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POLYNOMIALS WITH RESTRICTED COEFFICIENTS AND
PRESCRIBED NONCYCLOTOMIC FACTORS

MICHAEL J. MOSSINGHOFF

Abstract

The algorithms described in this paper were developed to investigate
three problems regarding polynomials with restricted coefficients:
(i) determining whether there exist polynomials with {0, 1} coeffi-
cients and repeated noncyclotomic factors, (ii) searching for poly-
nomials with {−1, 1} coefficients and small Mahler measure, and
(iii) finding polynomials with {−1, 0, 1} coefficients with a root of
high multiplicity off the unit circle. The results in the first problem
presented here answer a question of Odlyzko and Poonen.

1. Introduction

Let N denote the set of polynomials with {0, 1} coefficients having constant term 1:

N =
{

1 +
d∑

k=1

akx
k : ak ∈ {0, 1}

}
. (1)

We call these the Newman polynomials. Similarly, let L denote the set of Littlewood
polynomials,

L =
{

d∑
k=0

akx
k : ak ∈ {−1, 1}

}
, (2)

and let H denote the set of height 1 polynomials with nonzero constant term,

H =
{

±1 +
d∑

k=1

akx
k : ak ∈ {−1, 0, 1}

}
. (3)

We study several problems regarding noncyclotomic factors of polynomials in these sets,
especially repeated factors.

In 1993, Odlyzko and Poonen [24] studied the set of zeros of polynomials in N , proving
for instance bounds on their location. They remarked that there exist polynomials in N with
cyclotomic factors of arbitrarily high multiplicity, as follows. Let ζ = exp(2πi/n) be an
nth root of unity with n > 1, and set �(x) = (xn − 1)/(x − 1). If {rk}mk=1 is a sequence of
positive integers satisfying gcd(rk, n) = 1 and rk > (n − 1)

∑
i<k ri for each k, then the

polynomial
∏m

k=1 �(xrk ) is a Newman polynomial with a zero of order m at ζ . They left
open the question of whether there exist polynomials in N with repeated noncyclotomic
factors.

In Section 2 we develop some algorithms to search for Newman polynomials with pre-
scribed factors, and we use our methods to construct several {0, 1} polynomials with repeated
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Polynomials with restricted coefficients and prescribed noncyclotomic factors

noncyclotomic factors. These algorithms take advantage of the fact that only two values
are allowed as coefficients in the polynomials that we seek, and consequently our searches
extend to fairly high degrees. In particular, we find 23 polynomials in N divisible by �(x)2,
where �(x) is the irreducible noncyclotomic polynomial

�(x) = x10 − x9 + x7 − x6 + x5 − x4 + x3 − x + 1. (4)

This polynomial arises in many other problems.
Recall that Mahler’s measure of a polynomial f (x) = ∑d

k=0 akx
k = ad

∏d
k=1(x − βk)

is defined by

M(f ) = |ad |
d∏

k=1

max{1, |βk|}. (5)

For polynomials with integer coefficients, a classical result of Kronecker implies that
M(f ) = 1 if and only if f is a product of cyclotomic polynomials and the monomial x.
In 1933, D. H. Lehmer [18] asked whether the Mahler measure of a polynomial with
integer coefficients can be arbitrarily close to 1, and noted that the polynomial (4) has
M(�) = 1.176280 . . . . Lehmer’s question remains open, and this number remains the
smallest known value greater than 1 of the measure of an integer polynomial, despite
several extensive searches [9, 10, 22, 23]. Lists of known irreducible polynomials with
small values of Mahler’s measure are available at [21].

Lehmer’s polynomial, being in this sense ‘nearly’ cyclotomic, appears to be an attractive
candidate in the problem of Odlyzko and Poonen. This polynomial has found application
in other problems for the same reason; for instance, in the construction of high-order poly-
logarithm relations [2, 14], and in the study of algebraic integers α for which several powers
αn are exceptional units [27].

