ(g−1
k )
)
.
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Therefore there exists an hk ∈ N such that x0hk = gkxkφ(gk)−1. That is, for any
k ≥ 1, we have xk ∼φ x0hk for some hk ∈ N. Since N is finite, it follows that xk ∼φ xl

for some k 6= l, a contradiction.
(ii) Let φ : Λ→ Λ be an automorphism and let θ = φ|N. Let j̃ : R(θ)→ R(φ) be

the map defined as [x]θ 7→ [x]φ. Suppose that R(φ) < ∞ but that R(θ) = ∞. Then
there exist elements xk ∈ N, k ≥ 0, such that [xk]θ 6= [xl]θ, k 6= l, but xk ∼φ x0 for
all k ≥ 0. Choose gk ∈ Λ such that xk = gkx0φ(g−1

k ), k ≥ 1. Since Γ = Λ/N is finite,
there exist distinct positive integers k, l such that h := gkg−1

l ∈ N. Now

xk = gkx0φ(g−1
k ) = gkg−1

l xlφ(gl)φ(g−1
k ) = hxlθ(h−1),

and so [xk]θ = [xl]θ, a contradiction. This completes the proof.

Lemma 2.3 Suppose that there is no non-trivial homomorphism from N to Γ and
that either Γ is hopfian or N is co-hopfian. If Γ has the R∞-property, then so does Λ.

Proof Let φ : Λ→ Λ be any automorphism. Consider the homomorphism f : N →
Γ defined as f = η ◦ φ|N, where η : Λ → Γ is the quotient map as in (2.1). By our
hypothesis f is trivial, and so it follows that φ(N) ⊂ ker(η) = N. If N is co-hopfian
then φ(N) = N and so N is characteristic. In any case φ defines a homomorphism
φ̄ : Γ → Γ, where φ̄(xN) = φ(x)N, x ∈ Λ. It is clear that φ̄ is surjective with kernel
φ−1(N)/N. If Γ is hopfian, φ̄ is an isomorphism and it follows that φ(N) = N. Thus
our hypothesis implies that N is characteristic in Λ, and the lemma now follows from
Lemma 2.1.

We conclude this section with the following observation.

Proposition 2.4 Let Γ be a countably infinite residually finite group. Then R(φ) =∞
for any inner automorphism φ of Γ.

Proof Let φ = ιγ and let x ∼φ y.Thus y = gxγg−1γ−1. Equivalently xγ is conjugate
to yγ. Hence it suffices to show that Γ has infinitely many conjugacy classes.

Since Γ is infinite and since Γ is residually finite, there exist finite quotients Γ̄
of Γ having arbitrarily large (finite) order. It is a classical result of R. Brauer [1]
(see also [15]) that the number of conjugacy classes of a finite group of order n is
bounded below by log log n. Since Γ has at least as many conjugacy classes as any of
its quotients, it follows that Γ has infinitely many conjugacy classes.

Remark 2.5 (i) Recall that finitely generated residually finite groups are hopfian.
A well-known class of residually finite groups is the class of finitely generated sub-
groups of GL(n,K) where K is any field. See [10]. This class includes, in particular,
all lattices in linear Lie groups. An important unsolved problem is whether or not hy-
perbolic groups are residually finite. It has been shown by Sela [18] that torsion-free
hyperbolic groups are hopfian.

(ii) It is known that there are countably infinite groups with only finitely many
conjugacy classes. (See [19, §1.4] or [10, Chapter 4, §3].) Finitely generated examples
have been constructed by S. Ivanov. Recently D. Osin [14] has constructed a finitely
generated infinite group that has exactly one non-trivial conjugacy class.
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3 The R∞-property for Special Linear Groups

In this section we give new examples of R∞-groups that are subgroups of finite in-
dex in SL(n,Z). Recall that Sp(2n; Z) has been shown to have the R∞-property by
Fel’shtyn and Gonçalves [5].

Our first result is the following theorem.

Theorem 3.1 The groups SL(n,Z),PSL(n,Z),GL(n,Z), and PGL(n,Z) have the
R∞-property for all n ≥ 2.

Proof It follows from Lemma 2.2(ii) that the R∞-property for SL(n,Z) implies the
R∞ property for GL(n,Z). Also the R∞-property for SL(n,Z) (resp. GL(n,Z)) im-
plies the R∞ for PSL(n,Z) (resp. PGL(n,Z)) in view of Lemma 2.2(i). Therefore we
need only prove the theorem for SL(n,Z).