Recall that a polynomial f (x) is described as reciprocal if f (x) = ±xdeg f f (1/x).
Smyth [28] proved that if f ∈ Z[x] is nonreciprocal and f (0) �= 0, then M(f ) �
M(x3 − x − 1) = 1.324717 . . . , thus answering Lehmer’s question for this class of poly-
nomials. In [6], Smyth’s theorem is strengthened for polynomials with odd coefficients: in
particular, if f ∈ L is nonreciprocal, then M(f ) � M(x2 − x − 1) = (1 + √

5)/2. Here
also are found the smallest measures among reciprocal Littlewood polynomials of degree
at most 72; the smallest known measure is 1.496711 . . . , achieved by

x19 + x18 + x17 + x16 − x15 + x14 − x13 + x12 − x11

− x10 − x9 − x8 + x7 − x6 + x5 − x4 + x3 + x2 + x + 1.

In Section 3 we adapt the methods of Section 2 to search for Littlewood polynomials
with prescribed factors, and then we use these methods to attempt to construct polynomials
in L with measure smaller than 1.4967.

Section 4 studies a similar problem for height 1 polynomials. In 1973, Pathiaux [25]
proved that if f (x) ∈ Z[x] is irreducible and M(f ) < 2, then there exists a polynomial
F(x) ∈ H with f | F .A remark at the end of this paper notes that the proof may be modified
to establish the same result for reducible polynomials. Mignotte [20] found a simpler proof
of this statement for irreducible polynomials, and derived an upper bound on the degree of
F in terms of the degree and measure of f . His proof may also be extended to the reducible
case. These results were generalized and strengthened by Bombieri and Vaaler in [4], as an
application of their improved formulation of Siegel’s lemma.
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Polynomials with restricted coefficients and prescribed noncyclotomic factors

Therefore, if one could establish an absolute upper bound B on the multiplicity of a
noncyclotomic factor of a polynomial with height 1, then it would follow that the value
of Mahler’s measure for noncyclotomic polynomials is bounded away from 1, answering
Lehmer’s question. Certainly, if B exists, then B � 4, since 4

√
2 = 1.189207 . . . > M(�). It

is therefore of interest to study height 1 polynomials with repeated noncyclotomic factors. In
Section 4 we use lattice reduction to construct some polynomials in H with noncyclotomic
factors of multiplicity 3.

We add that similar problems regarding polynomials in N , L, and H with prescribed
cyclotomic factors have also been well studied, particularly with the factor (x ± 1)m. The
case of Newman polynomials is studied in [8, 16], Littlewood polynomials in [11, 12], and
height 1 polynomials in [1, 4, 5, 7, 15].

2. Newman polynomials

We describe two algorithms for finding polynomials f ∈ N having a prescribed factor
g(x) ∈ Z[x].

2.1. Exhaustive search
Given a polynomial g(x) ∈ Z[x] and a positive integer d, we wish to determine all

polynomials f (x) ∈ N having deg(f ) � d and g | f . In order to avoid the time-consuming
operation of trial division with polynomials, we first ensure that g(xi) | f (xi) for a sequence
of integers {xi} before testing whether g | f . Choosing x0 = 2 allows us to take advantage
of the computer’s binary representation of integers. We identify an odd positive integer w

with the polynomial f ∈ N having f (2) = w, and clearly we can construct f from w by
scanning its binary representation. Since we need only consider odd integers w divisible by
g(2), this reduces the search space by a factor of 2|g(2)|.

We choose x1 = −2 for a secondary screening of candidate polynomials, taking advan-
tage of bit-selection operations to test very quickly whether g(−2) | f (−2). Let b+ and
b− denote the two integers between 2d−1 and 2d+1 whose binary representation consists of
alternating zeros and ones:

b+ =
d/2∑
k=0

22k; b− =
(d−1)/2∑

k=0

22k+1.

Also, for positive integers r = ∑d
i=0 ri2i and s = ∑d

i=0 si2i with ri, si ∈ {0, 1}, let r � s

denote the integer
∑d

i=0 risi2i , so r � s is the bitwise ‘and’ of the binary representations for
r and s. This operation is available in many popular programming languages (often as the
operator ‘&’). Finally, we define the function γ on nonnegative integers w < 2d+1 by

γ (w) = w � b+ − w � b−.

Note that if w = f (2) for f ∈ N , then γ (w) = f (−2). Further, computing γ (w) from
w requires only three operations per word of storage for the bits of w, so testing whether
g(−2) | f (−2) is quite fast.

We summarize our procedure in Algorithm 1
We implemented this algorithm in C++, and ran it on a MIPS R10000 processor, which

supports 64-bit arithmetic, allowing fast computation of γ (w) for d � 63. Using g(x) =
�(x)2, we have u = 358801 and v = 1666681, and with d = 60 our algorithm finds
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Input. g(x) ∈ Z[x], positive integer d .

Output. All f ∈ N with deg f � d and g | f .

Method. Set u = g(2) and v = g(−2).
For each odd w with 0 < w < 2d+1 and u | w do

If v | γ (w) then
Construct f from w = f (2).
If g | f then print f .

End if.
End loop.

Algorithm 1: Newman polynomials with a prescribed factor.

two polynomials in N having Lehmer’s polynomial as a repeated factor:

x59 + x58 + x54 + x51 + x48 + x47 + x46 + x45 + x41 + x37

+ x36 + x35 + x34 + x31 + x28 + x25 + x24 + x23 + x22

+ x18 + x14 + x13 + x12 + x11 + x8 + x5 + x + 1
= �(x)2�2(x)�4(x)�7(x)�30(x)p22(x), (6)

and

x60 + x59 + x57 + x56 + x53 + x52 + x49 + x48 + x47 + x46 + x45 + x44

+ x40 + x37 + x36 + x34 + x33 + x30 + x27 + x26 + x24 + x23 + x20

+ x16 + x15 + x14 + x13 + x12 + x11 + x8 + x7 + x4 + x3 + x + 1
= �(x)2�5(x)�6(x)�7(x)�30(x)�66(x). (7)

Here, �n(x) denotes the nth cyclotomic polynomial, and in (6), p22(x) denotes the
noncyclotomic polynomial x22 − x19 + x18 − x15 + x14 − x11 + x8 − x7 + x4 − x3 + 1.

2.2. Reciprocal search
Notice that the polynomials (6) and (7) are reciprocal, as we might anticipate, given

that �(x) is reciprocal. We describe a modification to Algorithm 1 to search for reciprocal
f ∈ N having a prescribed reciprocal polynomial g(x) as a factor.

We need to combine the arithmetic constraints on f (±2) with the structural requirement
of reciprocality. To do this, for a polynomial f ∈ N of degree d, we partition the d + 1
bits of the integer f (2) into three parts: the k low-order bits containing an integer a, the k

high-order bits containing the reversed bits of a, which we label a∗, and the m remaining
bits in the middle containing an integer b. Thus f (2) = 2k+ma∗ + 2kb + a, and since
g(2) | f (2), we require

b ≡ −2ma∗ − 2−ka mod g(2). (8)

We thus need to ensure that 2m > g(2), and it is clearly beneficial to select m as small as
possible, subject to this constraint. The relation 2k +m = d + 1 imposes a parity condition
on m, so we choose m to satisfy 2m−2 < g(2) < 2m. Thus, for each a, we need to consider
at most three values for b.
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Input. Reciprocal g(x) ∈ Z[x], positive integer d .

Output. All reciprocal f ∈ N with deg f = d and g | f .

Method. Set u = g(2) and v = g(−2).
Select m and k so that d + 1 = m + 2k and 2m−2 < u < 2m.
For each odd a with 0 < a < 2k do

For each b with 0 � b < 2m satisfying b ≡ −2ma∗ − 2−ka mod u do
If γ (b) ≡ −(−2)mγ (a∗) − (−2)−kγ (a) mod v then do

Construct f from a and b.
If g | f then print f .