The group SL(2,Z) is non-elementary hyperbolic group and hence, by [3], has the
R∞-property. Let n ≥ 3 and set Γ := SL(n,Z). Since Γ is residually finite, R(φ) =∞
for any inner automorphism by Proposition 2.4. In this case we can see this more
directly: the set {tr(A) | A ∈ Γ} is infinite and so there are infinitely many conjugacy
classes in Γ.

It remains only to show that R(φ) is infinite for a set of representatives of (the non-
trivial) elements of the group Out(Γ) of all outer automorphisms of Γ. It is known
from the work of Hua and Reiner [8] and of O’Meara [13] that Out(Γ) ∼= Z/2Z or
Z/2Z× Z/2Z according as n is odd or even.

The group Out(Γ) is generated by a set S where S = {τ} when n is odd and when
n is even, S = {σ, τ}, where τ : Γ→ Γ is defined as X 7→ t X−1, and, when n is even,
the involution σ : Γ → Γ is defined as X 7→ JX J−1 = JX J where J is the diagonal
matrix diag(1, . . . , 1,−1). Thus X ∼τ Y (resp. X ∼σ Y ) if and only if there exists a
Z such that Y = ZX(t Z) (resp. Y = ZX JZ−1 J)).

First we consider τ -twisted conjugacy classes. Let k ≥ 1 and let A(k) be the block
diagonal matrix A(k) = diag(B(k), In−2), where B(k) =

(
1 0
k 1

)
. We shall show that

A(k) ∼τ A(l) implies k = l. This clearly implies that R(τ ) =∞.
Let X = (xi j) ∈ Γ be such that

(3.1) X.A(k).t X = A(l).

We shall denote the i-th row and i-th column of X by ri and ci respectively. A
straightforward computation shows that X.A(k).t X = X.t X + kc2.

t c1. Comparing
the (2, 1)-entries on both sides of (3.1) we get r2.

t r1 + kx22x11 = l, whereas compar-
ing the (1, 2)-entries gives r1.

t r2 + kx12x21 = 0. Therefore r2.
t r1 = r1.

t r2 = −kx12x21

and so l = k(x11x22 − x12x21). Since xi, j ∈ Z, we obtain that k|l. Interchanging the
roles of k, l we get l|k, and so we must have k = l, since k, l ≥ 1.

Now consider σ-twisted conjugacy classes. Since A ∼σ B if and only if A J =
X(B J)X−1 for some X ∈ SL(n,Z). We need only show that the set {tr(A J) | A ∈
SL(n,Z)} is infinite. Let A ′ ∈ SL(n − 1,Z) and let A = diag(A ′, 1), where A ′ ∈
SL(n − 1,Z). Then A J = diag(A ′,−1). Therefore tr(A) = tr(A ′) − 1. Since n > 2,
the set {tr(A ′) | A ′ ∈ SL(n− 1,Z)} is infinite, and we conclude that R(σ) =∞.

The proof of that R(στ ) =∞ is similar, so we omit the details.
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It is possible to give a more direct proof of the R∞-property for SL(2,Z) as for
SL(n,Z), n > 2, given above, using the description of the (outer) automorphism
group of SL(2,Z) given in [8, Theorem 2].

It is known that the R∞-property is not inherited by finite index subgroups in
general. For example, the infinite dihedral group, which contains the infinite cyclic
group as an index 2 subgroup, has the R∞ -property (whereas R(−idZ) = 2). (See
[7].) However we have the following result.

Let Γm denote the principal level m congruence subgroup of SL(n,Z); thus Γm

is the kernel of the surjection SL(n,Z) → SL(n,Z/mZ) induced by the surjection
Z→ Z/mZ.

Theorem 3.2 Let n ≥ 3. Let Λ be a non-central normal subgroup of SL(n,Z). Then
Λ has the R∞-property.

Proof Let Γ = SL(n,Z). We shall use the notations introduced in the proof of
Theorem 3.1. It is known that any finite index subgroup of SL(n,Z) contains Γm

for some m ≥ 2. This is the congruence subgroup property for SL(n,Z), n > 2. See
[20, §4.4].