End if.
End loop.

End loop.

Algorithm 2: Reciprocal Newman polynomials with a prescribed factor.

For the second test, because g(−2) | γ (f (2)) and γ (2n) = −2γ (n), we require

γ (b) ≡ −(−2)mγ (a∗) − (−2)−kγ (a) mod g(−2). (9)

We therefore obtain Algorithm 2.

Algorithm 2 in fact performs a somewhat broader search, since it guarantees that only
the leading k coefficients of f match the trailing k coefficients.

We use a Gray code in the implementation to enumerate the 2k−1 values for a, so that
each value that is considered differs from the previous value in exactly one bit position.
This allows for fast computation of the required residues in (8) and (9). For example, if the
bit in position i of a changes from 1 to 0, then we need only add 2m+k−1−i + 2i−k mod u

to the required residue for b and (−2)m+k−1−i + (−2)i−k mod v to the required residue for
γ (b). By computing the values 2−j mod u and (−2)−j mod v for 1 � j � k − 1, as well
as 2m+j mod u and (−2)m+j mod v for 0 � j � k − 2 at initialization, we may update
the state for each subsequent a using only a small number of array lookups, additions, and
modular reductions.

We may use the computer’s native arithmetic if max{m,
⌈

log2 |v|⌉} � W − 1, where W

denotes the word size of the computer. This guarantees that all additions stay within integer
precision. If this condition does not hold, we employ the highly optimized software package
GMP [17] for arithmetic with arbitrary precision.

Last, we note that it is simple to create a parallel version of Algorithm 2. If we have 2r

processors available, then on each one we fix the low-order r + 1 bits of a to a particular
odd integer between 1 and 2r+1.

We implemented this algorithm in C++ and ran it on the Bugaboos, a Beowulf cluster
consisting of 192 AMD Athlon 1.2 GHz processors at the High Performance Computing
Centre at Simon Fraser University. We found 23 polynomials f ∈ N with degree at most
100 having g(x) = �(x)2 as a factor. These polynomials are listed in Table 1, with the
coefficients of f (x) given in hexadecimal.
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Table 1: Newman polynomials f divisible by �(x)2.

deg f Coefficients of f (hexadecimal)

59 C49E23C93C47923

60 1B33F1364D91F99B

79 C42E67FE42427FE67423

84 1BF66C43EC4446F846CDFB

84 1A52C02D5DF1F75680694B

85 37EDB84FDB61B6FC876DFB

90 639D99136318C63644CDCE3

90 691F26C6F8BDE8FB1B27C4B

92 1A59E126B6D4A56DAC90F34B

93 310B99FFF9CC0CE7FFE67423

94 624F496C458A28D11B497923

95 DEDFE0288ECFF3711407FB7B

96 182345F5AD226C896B5F45883

96 1A52C971EF96EED3EF1D2694B

97 3722F1D73627FF91B3AE3D13B

99 DE1EE1F6A418918256F87787B

99 D92F0CB24469F96224D30F49B

99 D3AF53973A240245CE9CAF5CB

99 DEDFCA2852B7FED4A1453FB7B

99 C646A23E9776F6EE97C456263

100 1891A17715814E50351DD0B123

100 1BC3DC3ED48DFBF6256F87787B

100 1B33F1372D75EEF5D69D91F99B

It is natural to ask if other choices for g(x) work as well. We tested g(x) = p(x)2 for
361 other monic irreducible polynomials p(x) having no positive real root:

• the 96 known polynomials with M(�) < M(p) < 1.24;

• the 50 polynomials with deg p � 16 and 1.24 < M(p) < 1.3;

• 115 additional reciprocal polynomials with height 1 and deg p � 10;

• 100 nonreciprocal polynomials with height 1 and deg p � 6.

The polynomials in the first two categories may be found at [21]. For the reciprocal poly-
nomials of the first three families, we used Algorithm 2 to test k � 36 when using native
arithmetic and k � 33 when using GMP. For the last family, we used Algorithm 1 on each
p(x) to test f ∈ N with f (2) < 234p(2)2.

Only six Newman polynomials having a square nonreciprocal factor were found in these
searches; these are listed in Table 2. The first column of this table shows the ranking of M(p)

among known measures greater than 1 of polynomials with integer coefficients (see [21]).
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Table 2: Newman polynomials f divisible by p2 with M(p) > M(�).

Rank M(p) deg p deg f Coefficients of f (hexadecimal)

3 1.20002 14 105 3132866EBF8EDCEDC7F5D985323

5 1.20261 14 63 C4F2B890091D4F23

10 1.21639 10 60 1A413DB2A9B7904B

33 1.23039 10 86 6FC955A9F52257CAD549FB

– 1.28012 14 76 19008ADC4DB6476A2013

– 1.29156 14 76 16A92F5D560D575E92AD

The last two entries have no ranking listed because of the existence of a limit point of
Mahler’s measure near 1.255.

The second- and fourth-smallest known measures are both associated with polynomials
of degree 18, and we verify that no f ∈ N exists with deg f � 120 having one of these
polynomials as a repeated factor.

The question of whether there exist Newman polynomials with noncyclotomic factors
of multiplicity three or greater remains open, as does the broader question of whether
there exists an upper bound on the multiplicity of a noncyclotomic factor of a Newman
polynomial. We verify that no f ∈ N exists with deg f � 120 having �(x)3 | f (x). In this
computation, the value u = �(2)3 is slightly larger than 231, but by performing additions
mod u with some care, we are able to implement this search using native arithmetic on
32-bit processors, allowing a deeper search.

3. Littlewood polynomials

In [6], Borwein, Hare, and the author determined the smallest values of Mahler’s measure
for Littlewood polynomials of degree at most 72. The fifteen smallest values found are listed
in Table 3, where d represents the minimal degree of a polynomial f ∈ L having the given
measure, and d0 is the degree of the noncyclotomic part of this polynomial.

The seventh polynomial in this table is the only one whose noncyclotomic part is re-
ducible, factoring as (x10 − x7 − x5 − x3 + 1)(x10 − x9 + x5 − x + 1). These factors have
Mahler’s measure 1.23039 . . . and 1.28358 . . . , respectively: the third- and sixth-smallest
measures among irreducible, noncyclotomic polynomials of degree 10. Since the degree
of this example is close to the largest degree tested in that search, this suggests searching
for more Littlewood polynomials with reducible noncyclotomic part and small measure.
Fixing two polynomials g1 and g2 with small measure, can we find a polynomial f ∈ L
having g1g2 as a factor? We find that Algorithms 1 and 2 may be adapted to this problem
with only slight modifications.

For a polynomial f ∈ L of degree d , write f (x) = f +(x) − f −(x), with f + and f −
having {0, 1} coefficients. Since f +(x) − f −(x) = (xd+1 − 1)/(x − 1), we have

f +(x) = 1

2

(
f (x) + xd+1 − 1

x − 1

)
,
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Table 3: Smallest known measures realized by Littlewood polynomials.

Measure d d0 Coefficients ai , for 0 � i � d/2.

1. 1.49671107561 19 12 ++++-+-+--

2. 1.50613567955 11 6 +-+---

3. 1.50646000575 35 12 ++------+++--+---+

4. 1.53691794778 23 14 ++++----+-+-

5. 1.55107223951 23 12 +++++++--++-

6. 1.55603019132 6 6 ++--

7. 1.57930874185 65 20 +--++--++--+--++--++--+--++--++--

8. 1.58234718368 7 6 ++-+

9. 1.58501169305 35 24 ++++++-------+-+-+

10. 1.59185616779 71 16 +-+--+-+--+-++-++++-+--+------++-+++

11. 1.59287323067 65 44 +-+-+-+-+-+-+-+-+-+-+-+++++++++++

12. 1.59341317381 19 12 ++++-++++-

13. 1.59504631133 53 36 +-+-+-+-+-+-+-+-+----------

14. 1.59700500917 17 10 ++-++-++-

15. 1.59918220880 41 26 +-+-+-+-+-+-+-+++++++

and so, if g | f , then for any integer x0,

f +(x0) ≡ xd+1
0 − 1

2(x0 − 1)
mod g(x0).