Let M = (mi, j) ∈ SL(n,Z) and let φ := φM be the restriction to Λ of the inner
automorphism ιM of Γ. Then X ∼φ Y if and only if XM = Z(Y M)Z−1 for some
Z ∈ Λ. In particular tr(XM) = tr(Y M). To show that R(φ) =∞ we need only show
that the set {tr(AM) | A ∈ Λ} is infinite for any M ∈ SL(n,Z). There are two cases
to consider: (1) mii 6= 0 for some i, (2) mii = 0 for all i.

Case (1): Without loss of generality we may assume that m11 6= 0. Let k > 1 and let
X(k) be the block diagonal matrix X(k) = diag(C(k), In−2) where C(k) =

(
k2+1 k

k 1

)
.

A straightforward computation shows that

tr(X(k)M) = (k2 + 1)m11 + k(m12 + m21) +
∑

2≤ j≤n

m j j .

Therefore tr(X(k)M) = tr(X(l)M) if and only if (k + l)m11 + m12 + m21 = 0. Choose
k0 > (m12 + m21)/m11. Then X(mk), k ≥ k0, belong to pairwise distinct φ-twisted
conjugacy classes in this case.

Case (2): Without loss of generality assume that m12 6= 0. Let A(k) be as in the proof
of Theorem 3.1. Then tr(A(k)M) = km1,2. Therefore tr(A(k)M) = tr(A(l)M) if and
only if k = l. Since A(mk) ∈ Γm ⊂ Λ for all k, it follows that R(φ) = ∞ in this case
as well.

Suppose that τ (Λ) = Λ, where τ (X) = t X−1 as in the proof of Theorem 3.1. We
see that R(τ |Λ) = ∞ arguing as we did to establish that R(τ ) = ∞ in the proof of
Theorem 3.1 by considering the set of elements A(mk) ∈ Γm ⊂ Λ, k ≥ 1. Similarly,
we show that R(θ|Λ) = ∞ for each representative θ of the outer automorphisms of
Γ, which leaves Λ invariant.

To complete the proof, we need only show that every automorphism of Λ extends
to an automorphism of Γ. For this purpose we observe that the R-rank of the semi
simple Lie group G := SL(n,R) equals n − 1 ≥ 2. Let θ : Λ → Λ be any automor-
phism. By the Mostow–Margulis strong rigidity theorem [21, Chapter 5], θ extends
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to an automorphism θ̃ : SL(n,R)→ SL(n,R). By a result of Newman [12, Lemma 2]
we have NG(Λ) = Γ. So θ̃ restricts to an automorphism θ̄ of Γ. Thus θ is the restric-
tion of an automorphism of Γ, namely θ̄. This completes the proof.

Remark 3.3 Recall that Fel’shtyn and Gonçalves [5] have shown that Sp(2n,Z) has
the R∞- property. One could also establish this result along the same lines as for
SL(n,Z) given above. We assume that n ≥ 2 as Sp(2,Z) = SL(2,Z). To fix notations,
regard Sp(2n,Z) as the subgroup of SL(2n,Z) that preserves the skew symmetric form
β : Z2n × Z2n → Z defined as

β(e2i , e2 j) = 0 = β(e2i−1, e2 j−1), β(e2i−1, e2 j) = δi j , 1 ≤ i ≤ j ≤ n

(Kronecker δ). Equivalently Sp(2n,Z) = {X ∈ SL(2n,Z) | t X J0X = J0}, where
J0 = diag( j0, . . . , j0), j0 :=

(
0 1
−1 0

)
is the matrix of β. Infinitude of (untwisted)

conjugacy classes follows from the residual finiteness of Sp(2n,Z). (cf. Proposition
2.4). Alternatively, observe that X(k) ∈ Sp(2n,Z), where X(k) is as in the proof of
Theorem 3.2. This shows that the trace function is unbounded on Sp(2n,Z).

To complete the proof, we need only verify that R(φ) = ∞ for representatives of
the elements of Out(Sp(2n,Z)). One knows from [17] that the outer automorphism
group of Sp(2n,Z) is isomorphic to Z/2Z if n > 2 and is isomorphic to Z/2Z×Z/2Z
when n = 2.

The generators of the outer automorphism groups may be described as follows.
Let θ be the automorphism of Sp(2n,Z), which is conjugation by

J := diag(I ′, I2n−2) ∈ GL(2n,Z),

where I ′ =
(

0 1
1 0

)
. Let φ be the automorphism of Sp(4,Z) defined as φ(X) =

χ(X)X, where χ : Sp(4,Z) → {1,−1} is the (non-trivial) central character. Then
Out(Sp(2n,Z)) = 〈θ〉, n > 2, and Out(Sp(4,Z)) = 〈θ, φ〉.