Thus, to modify Algorithm 1 to search for Littlewood polynomials, we let w represent
f +(2), replace the condition u | w with w ≡ (2d+1 − 1)/2 mod u, and replace v | γ (w)

with γ (w) ≡ (1 − (−2)d+1)/6 mod v. Likewise, we modify Algorithm 2 by replacing (8)
and (9) with

b ≡ (2d+1 − 1)/2 − 2ma∗ − 2−ka mod g(2) (10)
and

γ (b) ≡ (1 − (−2)d+1)/6 − (−2)mγ (a∗) − (−2)−kγ (a) mod g(−2). (11)

The amended algorithms run just as fast, since only the initial values of the required residues
have been changed.

We add that Algorithms 1 and 2 may be modified in a similar way to search for a poly-
nomial f with a prescribed factor when only two fixed values are permitted as coefficients.

We use our modified Algorithm 2 to search for Littlewood multiples of the 746 known
polynomials g(x) satisfying g = g1g2 with:

• g1 and g2 irreducible;

• 1 < M(g1) < M(g2);

• M(g1g2) < θ = 1.496711 . . . ;
• g(x) and g(−x) not both selected; and

• either M(g2) <
√

θ or deg(g2) � 24.
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The last restriction is needed to avoid considering infinitely many polynomials for g2 when
g1 is one of the two smallest known measures. For each such g, we stop searching when a
particular choice for d results in a running time exceeding two hours, resulting in an average
of about eight hours of CPU time per polynomial.

Our search finds 900 Littlewood polynomials f having such a prescribed factor g. In
each case, g1(x) = �(x), and either g2(x) = 1 − x4 − x5 − x6 + x10, which has the
second-smallest measure among irreducible noncyclotomic polynomials of degree 10, or
g2(x) = 1 + x2 − x3 − x5 − x7 + x8 + x10, which has the fifth-smallest such measure. All
of these, however, have additional noncyclotomic factors, and none has measure less than
1.496711 . . . .

Finally, consider the obvious algorithm for searching for f ∈ L with degree d, prescribed
factor g, and M(f ) = M(g). Construct all polynomials of the form g� with M(�) = 1
and deg � = d − deg g. Boyd and Montgomery [13] determined an asymptotic estimate
for the number c(n) of polynomials of degree n composed entirely of cyclotomic factors,
finding that

c(n) = A exp(B
√

n)

n
√

log n

(
1 + O

(
log log n

log n

))
,

where A ≈ .213234 and B ≈ 3.57608. Since deg g ≈ m in Algorithm 2, our method
constructs 2k−1 ≈ 2(n−1)/2 values for f (2), so clearly the simple algorithm is more efficient
for large enough d. However, we compute that c(n) > 2(n−1)/2 for n < 64. Further,
Algorithm 2 performs very few operations for each candidate f (2), so we expect it to be
faster than the simple algorithm if 2(n−1)/2 is at least within an order of magnitude of the
number of cyclotomic products of total degree n. The actual crossover point is thus likely
to exceed n = 80, well past where our computations cease.

4. Height 1 polynomials

Lehmer’s problem is related to the question of the existence of polynomials in H with
roots of high order off the unit circle: if 1 is a limit point of the values of Mahler’s measure,
then for any m > 0 there exists a polynomial f ∈ H and a complex number β with
|β| �∈ {0, 1} such that f has a root at β with multiplicity m. We describe a method of
searching for polynomials with height 1 having a prescribed factor g(x) ∈ Z[x], and use
it to construct some polynomials in H with a noncyclotomic factor of order 3. A similar
method is used in [7] for the cyclotomic case g(x) = (x − 1)m.

We implemented Algorithm 3 in C++, using the NTL programming library [26] for its
powerful and flexible implementations of lattice reduction, and we used this program to
search for height 1 multiples of g(x) = �(x)m or g(x) = �2(x)m, where

�2(x) = x18 + x17 + x16 + x15 − x12 − x11 − x10 − x9 − x8 − x7 − x6 + x3 + x2 + x + 1,

and M(�2) = 1.188368 . . . . The polynomials � and �2 represent the only two known
measures between 1 and 4

√
2.

We found solutions for m = 2 and m = 3 for both of these polynomials, and we record
below an example with the smallest known degree for each case. For each polynomial, we
list its degree, its sequence of coefficients (abbreviating to ‘+’ for +1 and ‘-’ for −1) and its
factorization (using pn(x) to denote an irreducible, noncyclotomic polynomial of degree n).
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Input. Reciprocal g(x) ∈ Z[x] with deg g = d , positive integer D � d.

Output. �(D − d)/2� + 1 linearly independent, reciprocal polynomials with small coef-
ficients and degree at most D, each having g as a factor.

Method. Set n = D − d . Set hk(x) = (xn−k + xk)g(x) for 0 � k < n/2, and
if n is even set hn/2(x) = xn/2g(x). Write hk(x) = ∑D−k

i=0 ck,ix
i , and set

vk = (ck,0, . . . , ck,�D/2�) for 0 � k � n/2. The sequence {vk} spans an
(�n/2� + 1)-dimensional lattice in R

�D/2�+1, and vectors in this lattice cor-
respond to reciprocal multiples of g(x) with degree at most D. Use the LLL
lattice basis reduction algorithm [19] to construct a reduced basis for this lattice,
and report the polynomials produced.

Algorithm 3: Multiples of reciprocal polynomials with small coefficients.

• Degree 38:

+0-00+-0+--0+0--0-000-0--0+0--+0-+00-0+

= �(x)2�(−x)�3(x)�4(x)�12(x).

• Degree 115:

--+0-000-0+---0+00-00-00-0-0+0--000-+-00+000+-+-0--00+00++

--00-00++0+-+-000-00+-+000++0-0+0+00+00+00-0+++-0+000+0-++

= �(x)3�1(x)�4(x)�5(x)�6(x)�7(x)�11(x)�30(x)�42(x)p40(x).

• Degree 60:

++++00-0------0++0+-+-+0+0-0+000+0-0+0+-+-+0++0------0-00++++

= �2(x)2�8(x)�12(x)p16(x).

• Degree 200:

++0+000-0-0--+00+000-0-000+00+-+00+-+000-+--+-000+

++000-0+0-+-0-0000-+0000+-0--0-+0++0+-0--0-+00000+0

+00000+-0--0-+0++0+-0--0-+0000+-0000-0-+-0+0-000+++

000-+--+-000+-+00+-+00+000-0-000+00+--0-0-000+0++

= �2(x)3�1(x)2�2(x)4�3(x)2�4(x)�6(x)�8(x)�9(x)�10(x)

· �12(x)�15(x)�18(x)�21(x)�22(x)�27(x)�32(x)�38(x)�46(x).

The example for �3
2 has only cyclotomic auxiliary factors. No such polynomial is found

for �3, although we do find a polynomial in H of degree 117 whose noncyclotomic factors
are �(x)3�(−x). Its cyclotomic part is �2

1�2�3�
2
4�6�7�11�12�18�30�32�48.

No height 1 multiples of �4 or �4
2 are found using this method. We remark that a result of

Bombieri and Vaaler [4, Corollary 2] guarantees that such a polynomial exists for �4 with
degree less than 16000, and for �4

2 with degree less than 634000.
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We add that Beaucoup, Borwein, Boyd and Pinner [3] have established bounds on the
minimal absolute value of a nonzero root of prescribed multiplicity for a power series with
all its coefficients in [−1, 1]. In particular, they proved that no height 1 polynomials exist
having �7 or �7

2 as a factor.
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