To see that R(θ) = ∞ we note that tr(X(k) J) = 2k + (2n − 2). Therefore the
X(k), k ≥ 1, belong to pairwise distinct θ-twisted conjugacy classes.

As already observed in [5, Lemma 3.1], any φ-twisted conjugacy class of X is a
union of the (untwisted) conjugacy class of X and of −X. Since the number of con-
jugacy classes in Sp(4,Z) is infinite, it follows that R(φ) =∞. Proof that R(θφ) =∞
is similar and thus omitted. This completes the proof.

It is an interesting problem to determine which (irreducible) lattices in semi sim-
ple Lie groups have the R∞-property. We shall address this question in a sequel to
this paper.

4 Proof of the Main Theorem

We now proceed to the proof of the main theorem. Let j : A ↪→ Λ be the inclusion
and η : Λ→ Γ the canonical quotient map so that 1→ A ↪→ Λ→ Γ→ 1 is an exact
sequence of groups.
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Proof of Theorem 1.1 Let φ : Λ → Λ be any automorphism and let f : A → Γ be
the composition η ◦ φ ◦ j. Note that since A is normal in Λ, φ(A) is normal in Λ and
hence f (A) is normal in Γ.

(i) In this case we claim that f is trivial. Suppose that f (A) is not the trivial
subgroup. Since Γ is a non-elementary group, it does not contain a free abelian
group of rank 2. Since Γ is torsion free, the centralizer of any non-trivial element
of Γ is infinite cyclic. By [2, Corollary 3.10, Chapter III.Γ] f (A) is quasi-convex.
Hence by [2, Proposition 3.16, Chapter III.Γ] the subgroup f (A) has finite index in
its normalizer, which is Γ. This contradicts the assumption that Γ is non-elementary.
Therefore f (A) must be trivial. This means that φ(A) ⊂ A, and we have the following
diagram, in which the top horizontal sequence is exact:

A ↪→ Λ −→ Γ
φ|A ↓ φ ↓ ↓ φ̄

A ↪→ Λ −→ Γ.

Now φ̄ is a surjection since η ◦ φ is. Since Γ is assumed to be torsion-free, by Sela’s
theorem [18], Γ is hopfian and so φ̄ is an isomorphism. Therefore φ(A) = A. Hence
A is characteristic in Λ. Since Γ has the R∞-property by [9] (cf. [3]), Lemma 2.1 now
implies that Λ has the R∞-property.

(ii) The group Γ is a lattice in one of the simple linear Lie groups

G = SL(n,R), PGL(n,R), Sp(2n,R), PSp(2n,R).

These Lie groups have as centre a group of order at most 2. Also, Γ is hopfian. First
we consider the case

Γ = SL(n,Z),PSL(n,Z),PGL(n,Z), n > 2, or Sp(2n,Z),PSp(2n,Z), n > 1,

so that the corresponding Lie group G has real rank at least 2. By the normal sub-
group theorem of Margulis [21, Chapter 8], the subgroup f (A) being normal in Γ
is either of finite index or is contained in the centre of G. Since A is abelian, f (A)
cannot be of finite index in Γ. Hence f (A) ⊂ Z(Γ) the centre of Γ which is of or-
der at most 2. First assume that f (A) is trivial. Then we have φ(A) ⊂ A. Using
the fact that Γ is hopfian, we conclude as above, that A is characteristic. Now Γ
has the R∞-property by Theorem 3.1 in the case of SL(n,Z),PSL(n,Z),PGL(n,Z)
and by the work of Fel’shtyn-Gonçalves [5] in the case of Sp(2n,Z),PSp(2n,Z) (cf.
Lemma 2.2(i)). It follows as in case (i) that Λ also has the R∞-property. Now as-
sume that f (A) = Z(Γ) ∼= Z/2Z. Set Γ̄ = Γ/Z(Γ), which is the lattice PSL(n,Z)
or PSp(2n,Z) in the corresponding Lie group of adjoint type. Let N = η−1(Z(Γ)).
Clearly N/A ∼= Z(Γ). Now we have the exact sequence

N
j̃
↪→ Λ

η̄
−→ Γ̄,

where η̄ is the canonical quotient map. Now we claim that N is characteristic. Indeed,
let f̃ : N → Γ̄ be defined as η̄◦φ◦ j̃. Again using Margulis’ normal subgroup theorem,
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the fact that N is virtually abelian forces f̃ (N) to be contained in the centre of Γ̄. Since
Γ̄ has trivial centre, we must have f̃ (N) ⊂ N. Now Γ̄ is again hopfian (being finitely
generated and linear). As before, we conclude that N is characteristic. By Lemma 2.1
applied to Γ̄ we conclude that Λ has the R∞-property.

We now consider the case SL(2,Z) ∼= Sp(2,Z). Proceeding as above we see
that f (A) is a normal abelian subgroup of SL(2,Z). We need only show that
f (A) ⊂ {I,−I}. Let F ⊂ SL(2,Z) be a free group of finite index that is normal.
Then F ∩ f (A) is trivial, since any normal subgroup of F is a non-abelian free group.
Hence f (A) is finite as it imbeds in the finite group SL(2,Z)/F. Let C be the image of
f (A) in PSL(2,Z) ∼= (Z/2Z) ∗ (Z/3Z) under the natural quotient map. Any element
of finite order is conjugate to the generator of PSL(2,Z) of order 2 or that of order 3
(see [10, Theorem 2.7, Chapter IV]). Since C is normal and finite, it follows easily
that C is trivial. Hence f (A) ⊂ {I,−I}.

(iii) By Theorem 3.2 the R∞-property holds for Γ. The rest of the proof is as in
case (ii) above and hence omitted.

(iv) If M is compact, then Γ is a torsion-free hyperbolic group, and our statement
follows from part (i). In any case, Γ is a lattice in G, the group of orientation preserv-
ing isometries of the universal cover of M. Thus G is a simple Lie group with trivial
centre and real rank 1. In particular, G is linear and so Γ is residually finite. Indeed G
is the identity component of the real points GR of the complex linear algebraic group
G of adjoint type whose Lie algebra equals Lie(G)⊗R C.

If M is non-compact, then Γ is relatively hyperbolic (with respect to the fam-
ily of stabilizers of the cusps of M). Fel’shtyn [4, Theorem 3.3] has established the
R∞-property for such groups Γ.

Next we show that f (A) is trivial. Let Z ⊂ GR be the Zariski closure of f (A) and
let H be the normalizer of Z in GR. Then H is an algebraic subgroup that contains
Γ. Since Γ is Zariski dense in GR by the Borel density theorem [16], it follows that
H = GR and so Z is normal in GR. Since Z is abelian and since G is simple, it follows
that Z is finite and is contained in the centre of GR. Therefore f (A) equals Z ∩ G
and is contained in the centre of G. Since the centre of G is trivial, we conclude that
f (A) = {1}. The rest of the proof is as in the previous cases above.

We conclude this paper with the following remarks.

Remark 4.1 (i) Theorem 1.1 contains as special cases the direct product A× Γ as
well as the the restricted wreath product C oΓ = (⊕γ∈ΓCγ)nΓ, where Cγ = C is any
cyclic group.

(ii) Let P be any set of primes containing 2; thus any homomorphism A(P) →
Z/2Z is trivial. Let A(P) = Z[1/p|p ∈ P] ⊂ Q . Note that i : A(P) → A(Q) is any
non-trivial homomorphism, then P ⊂ Q. Set Λ(P) := A(P) o Γ, where Γ is as in
Theorem 1.1. Suppose that θ : Λ(P) → Λ(Q) is an isomorphism. Then, as in the
proof of Theorem 1.1, the composition

⊕γ∈ΓA(P) ↪→ Λ(P)
θ−→ Λ(Q) −→ Γ

is trivial. It follows that θ(⊕γ∈ΓA(P)) ⊂ ⊕γ∈ΓA(Q) and so P ⊂ Q. Similarly Q ⊂ P
and so P = Q. It follows that there are 2ℵ0 many pairwise non-isomorphic count-
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able groups Λ satisfying the R∞-property for each Γ as in Theorem 1.1. The same
conclusion can also be arrived at by considering the groups A(P)× Γ.

Note Recently T. Nasybullov [11] established the R∞-property for SL(n,K) and
GL(n,K), where K is any infinite integral domain such that either (i) characteristic
of K is zero and Aut(K) is torsion, or, (ii) K has arbitrary characteristic and Aut(K)
is the trivial group.
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